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Abstract: Aircraft engine noise has become a significant concern for air operators to address. Engi-
neering strategies have resulted in the development of easily applicable solutions, known as “passive
solutions”, that do not necessitate real-time control. These solutions include the incorporation of
corrugations or cutouts at critical locations on the engine’s aerodynamic surfaces. Realistic solutions,
whether approached numerically or tested at small scales, as well as computational models, have
been found to closely match experimentally observed behaviors, both in 2D and 3D scenarios. The
identified geometries serve as promising starting points for devising combined concepts that may
offer even better performance under specific flow conditions.

Keywords: serrations; lowered noise emissions; fan noise; stator blade; interaction noise

1. Introduction

This paper aims to present the solution of utilizing modified blades in the leading
and/or trailing edges to reduce noise generated by turbine engine rotor/stator blades.
The proposed solution is passive, meaning it does not require additional installations
to control specific blade parameters. Throughout the paper, the term “serrated vanes”
or “serrated blades” will be used to refer to modified blades with repetitive structures,
typically in the form of teeth. The technical methods for implementing such serrations and
the acoustic implications of this solution, including current–blade interaction noise and
self-noise, will be discussed. Additionally, aerodynamic implications will be considered.
Various approaches for integrating this solution, as identified in the literature, will be
reviewed, including serrations applied at the leading edge, trailing edge, or both, utilizing
different variation laws such as sinusoidal (with constant or variable amplitude, fixed or
variable pitch), step-type, triangular, fractal, etc.

As cities become increasingly crowded, aircraft noise has emerged as a significant and
pressing issue, particularly as airports are no longer located in remote areas. Alongside
other sources of noise pollution, such as traffic noise, aircraft noise has garnered attention
due to its adverse effects on communities. Among the primary sources of aircraft noise are
the propulsion systems, which include engines and related components. Engine manufac-
turers tend to further optimize the propulsion system, which has led to the development of
turbofan engines with a very high bypass so that specific fuel consumption is significantly
reduced. Under these conditions, it is obvious that the secondary flow, which bears a
substantial mass of air, is one of the main sources of noise. There is a correlation between
noise source weightings, depending on the technological solution. For a low bypass ra-
tio turbofan engine, the fan noise is at a similar level as the jet noise. For higher ratios,
necessary to lower the specific consumption, the fan is the main source of radiation, the
noise being directed towards the front with a certain dominant frequency (corresponding
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to the angular velocity of the fan, the so-called BPF). The frequency range of interest, in
which it is desirable for the solution to provide the greatest noise reductions, is 0.5–3
BPF. These frequencies therefore correspond to several engine operating regimes (from
“approach” to “take off”) and include the harmonics with the highest contribution to source
(fan) emissions.

The justification for researching such solutions also comes in light of the directives that
are emerging at the European level on noise emissions, with the aim of ensuring a better
living environment for all citizens (applicable within the European Union). In this respect,
there are regulations or directives at the European level that are transposed/enacted in
one form or another in national legislation. For example, European Comission directive [1]
on the assessment and management of environmental noise, which is similar to [2]. Other
forms of European noise laws issued some time ago can also be identified, such as:

- limitation of aircraft noise—EASA Regulations [3,4]
- operational restrictions in the area of communities around airports [5]
- regulation on the flight of subsonic aircraft [6]

2. Calculation Methods and Models for Serrated Vanes (Interaction Noise)
2.1. Classic Blade

With the advancement of bladed machines (specifically turboshaft engines), inquiries
have emerged regarding the diverse characteristics and dependencies of flows in relation
to measurable phenomena. One of the concerns that arose in the early 1950s was the
determination of the acoustic spectrum due to aerodynamic effects. In this respect, there are
a number of authors who have undertaken both theoretical and experimental approaches
(Curle, Lighthill, Philips, Proudman, and, to a certain extent, by analogy, Stratton) [7].
The most remarkable works that form the basis for describing how aerodynamic noise is
generated, different from that generated by the vibration of a solid placed in a medium,
have been identified as those of Curle and Lighthill. Starting from Navier–Stokes relations
and conservation of momentum in a form proposed by Reynolds, the exact equation of
fluid motion (Equation (1)) was transformed into relation (2) by adding source terms (mass
Q(x,t) per unit volume, introduced at a given moment of time at position x) [7,8].

∂2

∂t2 − a2
0∇2

ρ =
∂2

∂xi∂xj

(
Tij
)

(1)

where Tij = ρviϑ j+pij − a2
0ρδij , ρ is the density, pij is the pressure component of the stress

tensor, a0 is the speed of sound in the fluid medium, and vi is the component of the velocity
in the xi(i = 1, 2, 3) direction.

Starting from relation (2), Curle [7] tried to further develop Lighthill’s theory [9] and
focused on the differences between acoustic intensities generated by sources with different
characteristics (dipoles vs. quadripoles). Through his analysis, he arrived at the same
relationship derived by Lighthill for quadrupoles (also referred to as Lighthill’s 11th law),
as well as a comparable relationship for dipole-type sources [7].

ρ − ρ0 =
1

4πa2
0

∂2

∂xi∂xj

∫
v

Tij

(
y, t − |x−y|

a0

)
|x − y| dy (2)

This similarity between the two types of sources is mentioned in relation (3). The
relationship is useful to evaluate, at least quantitatively, the specific acoustic effects of
different sources specific to certain applications. For example, for airfoils, the suction side
represents a dipole-type source, and the fluctuating flow in the shear state (“shear layer”)
corresponds to a quadrupole-type acoustic source, as noted by Turner [8].

IQ

IB
∼
(

U0

a0

)2
· f (R) (3)
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Building on Curle’s work, Amiet [10] attempted to develop the general relationships
explored in the 1950s and applied them to a simplified airfoil (flat plate). He also identi-
fied that the environment in which the airfoils are placed is not undisturbed but can be
considered “frozen turbulence”, whose parameters describing the fluctuating behavior
are constant in the three directions of propagation (constant wave numbers). In this way,
using various mathematical techniques, he was able to derive a law for the PSD (power
spectral density) using a specific turbulence of the von Karman spectrum model, which
can be further converted into a sound pressure level (e.g., relation (4)).

SPL1/3 = 10lg

 Ld
z2 M5 u2

U2
k̂3

x(
1 + k̂2

x

)7/3

+ 181.3 (4)

Obviously, “complete” theories are based on simplifying assumptions. The same is
true of Amiet’s theory, which, when applied to blades that have an aerodynamic cross-
section, requires correction. One such correction, for example, identified by Tian [11], is
relation (5).

SPL [dB] =
9
50

e
c( e

c
)

re f

f
U

(
Λ
c

)
re f

Λ
c

(5)

2.2. Leading Edge Serrated Blades

The modification of the leading edge, as identified in the literature, is a naturally
inspired process (adaptations from birds [12] or marine animals [13] can be identified
here). When discussing the modification of the leading edge through the introduction
of serrations, it is worth noting that their theoretical study began to emerge in the 1990s,
as highlighted by Lyu [12]. The models that were the basis for the development of the
theory of modified leading edge vanes were also those mentioned in the previous chapter,
namely Sears (1941), Curle (1955), Graham (1970), and Amiet (1972–1975). Lyu [12] built on
these mathematical models and developed a theoretical methodology for characterizing the
acoustic performance of such modified leading-edge vanes. He used various mathematical
procedures, including Fourier series developments and Schwarzchild techniques, and
finally identified that the main noise reduction occurs due to destructive interference
induced by the pressure field strongly influenced by the presence of these modifications.

Lyu [12] identified that for a “uniform” flow, the non-stationarity of the velocity in
the upstream region with respect to the analyzed blade can be decomposed according to
several models: vorticity (a pseudo-velocity field), entropy, or acoustic waves. Typically,
the non-stationarity of the upstream flow is assessed by a velocity field, which Amiet [10]
also characterizes by a parameter w(x, y, t).

V. Clair et al. [14] attempted to validate the usefulness of such vanes using an internal
solver. In order to get as close as possible to the real case (turbulence from the rotor reaching
the stator blade), the authors checked how the blade behaves both in longitudinal and
lateral gusts (whose behavior is described by two non-zero wave numbers). The conclusion
of the numerical analyses, after the code has been validated with models/data already
existing in the literature, is that the NACA 65(12)-10 airfoil vane behaves well acoustically
at different upstream conditions, and the spectrum of the modified vane is below that of
the reference vane, which is also confirmed by the experiments performed.

Lau et al. [15] used numerical simulations to study how a turbulent jet interacts with
a serrated leading edge (using a symmetric airfoil). They noted that the best results are
obtained when turbulence parameters and vortex amplitude are conveniently coupled.
The trend they observed is that as the ratio of the sera amplitude to the incident gust
wavelength increases, so does the noise reduction. The reduction is considerable at ratios
greater than 0.3, with “optimum” values in the range 1–1.5 for this ratio.
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Narayanan et al. [16] analyzed both numerically and experimentally different com-
binations of serration parameters for airspeeds of 60 m/s (applied to flat plates). The
observed trend is that the serration amplitude is the one that provides the noise reduction;
there is no difference in trend between the flat plate and the real airfoil; and the spectra
recorded experimentally show a noise reduction on a logarithmic trend with respect to
the serration amplitude. Also, in a previous paper, Naraynan et al. [17] noted that the flat
plate better captures the noise reduction mechanisms (the reduction is also more noticeable)
compared to the 3D profile (10 dB vs. 4 dB).

From the perspective of Chaitanya et al. [18], the introduction of leading edge ser-
rations is a good way to reduce the “efficiency” with which vorticity is transformed into
acoustic radiation through interaction with the solid (inclined) surfacing. Thus, the acoustic
sources distributed on the inclined surface of the leading-edge serrate vanes are lower in
intensity than in the case of the reference (straight leading-edge) vane. Kim [19] identified
that at low frequencies, the sources at the base of the serrate are dominant, and as we
consider higher frequencies, the weighting starts to be similar. In this way, a combined
serration (consisting of several amplitudes, either obtained by combining two waves or a
random function) could lead, in some cases, to interesting results.

Biedermann et al. [20] tried to find a dependence between flow parameters and sound
pressure level reduction starting from a usual configuration (stator vane airfoil: NACA
65(12)-10, Reynold numbers of order 105, sinusoidal serration with variable parameters,
and incidence in the range 0–10◦). As a result, a number of interdependence relations
between different linear combinations of the main parameters are obtained. The method
of obtaining these relationships is linear regression; an example illustrating their form is
depicted in Figure 1.
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Figure 1. Example of interdependence between parameters (Biedermann [20]): (a) using linear
regression; (b) plotting experimental data.

Although the relationships derived by Biedermann [20] are valuable, they only cover
a limited range of operations, specifically regarding turbulence, chord, and associated
serration parameters around certain values. A comprehensive characterization of such
a vane requires a well-defined methodology, not solely reliant on experimental results.
Naturally, the methodology must undergo validation through recordings conducted on
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dedicated stands; however, the material and time resources needed for this process should
be significantly reduced. The most expedient approach capable of accommodating any
combination of parameters is analytical or numerical calculation. In this regard, Lyu
et al. [12] began with the models proposed by Amiet and analytically developed relations
for determining the acoustic pressure and power field for a serrated blade with airflow
over it. The starting point is the serrated flat plate illustrated in Figure 2 (which represents
the simplest case).
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One can write a law describing the curve of the leading edge, and in this case, in
triangular form, the variation law can be written according to relation (6):

H
(
y′
)
=

{
σ0(y′ − λ0 − mλ) + ε0, λ0 + mλ < y′ ≤ λ1 + mλ
σ0(y′ − λ0 − mλ) + ε1, λ1 + mλ < y′ ≤ λ2 + mλ

(6)

where σj is the parameter defining how sharp the triangular serration is, λj is the distance
in the span direction, and εj is the distance in the flow direction. The parameter m is an
integer that can be either positive or negative (the origin of the system is placed at half the
width/length of the blade) and defines the tooth number.

As previously mentioned, the turbulence associated with flow is considered isotropic
and can be described by wave numbers associated with the propagation directions.
Relation (7) presents a common formulation for turbulence coming from upstream to
the serpentine leading edge.

w
(
x′, y′, t

)
=
∫ ∞∫

−∞

∼
w(k1, k2)ei(k1(x′−Ut)+k2y′)dk1dk2 (7)
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This turbulence formulation can also be written in other forms, as presented by
Lyu [12] or Amiet [10,21,22], with the calculation following a Fourier decomposition of the
gust into simple plane waves of type (8).

wi = wiae−i(ωt−k1x′−k2y′) (8)

The calculation is further based on solving a second-order differential equation for the
potential velocity function, which is a wave propagation equation. Solving the equation
using relation (8) leads to obtaining an equation system that has a matrix formulation of
the type of relation (9), where A and B are two diagonal matrices, the problem being the
wave-type system of PDEs that is solved iteratively.

DΦ = AΦ + B
∂Φ
∂x

(9)

where Φ = (. . . Φ−n′(x, z), Φ−n′+1(x, z), . . . Φn′−1(x, z), Φn(x, z), . . .)T and the matrices A
and B are written as follows:

Aml =
(

k2
2m − k2

)
δml , Bml =

{
4σ
λ

m+l+ k2λ
π

l−m , m − l = even
0 , m − l = odd

(10)

with δml as the Kroneker symbol and m and l as the corresponding row and column index
modes in the matrix, respectively.

The fundamental equation of the model developed by Lyu [12] is written in (11), where
the sound pressure is written for the median plane of the vane.

Spp(x, ω) = (2πdU)

(
ρ0ωx3

2πc0s2
0

)2 ∞

∑
m=−∞

Φωω(ω|U, 2mπ/λ)

|γd(ω|U, 2mπ/λ)|2

∣∣∣∣L(ω,
ω

U
,

2mπ

λ

)∣∣∣∣2 (11)

Note in relation (11) that the acoustic pressure depends on the spectrum of the incident
turbulence (denoted here by Φωω). There are several similar models, but the most common
is the Von Karman spectrum, which in Amiet’s formulation [10] is written according to
(7). This spectrum can also be described using some experimentally recorded values (such
as turbulence intensity and a parameter for length [23]). For three-dimensional flow with
non-isotropic characteristics, Buszyk et al. [24] expressed the relationship for turbulence
according to the three cartesian directions.

Lyu et al. [12] solved relation (11) for the experimental conditions used by Narayanan [16]
and obtained the spectra in Figure 3, which, after 1000 Hz, follow the experimental curves
quite well. Being a theory developed from Amiet’s relations, it was expected that in the
low frequency band there would be differences in sound pressure.
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As the calculation was performed in the median plane, we can say that it is a
two-dimensional rather than a three-dimensional analysis so that, for isotropic turbu-
lence, we could use the relation mentioned by Polacsek et al. [23] for the transition from the
analyzed plane (2D) to a coordinate located anywhere in space (at a Robs radius) using (12).

S3D
pp (ω) = S2D

pp (ω)·
kly(ω)L
2πRobs

(12)

where ly is a correlation between the length of the vane, L, and the von Karman spectrum,
and k is a parameter described in [23] as a combination of wave numbers, flow velocity,
and serration angle.

2.3. Trailing Edge Serrated Blades

The trailing edge alteration that introduces serations was fully described for the first
time in an analytical model by Howe [25]. It works similar to leading edge serations, with
the notations being relatively the same. Howe started with the acoustic pressure relation in
the far field written in integral form as a Fourier transform. From this, he rewrote it in the
form of Green functions, which, after processing and correlation with the parameters of the
serration, lead to a relation for the acoustic spectrum (relation (13)).

Ψ(ω) =
(

1 + 1
2 ϵ ∂

∂ϵ

)
f
(

ωδ
Uc

, h
λ , h

δ ; ϵ
)

,

f
(

ωδ
Uc

, h
λ , h

δ ; ϵ
)

= 1{
( ωδ

Uc )
2⌊

1+( 4h
λ )

2
+ϵ2

⌋}

·

1 +
64( h

λ )
3
( δ

h )(
ωδ
Uc )

2
{

cosh
{

λ
2δ

√[
( ωδ

Uc )
2
+ϵ2

]}
−cos( 2ωh

Uc )
}

√[
( ωδ

Uc )
2
+ϵ2

]{
( ωδ

Uc )
2[

1+( 4h
λ )

2]
+ϵ2

}
sinh

{
λ
2δ

√[
( ωδ

Uc )
2
+ϵ2

]}


(13)

If in the previous relation (13) the serration amplitude (here h-semiamplitude) tends
to 0, then the spectrum is obtained for the normal (straight) leading edge blade. Howe
solved Equation (13) for several combinations of seration amplitudes and steps at a constant
turbulent boundary layer amplitude/thickness ratio (Figure 4). The same equations were
also solved by Al Tlua [26] in his PhD work using a code written in Matlab, obtaining
identical results. He also made a comparison between the results obtained with a triangular
greenhouse trailing edge vane versus a sinusoidal trailing edge, which he characterized in
a similar way in a paper published in the same year.

For terms not described in this chapter related to relation (13), additional relations
suggested by Moreau et al. [27] can be used where all experimental constants as well
as relations corresponding to the turbulent boundary layer thickness (relations in (14))
are clarified.

δ = 8δ∗
δ
c = 0.37

Re1/5
c

(14)

Al Tlua [26] also identified a more complete relation (relation (15)), similar to the
previous one, for the turbulent boundary layer thickness.

δ =

0.37c
[

1 +
(

Rec
6.9·107

)2
]1/10

Re1/5
c

(15)
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Lyu [28] solved the same problem of triangular serrations placed at the trailing edge
and obtained a similar relationship to that of triangular serrations placed at the leading
edge. The meaning of the terms in relation (16) is the same as those in relation (11), with
the relations being quite close.

Spp(x, ω) =

(
ωx3c

4πc0s2
0

)2

2πd
∞

∑
m=−∞

∣∣∣∣L(ω,
ω

U
,

2mπ

λ

∣∣∣∣2Π(ω, 2mπ/λ) (16)

In Figure 5, Lyu et al. [28] conducted a comparative analysis between Howe’s model
(Equation (13)) and their own model (Equation (16)), identifying a relatively strong simi-
larity between the two methods. From the two plots, it can be observed that the spectrum
obtained with Howe’s method [25] overestimated the noise reduction. Howe, at the time
of publication, achieved a reduction of at least 10·log[1 + (4h/λ)2] dB, which could lead
to values exceeding 10 dB under certain conditions. Over the years, several authors have
shown that the reduction exists using such sera but is usually less than half of the values
given by the mentioned relation.
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Lau et al. [29] proposed a stepwise model for determining the acoustic spectrum
generated by the change in the trailing edge. The first step is the definition of the gust
parameters, calculated using two Fourier series development relations. The second step is
to calculate the amplitudes of the n-th-order components using the Wiener-Hopf model.
The third step is to combine the n components to obtain the spectrum. Using this method,
the authors were able to characterize the behavior of triangular, sinusoidal, sawtooth,
or slot-type trailing edges. Figure 6 shows the contours for the sound pressure level at
M = 0.1.
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Woodhead et al. [30] applied triangular serrations to the trailing edge with a tilt of
±15◦ in order to observe significant changes in the acoustic spectrum. The downward (to
the pressure side) inclined serrations did not provide an additional noise reduction effect,
but on the contrary, over the whole frequency range, a lower attenuation was obtained
compared to the initial version. When the serrations were placed in the other direction,
the spectrum was modified in three areas, with the central area (mid-frequency) being
positively impacted, which is due to secondary flows that modify the location of the
acoustic sources. Similar trends were observed at higher frequencies. A more detailed
analysis, also using the information obtained by Liu et al. [31] as well as Leon et al. [32],
who measured velocity distributions using hot-wire instruments and visualized the flow
near a triangular serration using specialized optical instruments, can be performed to
obtain a better-performing geometry. Similarly, Chen et al. [33] tested and analyzed the
results obtained for 12 different combinations of pure sera on the trailing edge.

Al Tlua [26] also analyzed the types of serrations mentioned by Lau [29], and as shown
in Figure 6, he managed to identify the analytical relations for several variations: straight
trailing edge (relation (17)), triangular trailing edge (relation (18)), slotted trailing edge
(relation (19)), and sinusoidal trailing edge (relation (20)).

Ψstraight(ω) =

(
ωδ
Uc

)2

[
ωδ
Uc

+ ε2
]2 (17)

where convection velocity Uc = 0.77U and empirical values Cm = 0.1553 and ε = 1.33.

Ψtri(ω) = 8
(

h
δ

)2(ωh
Uc

) ∞

∑
n=−∞

[
1 − cos

(
2ωh
Uc

)
/cos(nπ)

][(
ωh
Uc

)2
+
(

2nπh
λ

)2
]

[
(nπ)2 −

(
2ωh
Uc

)2
]2[(

ωh
Uc

)2
+
(

2nπh
λ

)2
+
(

εh
δ

)2
]2 (18)
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Ψslot(ω) =
∞

∑
n=−∞

ΘΘ∗

[(
ωh
Uc

)2
+
(

2nπδ
λ1+λ2

)2
]

[(
ωh
Uc

)2
+
(

2nπδ
λ1+λ2

)2
+ (ε2)

2
]2 (19)

where Θ(K, λ1, λ2, h) = n−1
[(

e
2inπλ1
λ1+λ2 − 1

)
eiK1h +

(
1 − e−

2inπλ1
λ1+λ2

)
e−iK1h

]
.

Ψsin(ω) =

(
ωh
U

) ∞

∑
n=−∞

J2
n

(
ωh
U

) (
ωδ
U

)2
+
(

2nπδ
λ

)2

[(
ωδ
U

)2
+
(

2nπδ
λ

)2
+ ε2

]2 (20)

Both with the above relations for the normalized spectra (from (17)–(20)) and with (11)
and (16), a transformation as (20) should be made:

OASPLnorm = 10lg
(∫ ωmax

ωmin

Ψ(ω) dω

)
(21)

Ryi and Choi [34] also aimed to reduce noise by modifying the trailing edge, but
their application focused on wind turbine rotor airfoils. They used an experimental wind
tunnel setup placed in an anechoic chamber to characterize a constant chord (350 mm) and
torsion-free wind turbine blade using six different types of greenhouses. The result of these
experiments is an empirical law for the sound pressure level reduced by these methods.
The model is composed of six relations (22)–(27), which are written as follows:

- expected acoustic spectrum

S( f ) ≈ 1
8π2R2

(
UcL
c0

)
lu( f )Φ( f ) (22)

- oscillatory function associated with the trailing edge

lu( f ) =
Uc

ξ2π f
(23)

- the term for solid surface pressure

Φ( f ) =
Φ(St∗)lq2

Umax
(24)

- function for Strouhal number

St∗ =
f L(x)
Umax

(25)

- correlation of turbulence with lateral direction

L(x) =

[
log
(

λs

h

)0.015
+ 0.12

]
(26)

- function for estimating noise reduction at the trailing edge

SPLserBF = 3.5 − 8[log(St∗) + 0.3]2 −
[

log
(

λs

h

)
+ 0.4

]2
(27)
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2.4. Generating a Tonal Component

As Teruna et al. [35] noted, the rods are very good elements for generating the tonal
component, especially in that they generate essentially the same fluctuation throughout
their span/length (Figure 7).
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Figure 7. Aerodynamic rod–profile interaction: (a) longitudinal plane view (2D) [36]; (b) visualization
of turbulent structures as ωd/U = ±1 (in blue/orange) (3D) [37].

The less favorable aspect is that in the case of an actual flow (inside a gas turbine), the
turbulence generated by the rotor differs significantly from the behavior observed along the
blade span. Sreenivasan [38] performed a series of numerical simulations to characterize
the behavior of a rod placed in flow and used a series of turbulence models with which he
obtained the Strouhal number associated with the phenomenon. Li [36] used even more
detail and showed how the acoustic spectrum generated by the interaction between a rod
and an airfoil is influenced as a function of flow incidence (Figure 8).
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2.5. Generating Broadband Turbulence

In order to study the aeroacoustic behavior of the blades, a wind tunnel-type instal-
lation is often used, which must integrate an element that disturbs the flow from the fan
so that it comes as close as possible to the operating conditions in the engine. In this
respect, it is often preferred to use a “grid” conveniently placed on the test path (Figure 9)
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so that the flow takes on certain characteristics (to favor separation and reattachment at a
certain frequency in certain directions). In the literature, it has been identified that most
of the wind tunnel-type installations intended for the study of serrate vanes (either at the
leading edge or the trailing edge) use such elements, which, over time, have been very
well characterized.
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University [39]; (b) the ISVR wind tunnel [40].

Liu et al. [39] attempted to characterize the behavior of several grids integrated into
their experimental setup using numerical analysis. Gruber [40] used both experimental
and theoretical methods, including the von Karman model [12] as a reference (relation (28)).
A similar approach was taken by Chaitanya [41], who experimented at several incident flow
speeds (Figure 10). This relation has also been identified with other notations in several
papers (Biedermann [20] and Polacsek [23]).

Φww(k1, k2) =
4u2

9πk2
e

k̂2
1 + k̂2

2(
1 + k̂2

1 + k̂2
2

)7/3 (28)

where ke =
√

πΓ(5/6)
LtΓ(1/3) , k̂1 = k1

ke
, and k̂2 = k2

ke
.
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The spectrum of dimensionless turbulence, denoted by Lyu et al. [42] with Πl(ω,k2),
can be characterized using the Liepmann model, which is written according to
relation (29). Similar to the von Karman spectrum, the formulations are similar, with
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the notations being slightly adapted from author to author (Amiet [10,22], Biedermann [20],
and Chaytania [43]).

Πl(ω, k2) =
3TI2L2

t
4π

L2
t
(
k2

1 + k2
2
)(

1 + L2
t
(
k2

1 + k2
2
))5/2 (29)

where TI and Lt represent the turbulence intensity and the integral lenth scale, respectively,
parameters that are often determined experimentally. An equation with a slightly simpler
formulation (including an exponential) is used by Al-Okbi [44]. In Figure 11, Bieder-
mann [20] performs a characterization of a turbulence grid using Liepmann’s formulation.
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Figure 11. Representation of the recorded spectrum for a turbulence grid at different Re numbers
(highlighted in different colors) [20].

As can be seen from Figures 10 and 11, the theoretically obtained spectra are similar
using both models. Amiet [22] showed that in the axial direction, the two models are
almost identical, although there are small differences in the vertical component (Figure 12,
2D coordinates).
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3. Aerodynamic Considerations

Tong et al. [45] numerically investigated a stator airfoil, NACA 65(12)-10, both acous-
tically and aerodynamically. After post-processing, the authors observed that the used
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serration behaves as a delta wing, with two areas of significant vorticity in the lateral
direction affecting flow in the longitudinal direction when the serration is placed at the
leading edge (Figure 13). Since a rod (which generates a tonal component) has been
placed in front of the blade, it can be observed that the noise reductions are semi-effective
(11–16 dB for a fairly large range of the St parameter).
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As interesting as the acoustic values are, so are those related to aerodynamic perfor-
mances. Figure 14 shows a comparison of the variations in the lift (CL) and drag (CD)
coefficients for the reference (straight leading edge) and serrated (sinusoidal leading edge)
vanes. It is observed that, although in mean values the coefficients do not have very
large variations, in RMS values the behavior of the blade changes quite a lot. The au-
thor [45] observed that, although the flow changes its character, the variation in forces on
the aerodynamic surface becomes more stable following the use of such a leading edge.
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Teruna et al. [35] used aeroacoustic (LBM) simulations to characterize the behavior
of vanes with both symmetric NACA and curved NACA profiles. For the treatment of
the leading edge, various solutions are chosen, either simple serrations, porous serrations,
geometrically unmodified but porous leading edges, or combinations thereof. Porous
variants (where a Ni-Cr-Al sponge was used) facilitate the appearance of lateral curvature,
so that aerodynamic performance is also reduced. Also, by modifying an important
area of the leading edge for the integration of the solution, in the case of the porous
material, communication between the suction and pressure sides is possible, which leads
to additional undesired flows. Figure 15 shows the aerodynamic implications of using the
serrations in the simple version or with integrated porous material.

Aerospace 2024, 11, x FOR PEER REVIEW 15 of 30 
 

 

As interesting as the acoustic values are, so are those related to aerodynamic 
performances. Figure 14 shows a comparison of the variations in the lift (CL) and drag (CD) 
coefficients for the reference (straight leading edge) and serrated (sinusoidal leading edge) 
vanes. It is observed that, although in mean values the coefficients do not have very large 
variations, in RMS values the behavior of the blade changes quite a lot. The author [45] 
observed that, although the flow changes its character, the variation in forces on the 
aerodynamic surface becomes more stable following the use of such a leading edge. 

  

(a) (b) 

Figure 14. Aerodynamic behavior for a serrated blade placed in a flow [45]: (a) aerodynamic 
coefficients—time variation; (b) histograms for aerodynamic coefficients. 

Teruna et al. [35] used aeroacoustic (LBM) simulations to characterize the behavior 
of vanes with both symmetric NACA and curved NACA profiles. For the treatment of the 
leading edge, various solutions are chosen, either simple serrations, porous serrations, 
geometrically unmodified but porous leading edges, or combinations thereof. Porous 
variants (where a Ni-Cr-Al sponge was used) facilitate the appearance of lateral curvature, 
so that aerodynamic performance is also reduced. Also, by modifying an important area 
of the leading edge for the integration of the solution, in the case of the porous material, 
communication between the suction and pressure sides is possible, which leads to 
additional undesired flows. Figure 15 shows the aerodynamic implications of using the 
serrations in the simple version or with integrated porous material. 

 

 

SLE- simple leading 
edge 

 

PLE- porous leading 
edge 

 

BLE- blocked leading 
edge 

(a)   

 

WPLE- wavy leading 
edge 

Aerospace 2024, 11, x FOR PEER REVIEW 16 of 30 
 

 

 

 

WPLE- wavy porous 
leading edge 

(b) (c) 

Figure 15. Influence of porous and/or serated leading edge on aerodynamic performance (extracted 
from [35]): (a) NACA0012; (b) NACA5406; (c) leading edge geometries. 

Ito [46] also investigated the behavior of a stator blade (NACA63-414 airfoil), to which 
he applied a serrated region (sawtooth type) with a small amplitude (approximately 1% of 
the chord length, which was 152 mm) at the leading edge. The aim was to identify how 
aerodynamic performance is affected or enhanced at low Reynolds numbers (on the order 
of 104–105). Using a wind tunnel setup, the 250-mm-long blade was positioned between two 
plates (to minimize end-of-plane losses) and connected to a three-component load cell force 
transducer. The same setup was used for flow visualization. Although no changes in the 
values of lift coefficients or inlet resistance were detected, the author noted that the 
serrations delayed flow detachment on the suction side of the upper surface (in the initial 
phase) and promoted the formation of a vortex at high angles of attack, which tended to 
adhere the fluid to the solid surface. This phenomenon was observed at both low and high 
speeds, albeit with lower efficiency at higher Reynolds numbers. The number of teeth used 
ranged from 16 to 28 per inch, and denser arrangements exhibited superior aerodynamic 
behavior, as confirmed by force measurements and smoke visualization. Figure 16 
illustrates the lift and drag coefficients for the case of a low Reynolds number (2.1 × 104). No 
significant differences were observed for higher Reynolds numbers (2.1 × 105). 

 
Figure 16. Comparison between a straight leading edge vane and a tooth-serrated vane [46]. 

In an attempt to validate an in-house code for numerical analysis of modified leading 
edge blades, Polacsek [23] presented some interesting data, also validated by experiments 

Figure 15. Influence of porous and/or serated leading edge on aerodynamic performance (extracted
from [35]): (a) NACA0012; (b) NACA5406; (c) leading edge geometries.

Ito [46] also investigated the behavior of a stator blade (NACA63-414 airfoil), to which
he applied a serrated region (sawtooth type) with a small amplitude (approximately 1% of
the chord length, which was 152 mm) at the leading edge. The aim was to identify how
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aerodynamic performance is affected or enhanced at low Reynolds numbers (on the order
of 104–105). Using a wind tunnel setup, the 250-mm-long blade was positioned between
two plates (to minimize end-of-plane losses) and connected to a three-component load cell
force transducer. The same setup was used for flow visualization. Although no changes
in the values of lift coefficients or inlet resistance were detected, the author noted that the
serrations delayed flow detachment on the suction side of the upper surface (in the initial
phase) and promoted the formation of a vortex at high angles of attack, which tended to
adhere the fluid to the solid surface. This phenomenon was observed at both low and high
speeds, albeit with lower efficiency at higher Reynolds numbers. The number of teeth used
ranged from 16 to 28 per inch, and denser arrangements exhibited superior aerodynamic
behavior, as confirmed by force measurements and smoke visualization. Figure 16 illus-
trates the lift and drag coefficients for the case of a low Reynolds number (2.1 × 104). No
significant differences were observed for higher Reynolds numbers (2.1 × 105).
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Figure 16. Comparison between a straight leading edge vane and a tooth-serrated vane [46].

In an attempt to validate an in-house code for numerical analysis of modified leading
edge blades, Polacsek [23] presented some interesting data, also validated by experiments
performed by his team over time. Among these interesting data was the distribution of
pressure coefficients in different areas of a serration (top, middle, and bottom), which
obviously correspond to atypical pressure distributions, especially in the leading edge area
(the low pressure area at the stagnation point “joins” the low pressure area at the trailing
edge in the LE part). In Figure 17, the distribution of pressure coefficients as well as the
distribution of pressures in a logitudinal section (along the flow) can be observed.
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4. Configurations of Interest Identified in the Literature

Throughout the paper, various sources have been mentioned that present a multitude
of blade variants. The simplest geometry is the flat plate placed in flow, for which the
theoretical solution to obtaining the pressure and velocity field has been obtained analyti-
cally since the 1950s. It has been validated by several authors over time and adapted so
that it can be compared with more complex models associated with serrated vanes. The
theoretical development (from an analytical point of view) of blades with a serrated leading
edge or trailing edge was carried out starting from the flat plate model, to which the law
of variation in the areas of interest was modified. Important contributions have also been
identified experimentally, with several authors obtaining either empirical/semi-empirical
laws that link the incident current turbulence parameters with the serration parameters so
as to obtain an optimal noise reduction. Table 1 summarizes some of the relevant geome-
tries, analyzed over time, together with some test conditions required for a comparative
analysis (two- or three-dimensional solution, broadband turbulence given by a grid, or
tonal component given by a rod placed upstream).

Table 1. Modified blades on the leading edge.

Crt.
No.

Serration Shape Author,
Year

Solution
Type

Type of
Turbulence Results Observations

2D 3D Grid Rod

1
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Table 1. Cont.

Crt.
No.

Serration Shape Author,
Year

Solution
Type

Type of
Turbulence Results Observations

2D 3D Grid Rod

7

Triangular serration with slots
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Table 1. Cont.

Crt.
No.

Serration Shape Author,
Year

Solution
Type

Type of
Turbulence Results Observations

2D 3D Grid Rod

14

Sinusoidal
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Regarding the proposed modifications to the trailing edge, Table 2 highlights some of
the relevant solutions identified in the literature.
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Table 2. Modified blades on the trailing edge.

Crt. No. Serration Shape Author, Year

Solution
Type Results/Observations

2D 3D

1
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Table 2. Cont.

Crt. No. Serration Shape Author, Year

Solution
Type Results/Observations

2D 3D

3 Triangular serrations Lyu et al. [28],
2015 ⊠

ωh/U >> 1
(Howe) = kc > 1;
kh >> 1 for good

performance;
Higher ∆OASLP

with increasing h/λ
ratios;

Very high h/λ ~
good at high f.

Analytical,
imposed

turbulence,
M = 0.1

4
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Table 2. Cont.

Crt. No. Serration Shape Author, Year

Solution
Type Results/Observations

2D 3D

10
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in Table 3.

Table 3. Special configurations for serrated blades.

Crt. No. Serration Shape Author, Year
Solution Type

Results/Observations
2D 3D
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the serration) looks promising [62]. Similar to finlets, Zhang et al. [63] approached the 
solution both numerically and experimentally, with ridges placed at both the leading and 
trailing edges. At low incident and flow speeds, they tend to reduce OASPL even up to 20 
dB. The behavior of a serrated blade with ports at the leading edge has been identified as 

[60]

Polacsek et al. [60],
2022

Numerical, Umax ~
120(..193)m/s;

2 h/c limit is 0.15; 4–6 dB
reduction based on empirical
observations on the variation

in serration parameters

⊠—checkmark for the type of solution identified in the cited paper.

As special configurations identified in the literature, there are also vanes with dimples
on the suction side [24,61] or finlets [61] either on the leading or trailing edge. Blowing
or suction in specific areas of the blade (close to the leading edge or at the root of the
serration) looks promising [62]. Similar to finlets, Zhang et al. [63] approached the solution
both numerically and experimentally, with ridges placed at both the leading and trailing
edges. At low incident and flow speeds, they tend to reduce OASPL even up to 20 dB.
The behavior of a serrated blade with ports at the leading edge has been identified as
having interesting (in some cases, very good) aerodynamic performance, with Al-Okbi [44]
testing such a geometry at different angles of attack. Amirsalari [64] also identified in the
literature geometries featuring porous inserts (such as flat plate types) that, when placed
at or downstream of the leading edge, mitigate low-frequency noise without increasing
high-frequency noise. The use of cylindrical finlets of different lengths has been addressed
by Fiscaletti [65], showing, in addition to noise control, aerodynamic improvements such
as a 12% reduction in drag coefficient. Obviously, some combinations of incident and size
led to noise increases by increasing the high-frequency components.

5. Discussions

It can be seen that several methods have been identified for shaping the acoustic
radiation emitted by a vane whose leading or trailing edge has been modified. At present,
the most common modifications are the placement of periodic structures, called serations,
with a cutout appearance, which, with a judicious choice of the defining parameters in
relation to the operating conditions, can lead to much improved acoustic performance. The
placement of special materials (porous or metamaterials) in key areas has been identified as
a good solution from an acoustic point of view, but aerodynamic implications must also be
taken into account. As presented, there are numerous solutions, both applied to the leading
edge and the trailing edge. Combined solutions are less used, which could be a starting
point for future research. The conclusions drawn from the various authors cited throughout
the paper suggest that a combined solution may be more efficient than an isolated one.

It should also be noted that solutions applied to an isolated blade may yield favorable
results, but when applied to a cascade, their behavior may be altered in this configuration.
Fortunately, there is research on the behavior of serrated blade cascades that supports the
notion that noise reduction can be achieved under such conditions.
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Nomenclature

a0 speed of sound [m/s]
c chord length [m]
e airfoil maximum thickness [m]
f frequency [Hz]
h (or 2 h) serration amplitude
h/δ the dimensionless parameter of the serration amplitude [-]
h/λ the dimensionless parameter associated with the serration angle [-]
k wave number [m−1]
M Mach number [-]
L airfoil length [m]
Re Reynolds number [-]
Stδ Strouhal number [-]
U0 (averaged) speed of the jet [m/s]
Uc convection speed [m/s]
δ turbulent boundary layer thickness [m]
λ serration pitch [m]
θ observer angle [◦]
ω angular frequency [rad/Hz]
ωδ/Uc dimensionless frequency parameter [-]
Λ turbulence integral length scale [m]
BPF blade passing frequency [Hz]
PSD power spectal density [W/Hz]
SPL sound pressure level [dB]
OASPL overall sound pressure level [dB]
Other notations and abbreviations were defined throughout the paper.
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