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Abstract: Data assimilation using particle image velocimetry (PIV) and Reynolds-averaged Navier–
Stokes (RANS) simulation was performed for an ideally expanded supersonic jet flying at a Mach
number of 2.0. The present study aims to efficiently reconstruct all the physical quantities in the
aeroacoustic fields that match well with a realistic, experimentally obtained flow field. The two-
dimensional, two-component PIV measurement was applied to the jet axis plane, and the time-
averaged velocity field was obtained using single-pixel ensemble correlation. Two-dimensional
axisymmetric RANS simulation using the Menter shear stress transport (SST) model was also per-
formed, and the parameters of the SST model were optimized via data assimilation using the
ensemble Kalman filter. The standard deviation of the observation noise σ, which is a parameter of
the ensemble Kalman filter, is estimated by the previously proposed method (Nakamura et al., Low-
Grid-Resolution-RANS-Based Data Assimilation of Time-Averaged Separated Flow Obtained by LES.
Int. J. Comp. Fluid. Dyn., 2022), and its effectiveness was investigated for the first time. This method
effectively estimated the magnitude of σ at each generation without tuning the hyperparameters.
The assimilated flow fields exhibited similar flow structures observed in PIV such as the potential
core length or shear layer. Therefore, the present framework can be used to estimate time-averaged
full flow fields that match well with experimentally observed flow fields, and has the potential to
construct a database for the Navier-Stokes-based stability analysis that requires a full flow field.

Keywords: data assimilation; PIV; RANS; supersonic jet

1. Introduction

A supersonic jet, which is the exhaust flow from a propulsion device on a rocket or an
airplane, generates strong acoustic waves due to the presence of complex flow fluctuations.
These acoustic waves cause noise pollution and fatigue failure due to the acoustic loads.
Therefore, the noise generation mechanism of supersonic jets has been studied in recent
decades utilizing various experimental techniques and CFD/CAA (computational fluid
dynamics/computational aeroacoustics) [1–4]. In light of the requirements for better under-
standing and modeling of jet noise, reduced-order models have been employed [5,6]. Among
these models, a resolvent analysis has recently been attracting attention for applications in
stability analysis in the aeroacoustic field [7–11]. Moreover, super-resolution measurements
based on reduced-order models have recently proposed, and they reveal the unsteady
behaviors of jets [12–16]. Super-resolution measurements rely on modal decomposition [17]
such as proper orthogonal decomposition (POD) [18] or dynamic mode decomposition
(DMD) [19,20], and thus, it is possible to replace them with resolvent modes. Here, re-
solvent analysis requires knowing the full physical quantities of flow fields because the
resolvent is a linear operator derived from linearized Navier–Stokes equations. This feature
forces the use of computational data for resolvent analysis, and thus, the resolvent analysis
has not yet been applied to an experimentally measured supersonic jet flow.
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The experimental techniques in the aeroacoustic field have evolved alongside im-
provements in the specifications of measurement devices and the development of supe-
rior analytic algorithms. For example, schlieren, particle image velocimetry (PIV), and
pressure-sensitive paint (PSP) methods can visualize density gradient fields [21–24], ve-
locity fields [25–29], and surface pressure fields [30], respectively. These experimental
techniques are productive and enable us to easily conduct parametric studies. However,
their measurement spaces and resolutions are dependent on the image sensor of the camera
and the optics. In addition, the number of measurable physical quantities is often limited to
one or two. These points make conducting resolvent analysis impossible using experimen-
tal data alone. On the other hand, CFD/CAA methods allow us to obtain all of the physical
quantities in the aeroacoustic field with sufficiently high spatial resolution. In recent years, a
method for predicting supersonic jet noise at a relatively high Reynolds number (Re ∼ 106)
with an error of 2 dB using a large-eddy simulation (LES) was proposed [31]. This kind of
high-fidelity computation of a supersonic jet generally requires higher-order schemes and
a high grid resolution, resulting in huge computational costs [32–34]. Reynolds-averaged
Navier–Stokes (RANS) simulations are favorable in terms of their computational costs and
applicability to engineering fields, although they can only be used to calculate the averaged
flow field, which is required for resolvent analysis. Semlitsch and Mihăescu [35] computed
a supersonic jet using the Menter shear stress transport (SST) model [36] and compared it
with the PIV results under the same conditions. The computed flow field exhibited similar
shock structures, although the computation overestimated the turbulent viscosity, resulting
in the rapid growth of the shear layer. Overestimations of the turbulent kinetic energy in
the shear layer have also been observed in similar computations reported by Mishra and
Iaccarino [37], and the uncertainty estimation for the turbulence model has been performed
by [38]. Chauhan and Massa [39] performed a RANS analysis of a supersonic jet and a com-
parative analysis of the vorticity thickness for different turbulence models. They showed
that the SST model with a compressibility correction is able to estimate the experimental
data well. However, the results of those computations still highly depend on the inflow
boundary condition or the turbulence model [40]. Therefore, obtaining aeroacoustic fields
with sufficient prediction accuracy requires tuning the parameters, which often takes a lot
of time.

In consideration of the research background described above, the present study aims
to efficiently reconstruct all the physical quantities in an aeroacoustic field that match
well with a realistic supersonic jet. This is achieved by integrating the experimental
and computational results using a data assimilation technique. Data assimilation, which
incorporates observed values into a model to improve the prediction accuracy, has recently
been introduced to CFD [41]. Kato et al. [42] applied data assimilation using an ensemble
Kalman filter to a RANS simulation around an airfoil. The experimentally measured
pressure coefficients were used as the observations, and the parameters in a turbulence
model were optimized to improve the prediction accuracy. Nakamura et al. [43] employed
a similar framework to that by Kato et al. [42] for a low-grid-resolution RANS simulation of
a square cylinder wake and obtained similar flow fields to those found in an LES analysis.
Although previous studies successfully improved the prediction accuracy of wake flows
from low-speed to transonic regimes, the method’s applicability to a highly compressible
flow such as that from a supersonic jet has not been evaluated. In addition, there are
several studies involving the optimization of a turbulence model using assimilated PIV
data as observations [44,45]. Those studies employed subsonic jets, and their PIV data were
processed by spatial correlation, which tends to decrease the spatial resolution. However,
this is not suitable for high-Reynolds-number jets with thin shear layers, and the spatial
resolution of the PIV data used for observations should be sufficiently high.

Therefore, the present study reconstructs the flow field of a supersonic jet by inte-
grating PIV and RANS simulation using data assimilation. Single-pixel ensemble PIV
was performed for an axisymmetric supersonic jet of a Mach number of 2.0, and a high-
spatial-resolution mean velocity field, which resolves the thin shear layers, was obtained.
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Then, data assimilation based on the two-dimensional axisymmetric RANS simulation
using the Menter SST model [36] was performed. Similar flow fields to the experimental
ones were successfully reproduced by an ensemble Kalman filter after optimizing the SST
model parameters. Here, the estimation method of the variable hyperparameter, previously
proposed by [43], is introduced into the ensemble Kalman filter for robust data assimilation,
and it is evaluated by comparing the fixed hyperparameter computations for the first
time. Finally, the effectiveness of the present framework was discussed by illustrating the
data-assimilated flow fields.

2. Jet Conditions

An ideally expanded supersonic jet at the Mach number of 2.0 was employed in the
present study. The jet conditions were controlled by the nozzle pressure ratio and the
designed Mach number of the nozzle. Figure 1 illustrates the cross-sectional geometry
of an axisymmetric convergent–divergent nozzle for which the designed Mach number
is 2.0. The nozzle’s exit diameter D is 10 mm, and the nozzle’s contour was designed
by the method of characteristics. The nozzle pressure ratio is defined as the pressure
ratio between the stagnation chamber and the ambient and can be calculated using the
following equation:

pc

p∞
=

[
1 +

1
2
(γ − 1)M2

j

] γ
(γ−1)

. (1)

Here, Mj, pc, p∞, and γ are the jet’s Mach number at the nozzle’s exit, the stagnation pres-
sure, the ambient pressure, and the specific heat ratio, respectively. The ideally expanded
conditions were reproduced at the nozzle pressure ratio of 7.82, corresponding to a Mach
number of 2.0. The Reynolds number at the nozzle’s exit was 1.0× 106, and the temperature
ratio between the stagnation chamber and ambient conditions was 1.0.

-6 -5 -4 -3 -2 -1 0
 x/D

-1

0

1

 r
/D Jet flow direction

Figure 1. Schematic of the boundary conditions and the calculation grid.

3. Methods
3.1. Experimental Apparatus

The two-dimensional, two-component (2D2C) PIV measurement was performed, and
the time-averaged velocity field of the supersonic jet was obtained for the data assimilation.
The PIV measurement was performed in an anechoic room equipped with a jet-generating
device at Tohoku University. Readers can refer to Ozawa et al. [27,46] for more details about
the experimental facilities. Figure 2 illustrates the experimental setup of the PIV measure-
ment. The PIV measurement system is composed of a double-pulsed laser (LDY-303, Litron,
Tokyo, Japan) and a high-speed camera (Phantom V611, Vision Research, Sydney, Austrilia).
The hardware specifications and measurement conditions are summarized in Table 1. The
seeding particles are generated using Laskin nozzles and a 50% aqueous solution. Both the
jet flow and ambient air were filled with seeding particles. The short time intervals for the
particle image pairs were set to be 1.2 µs, and the image pairs were acquired at the sampling
rate of 1 kHz. The obtained particle images were analyzed using single-pixel ensemble cor-
relation [46,47], and the pixel-by-pixel velocity fields were obtained. Single-pixel ensemble
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correlation calculates the cross-correlation using the change in time series intensity in a
single pixel instead of a spatial interrogation window. Therefore, only the mean velocity
field can be obtained, but the spatial resolution is high. This approach is suitable for data
assimilation because the thin shear layer responsible for the acoustic generation can be
properly resolved. The spatial resolution of the calculated velocity vectors was 1256 × 392
vectors (12.5 µm/vector).

Nozzle

Nd:YAG Laser
High-speed

camera.

Figure 2. Experimental setup of PIV measurement.

Table 1. Hardware specifications and measurement conditions.

Specifications of Laser:

Laser system LDY-300PIV (Litron)
Laser type Nd:YLF
Laser wavelength 527 nm
Pulse energy 2 mJ at 10 kHz
Laser sheet width approx. 0.8 mm

Specifications of Camera:

High-speed camera Phantom V611 (Vision Research)
Image sensor 1280 × 800 pixels
Pixel pitch 20 µm
Camera lens Nikkor 80–200 mm f/2.8

Measurement conditions:

Measurement area 160 × 50 mm
Pixel resolution 1280 × 400 pixels
Spatial discretization 12.5 µm/pix
Time between laser pulses 1.2 µs
Sampling rate 1 kHz
Number of snapshots 20,000 pairs

3.2. Numerical Apparatus

Two-dimensional axisymmetric RANS simulations were performed using the open
source software SU2CFD (v8.0.1) [48] developed by Stanford University. The unstructured
grid was generated by Gmsh software (4.12.2), and the boundary conditions are shown in
Figure 3. The calculation area, defined as 0 < x/D < 30 and 0 < r/D < 10 for the outside
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of the nozzle and the inside of the nozzle, was also calculated, as shown in Figure 1. A
prism mesh of 30 layers was applied inside the nozzle, and the minimum grid spacing
inside the nozzle was 0.0001 D. The total grid number is approximately 40,000 points. The
inflow conditions inside the nozzle were defined as pc = 765 kPa, Tc = 291 K. The far-field
conditions were defined as freestream. The freestream pressure and velocity were set to
atmospheric pressure and 0.01 % of the jet velocity at the nozzle’s exit, respectively.
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x/D

0

2

4

6

8

10

r/
D

Far field (atmosphere)

Inflow

Outflow

Axisymmetric

Solid wall

Figure 3. Schematic image of the boundary conditions and the calculation grid.

The Menter SST model was employed for the turbulence model. The SST model
is a two-equation eddy viscosity model that combines the k − ω turbulence model and
k − ϵ turbulence model. The k − ω and k − ϵ models are suitable for estimating the inner
region of the boundary layer and the freestream region, respectively. The SST model
switches those two models using a blending function. The closure coefficients for the k − ω
model are (σk1, σω1, β1, a, β∗, κ, γ1), and those for the k − ϵ model are (σk2, σω2, β2, β∗, κ, γ2).
Table 2 shows the default SST parameters. These default parameters cannot reproduce the
experimentally obtained velocity fields well. Therefore, data assimilation was applied to
the RANS simulation, and the SST parameters were optimized. Here, eight parameters
of the SST model (σk1, σk2, σω1, σω2, β1, β2, β∗, a) are the targets of the optimization in the
present study. In addition, although several correction terms for compressible flows have
been proposed for the SST model [49–52], the present study employed the basic SST model
for a simple evaluation of the effectiveness of the data assimilation.The following section
describes the details of the data assimilation technique used in the present study.

Table 2. Default SST parameters.

σk1 σk2 σω1 σω2 β1 β2 β∗ a κ

0.85 1.0 0.5 0.856 0.075 0.0828 0.09 0.31 0.41

3.3. Data Assimilation

The present study employs the ensemble Kalman filter for data assimilation because
this method is easy to incorporate into numerical simulations. Figure 4 illustrates the
schematics of the data assimilation. The flow field calculated using the default SST param-
eters was used as the initial solution, and then randomly selected SST parameters were
used for the first calculation. Then, the SST parameters and the updated flow fields were
input into the ensemble Kalman filter, and the filtered SST parameters were calculated. In
the next step, the filtered SST parameters were used for RANS simulation and the same
process was repeated. In the present study, the ensemble number was set to be N = 16, and
the calculations were repeated 20 times.
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SU2CFD

Randomly selected
SST parameters

Updated flow field
SST parameters

Filtered
SST parameters

SU2CFD

Randomly selected
SST parameters

Updated flow field
SST parameters

Filtered
SST parameters

Ensemble Kalman Filter

........
Ensembles

........

........

........

Initial flow field calculated with default SST parameters

Figure 4. Schematics of the data assimilation process using the ensemble Kalman filter and SU2CFD.

The ensemble Kalman filter considers the state equation and observation equation of a
discrete-time nonlinear system as follows:

x(l)t = f
(

x(l)t−1

)
y(l)

t = Htx
(l)
t + w(l)

t

(2)

Here, f represents a function that updates the state vector. This corresponds to the RANS
calculation performed by SU2CFD in the present study. In addition, y, H, and w represent
the observation vector, observation matrix, and observation noise, respectively. The index l
is used for an ensemble member (1 < l < N). The matrix H corresponds to the operator
mapping the velocity field obtained by the RANS simulation onto the PIV measurement
grid, as shown in Figure 5. Here, the state vector of the ensemble Kalman filter includes the
SST parameters as well as the state and observation quantities of the flow field. The state
vector x(l)t and the observation matrix H are defined as follows:

x(l)t =
[
xTCFD, xTOBS, xTSST

]T
. (3)

H(l)
t = [0, I, 0], (4)

Here, xCFD is a state vector that contains the density ρ; the momentum ρu, ρv; the energy e;
the turbulent energy k; and the dissipation rate ω. xOBS has a velocity field that is mapped
onto the PIV grid as the observation. Moreover, the state vector includes the SST parameters
xSST. Note that the SST parameters do not evolve over time, but alter when the filtering
process is executed after obtaining the steady flow fields with the previous parameters.

xCFD =
[
ρT, ρuT, ρvT, eT, kT, ωT

]T
,

xOBS =
[
uT

PIV, vT
PIV

]T
,

xSST = [σk1, σk2, σω1, σω2, β1, β2, β∗, a]T.

(5)

In addition, I is the identity matrix of the size of the number of observations; the sizes of 0
inside H(l)

t are appropriately determined so that H(l)
t x(l)t = xOBS is satisfied.
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Figure 5. Schematic image of the mapping of RANS velocity fields onto a PIV grid.

The filtering process of the ensemble Kalman filter is described as follows. The
ensemble average of the state vector is calculated using the following equation:

xt =
1
N

N

∑
l=1

x(l)t . (6)

The matrix δXt, which summarizes the differences of each ensemble from the ensemble
average, and the variance–covariance matrix Vt can be defined as follows:

δXt =
1√

N − 1

[
x(1)t − xt, x(2)t − xt, · · · , x(N)

t − xt

]
, (7)

Vt = δXtδXT
t . (8)

The present study assumed that the instances of observation noise w are uniform at all the
observation points and do not interfere with each other. Then, the variance–covariance
matrix R of the observation noise is expressed as follows:

R = σ2I. (9)

Here, σ is the standard deviation of the observation noise, which is basically unknown.
This is generally not updated after determining an appropriate value before repeated
calculations. When observation noise is large, optimization calculations take time and the
number of iterations increases, leading to an increase in calculation costs. Therefore, the
present study applied a method proposed by Nakamura et al. [43] that can estimate the
standard deviation of the observation noise using a low-rank state. The estimated σest is
defined as follows:

Hδx(l)t = UΣWT, (10)

σ2
est =

1
N(N − 1)

[∥∥∥UT
(

Hx(l)t − Yt

)∥∥∥2

F
− ∥Σ∥2

F

]
. (11)
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Equation (10) represents the singular value decomposition, and Equation (11) is used for
the estimation at each step. Here, the first term inside the bracket on the right-hand side
of Equation (11) is the estimation of the sum of squares of the observation noise and the
projection of covariance of members into the observations; the second term is a square of
the projection of covariance of members into the observations. This simple subtraction
process yields the estimation of the square of the observation noises. Refer to Nakamura
et al. [43] for another description of this estimation method. In this study, this estimation
for σ is used unless otherwise mentioned, and a constant σ is partially used for comparison.

Finally, the filtering process can be conducted using the following equation:

x(l)t = x(l)t + Kt

(
yt − Hx(l)t + w(l)

t

)
. (12)

where Kt is the Kalman gain, and it is defined as follows:

Kt = VtHT
t

(
R + HtVtHT

t

)−1
(13)

= δXδXTHT
t (σ

−2I − σ−4HtδXt(E +σ−2δXT
t HT

t HtδXt

)−1
δXT

t HT
t

)
, (14)

where E is an identity matrix of the size of the number of ensemble members. In the present
study, the Kalman gain in Equation (13) is expanded by the inverse matrix lemma, as
shown in Equation (14), and memory usage and computational load are reduced by the
multiplication calculations expressed in Equations (12) and (14) in order to avoid making a
large matrix.

Once we obtain the new ensemble members, including turbulent model parameters,
the next computations using the new turbulent model parameters can be conducted.

4. Results and Discussion

The error of the data assimilation is first investigated at different observation noises.
The error is defined as the difference between the two components in the velocity field
between PIV and RANS:

E =
∑M

j=1

∥∥∥uPIV
j − uRANS

j

∥∥∥2

2
+ ∑M

j=1

∥∥∥vPIV
j − vRANS

j

∥∥∥2

2

∑M
j=1

∥∥∥uPIV
j

∥∥∥2

2
+ ∑M

j=1

∥∥∥vPIV
j

∥∥∥2

2

. (15)

Here, u and v are the streamwise and radial velocity components in the PIV or RANS
results, respectively, and M is the total number of all observation points. Figure 6 shows
the error of the data assimilation at each instance of observation noise. Note that the
error in each generation is the average of all ensembles, and the error bar corresponds to
the deviation in the ensembles. The error decreases with the increase in the number of
generations, regardless of the difference in the standard deviation of the observation noise.
If σ is set to be large for all iterations, the convergence speed becomes slow. Moreover, a
large σ tends to induce a relatively high error, even if the number of iterations increases.

It should be noted again that we tried a smaller fixed σ value than 500, but the
computations often failed using this number because of the substantial changes in the
turbulent model parameters. This implies that a fixed σ of 500 is the close to the best
choice for the fast convergence of computing the ensemble Kalman filter with the fixed
hyperparameters. Setting the best σ value for the ensemble Kalman filter requires a trial-
and-error process in which filtering computations are calculated and investigated several
times. The estimation method of σ skips this trial-and-error process and maintains a
robust computation with reasonable convergence speed based on only a single run of the
filtering computation.
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Figure 6. Convergence of the data assimilation process at each instance of observation noise.

Figure 7 shows the relationship between the estimated σ and the error. The value of
σest is extremely high in the first generation because the first calculation uses randomly
selected SST parameters. However, the magnitude of σest decreases as the number of
generations increases, along with the error. This result indicates that the estimation method
of Nakamura et al. [43] is effective in the present problem, and the data assimilation can
be carried out without manually tuning the hyperparameters. It should again be noted
that the evaluation of the estimation method of Nakamura et al. [43] is shown here for the
first time.

1 5 10 15 20
Generation

10-3

10-2

10-1

100

E
rr
or

103

104

es
t

Error

est

Figure 7. Relationship between the estimated value of σ and the error.

The flow fields obtained using the optimized SST parameters are compared with the
experimentally measured velocity field, and the effectiveness of the data assimilation is
discussed. Here, the flow field with the minimum error set to σ = σest was compared
with the PIV results. Figure 8 depicts the streamwise velocity distributions obtained with
PIV and RANS. The velocity field obtained using the default SST parameters exhibits a
short potential core length and a rapidly growing shear layer compared with those of the
PIV. However, the optimized SST parameters suppress the shear layer’s growth and make
the potential core length longer. These features are obvious in Figure 9, which shows a
comparison of the streamwise velocity distributions. The wavy behavior of the PIV results
in Figure 9a is due to the existence of weak shock waves. The reason why these weak shock
waves are observed even under the ideally expanded conditions is due to the slight change
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in the actual nozzle diameter. Since the ideally expanded nozzle used in the present study
does not consider the thickness of the boundary layer inside the nozzle, the boundary
layer makes the actual nozzle diameter smaller, resulting in the appearance of shock waves.
Note that the effect of the boundary layer’s thickness inside the nozzle [27] is hard to
completely removefrom the experiment.Although the weak shock waves observed in PIV
are not reproduced in the optimized RANS result, velocity fields similar to those in the PIV
results can be obtained through data assimilation.

Default SST Parameter
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PIV data

0 5 10 15
 x/D

-2

0

2

 r
/D

Figure 8. Streamwise velocity distributions obtained with PIV and RANS. Contour represents
0 ≤ u/Uj ≤ 1.
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(a) Streamwise velocity distributions on the jet axis.
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Figure 9. Comparison of the streamwise velocity distributions.
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Figures 10 and 11 depict the turbulence kinetic energy (TKE) obtained with PIV
and RANS. Note that the TKE of the PIV data is not calculated using the single-pixel
correlation. The single-pixel correlation is not able to estimate the turbulence properties
because it relies on temporal information. Therefore, the TKE was alternatively estimated
by the conventional spatial correlation using commercial PIV software (Dynamic Studio 6.7,
Dantec Dynamics). Consequently, the spatial resolution of the TKE distribution of PIV is 0.1
mm, which is one-eighth of the distribution in the single-pixel ensemble correlation. The
TKE in the PIV data is mainly distributed in the shear laye, r and its value is higher near the
nozzle’s exit. This is due to the error vector calculated by the spatial correlation. Moreover,
the turbulence intensity in the PIV data decreases at first and then increases downstream.
This drop in turbulence intensity seems to be caused by the insufficient spatial resolution of
the spatial correlation concerning the turbulence scale. Therefore, the turbulence intensity
increases again downstream when the turbulence scale is sufficiently large for the used
spatial resolution. Although the TKE in the PIV data includes errors and should thus be
discussed carefully, the magnitude of the TKE on the downstream side (10 < x/D < 15)
can be used as a reference. The RANS results with the default SST parameters overestimate
the TKE in the shear layers, as reported in previous studies [35,37], compared with the
TKE estimated in PIV data in the downstream side (10 < x/D < 15). The optimized SST
parameters suppress the TKE in the shear layer and show a more accurate estimation,
although the estimated TKE is still higher than that estimated in the PIV data, even in
the downstream side (10 < x/D < 15). The optimized SST parameters are shown in
Table 3. The optimized values of σk1, σk2, σω1, and σω2 are lower compared to the default
ones. This indicates that the decrease in those parameters makes the estimated turbulent
intensity lower.
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Optimized SST Parameter
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/D
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(u'2+v'2)/U0

21
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Figure 10. Turbulence kinetic energy distributions obtained with PIV and RANS.
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Figure 11. Radial profiles of the turbulence kinetic energy.

Table 3. Optimized SST parameters.

σk1 σk2 σω1 σω2 β1 β2 β∗ a

0.474 0.574 0.393 0.634 0.070 0.102 0.080 0.434

Although the TKE is still high in the optimized RANS simulation, the present study
indicates that the optimized RANS simulation enables us to obtain a time-averaged flow
field similar to the observations. The time-averaged flow field is used as the so-called base
flow in resolvent analysis, and data assimilation using PIV and RANS has the potential to
construct a parametric database of base flows that reproduce the experimentally obtained
flow fields.

5. Conclusions

The present study integrated PIV and RANS using data assimilation in order to obtain
the full flow field of a supersonic jet that coincidences with the velocity field observed
experimentally. The 2D2C PIV of a supersonic jet at a Mach number of 2.0 was performed,
and time-averaged velocity fields were obtained. Then, the ensemble Kalman filter was
employed for data assimilation, and the SST model parameters in the two-dimensional
axisymmetric RANS simulation were optimized.

The method for estimating the hyperparameters of the ensemble Kalman filter is
evaluated for the first time. The findings here illustrate that this technique enables us to
conduct the ensemble Kalman filter’s computation without manually tuning the hyper-
parameters. We believe that this technique is very effective for the data assimilation of
sensitive parameters such as the turbulent model parameters adopted in the present study.

Finally, the assimilated flow fields exhibited similar flow structures observed in the
PIV model, such as the potential core length and shear layer. The presented results indicate
that data assimilation using PIV and RANS can effectively estimate time-averaged full
flow fields, which are the so-called base flows in resolvent analysis. Therefore, the present
framework can be used to obtain a parametric database of the base flow, making resolvent
analysis based on experimentally obtained flow fields possible.
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