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Abstract: This article focuses on the development of a 3D-printed 2-degree-of-freedom (DOF) joint
for the payloads’ orientation on small satellites. This system is a compliant mechanism, meaning that
this monolithic system composed of cross-axis flexural pivots (CAFPs) produces complex movements
through the elastic deformation of its structure. Using fused filament fabrication (FFF), a demonstrator
made of Polyetherketoneketone (PEKK) is printed to determine its potential compatibility with space
conditions. Focusing on a segment of the joint, the CAFP, this study aims for an enhancement of its
mechanical behavior through the study of its printing direction and the creation of an accurate finite
element model of this compliant mechanism. First, material characterization of 3D-printed PEKK
is achieved through differential scanning calorimetry tests of the filament and flexural and tensile
tests of specimens printed in different printing directions. Then, these data are used to perform a
finite element analysis of different CAFP designs and compare their mechanical response of their
3D-printed twin using digital image correlation software. Finally, the CAFP structures were observed
by X-ray tomography. The results show that printing direction greatly influences both flexural
and tensile strength. Voids induced by the FFF process could impact the mechanical behavior of
3D-printed parts as the simple CAFP design has a better test/model correlation than complex ones.
This could influence its resistance to space environment.

Keywords: fused deposition modeling; aerospace engineering; compliant mechanisms; mechanical
properties; finite element analysis

1. Introduction

Compliant mechanisms are monolithic systems that produce complex movements
through the elastic deformation of their structure. They have many applications, but they
are mostly used in the medical [1], space [2], and precision domains [3,4]. Compliant
mechanisms do not have backlash or wear, which leads to precise motions and absence
of lubrication. These qualities are particularly relevant for space applications. This study
forms part of the development of a 2-DOF compliant joint. In Figure 1, the prototype of
the studied mechanism is presented. With a large rotation range of ±45◦, this joint could
be used to orient payloads on small satellites. It is composed of cross-axis flexural pivots
(CAFPs), a well-documented compliant joint [5–7].
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As small satellites aim at improving space accessibility, this joint is polymeric and
3D printed using FFF. This process is usually used for single-use items and prototypes
in a variety of domains. It is well established in the literature that, with FFF, mechanical
properties are linked to printing parameters as they impact the internal structure, the inter
and intra layers bonds, and the crystallization of the printed parts [8–10]. Among them, an
influential parameter is printing direction. In [11], various printing directions are studied
and show its heavy impact on stiffness, resilience, and maximum stress.

One concern about the spatialization of 3D-printed parts is the porosity induced by
the FFF process that could impact their vacuum resistance. Indeed, various studies have
attested to the presence of voids inside 3D-printed specimens [12,13]. They are mostly
created between layers, and their shape and size are influenced by printing parameters.

Few are the polymers capable of withstanding space environment, but PEEK is a good
candidate. The resistance of injecting PEEK to a vacuum environment has been attested [14].
Three-dimensional-printed conductive PEEK parts [15] and a PEEK nanosat structure [16]
were developed using FFF and proved 3D-printed PEEK’s low outgassing despite the
porosity induced by the process.

Another potential candidate is PEKK. It is also a recent high-temperature polymer
mostly used as matrix in fiber reinforced composites [17] for aerospace applications [18].
Biocompatible, it is also used for the creation of protheses [19,20]. It is this field that most
literature about 3D-printed PEKK can be found, and only a few studies investigate the
impact of printing parameters on tensile and flexural properties. The mechanical behavior
of this material will be investigated in this study.

To our knowledge, when it comes to 3D-printed polymers for space applications, there
are no compliant mechanisms that were studied for space applications.

This study is focused on a section of the 2-DOF compliant system, the CAFP, from
its printing optimization to its finite element analysis. The material characterization of
3D-printed PEKK is carried out. First, DSC tests of the filament are carried out to gain
a better understanding of the thermal properties of this material. Then, the mechanical
properties resulting from different printing directions are studied through flexural and
tensile tests. These data are used to create a finite element analysis of different CAFP
designs. The mechanical response to their 3D-printed twin is compared using digital image
correlation software. The pivots structures were observed by X-ray tomography.

2. Materials and Methods
2.1. Material

The filament used is PEKK-A, supplied by KIMYA (Nantes, France). According to the
supplier, the filament used for this study has the properties described in Table 1.
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Table 1. PEKK-A filament properties.

Diameter [mm] 1.75

Density [g/cm3] 1.291

Tg [◦C] 159

Tm [◦C] 308

2.2. Process
2.2.1. Mechanical Characterization

In this study, the mechanical characterization of the 3D-printed filament consists
of performing tensile tests, flexural tests, and density measurements. These data are
essential for the optimization of printing parameters and for the development of the finite
element analysis.

Figure 2 presents the two studied printing directions: “on edge” and “flat”. For
each direction, tensile and flexural tests are performed according to the tests standards
ISO 527 [21] and ISO 178 [22], respectively. For each test and direction, 5 specimens are
printed. The dimensions of these specimens and those used for density measurements are
presented in Figure 3. For these last specimens, they were printed in batches of 10 for each
printing direction.
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Figure 3. Dimensions of tensile specimens (ISO 527 test standard) (a), flexural specimens (ISO 178
test standard), (b) and the specimens used for density measurements (c).

2.2.2. Cross-Axis Flexural Pivots

In Figure 4, two different designs of CAFPs are tested. CAFP1, the first design, is well
known among the compliant mechanisms community [5]. It is composed of 2 rectangular
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blades, whereas CAFP2, the second design, has a more complex design to improve com-
pactness. Indeed, compared to the standard design, the thickness of CAFP2 is reduced by
56% and the weight is reduced by 44%. The blades have variable thicknesses and widths
throughout their lengths.
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2.2.3. From CAD to Printing

All parts included in this study were designed on CATIA V5 and then transferred
in STL format to the slicing software Cura 5.2.1 to define their printing parameters. The
specimens and CAFP were printed using a Volumic Ultra SC2 printer. A ULTEM1000
adhesive was used to help the extruded filament stick to the print bed. Supports were
printed between the parts and the bed to make their removal easier.

The common printing parameters of the specimens used for material characterization
and the CAFPs are summarized in Table 2. However, their structures differ, so their
resulting parameters are presented Figure 5 and Table 3.

Table 2. General printing parameters.

Layer thickness [mm] 0.2 Support height [mm] 0.8

Printing temperature [◦C] 345 Support infill density [%] 70

Bed temperature [◦C] 145 Support Z distance [mm] 0.1

Printing speed [mm/s] 25 Support type triangular

Layer width [mm] 0.4 Support horizontal expansion [mm] 0.5
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Table 3. Structural printing parameters for the mechanical characterization and the pivots.

Flexural, Tensile, and Density Specimens CAFPs

Walls 0 4

Top/bottom layers 0 5

Infill type ZigZag Grid

Infill rate 100% 70%

2.3. Methods and Test Equipment

Flexural and tensile tests were performed on a 100 KN INSTRON machine. This
machine is equipped with an AVE 2 Extensometer to measure local strains. Tests were
performed according to the following standards: 1 mm/s for the tensile specimens and
2 mm/s for the flexural specimens [21,22]. The raw data of the tests were computed using
BlueHill Universal 3 software. For tensile tests, Young’s modulus, tensile strength, and
elongation at break were studied. For the flexural tests, flexural modulus, flexural strength,
conventional deflection, and flexural stress at conventional deflection were reported.

The conventional deflection f is calculated according to the following equation [22]:

f =
ε f ∗ L2

600 ∗ e
(1)

where ε f is the flexural elongation, L is the span, and e is the thickness of the specimen. The
set-up of the measures is displayed in Figure 6.
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The density measurements were performed according to the ISO 1183 test standard.
In Figure 7, the scale OHAUS (supplied by OHAUS, Nänikon, Switzerland) was used
with its density kit. The specimens are first weighed in air then immerged in water. The
measurements were made in a 23 ◦C environment. The density of the specimen ρS is
calculated according to the following equation [23]:

ρS =
mS,A ∗ ρIL

mS,A − mS,IL
(2)

where mS,A is the apparent mass of the specimen in the air, mS,IL is the apparent mass of
the specimen in the liquid, and ρIL is the water density at 23 ◦C, which is 0.998 g/cm3

according to the supplier of the kit.
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The DSC is performed on a TA INSTRUMENT Q100 on a 7 mg PEKK-A sample.
Analysis was completed under nitrogen from 30 ◦C to 400 ◦C at a heating rate of 10 ◦C/min,
kept 3 min, and then cooled from 400 ◦C to 30 ◦C at 10 ◦C/min. The results were analyzed
with TA Universal Analysis 2000 software.

Heat flow ∆q is obtained through the basis of the following equation [24]:

∆q =
60
β

∫ T2

T1

dq
dt

dT (3)

where β is the heating or cooling rate and T is the temperature range.
The finite element analyses are performed on ABAQUS V6-14, and the image correla-

tion software used is GOM CORRELATE 2018.
The metrology and tomography studies are made with TOMO RX SOLUTION (sup-

plied by RX Solution, Chavanod, France) from the Southeast Laboratory of SEMATEC, and
the results are analyzed on myVGL 2023 software. The metrology analysis compares the
CAD of the studied part (in STL format) with its X-ray scan.

3. Results and Discussion
3.1. Thermal Properties

The DSC is performed on the filament to determine its thermal properties. In Figure 8, the
thermogram displays a glass transition (Tg) at 149 ◦C, which is 10 ◦C lower than the value
given by the supplier. Cold crystallization (Tcc) occurs at 263 ◦C with an enthalpy (∆Hc ) of
4.4 J/g. Melting peak (Tm) appears closely after at 308 ◦C with an enthalpy ∆Hm of 4.7 J/g.
There is no crystallization during controlled cooling at 10 ◦C/min. This general behavior
and the values found are coherent with the literature [25–28].

The crystallinity (χ) is usually calculated according to the following equation [29]:

χ =
∆Hm

∆H0
m
× 100% (4)

However, it cannot be calculated since the melting enthalpy of 100% crystalline PEKK
(∆H0

m) is still unknown due to the novelty of the polymer. The cold crystallization and
melting enthalpy are similar, which indicates that the specimen has low crystallinity.
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3.2. Mechanical Properties
3.2.1. Flexural Tests

Stress and strain curves are presented in Figure 9. The detailed properties of “flat”
(F1–F5) and “on edge” (F6–F10) specimens are displayed in Tables 4 and 5. They show that
compared to printing “flat”, printing “on edge” improves the flexural modulus by 13%, the
flexural strength by 14%, and the stress by 12% at conventional deflection.
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Table 4. Results of flexural tests for specimen printed “Flat”.

Specimen Flexural Modulus
[MPa]

Flexural Strength
[MPa]

Conventional
Deflection (3.5%

Strain) [mm]

Flexural Stress at
Conventional

Deflection [MPa]

F1 2200 94 5.5 72

F2 2279 95 5.6 76

F3 2289 97 5.6 76

F4 2239 95 5.6 75

F5 2276 99 5.5 76

Mean value 2266 96 5.6 75

Standard deviation 40 2.3 0.04 1.8

Table 5. Results of flexural tests for specimen printed “on edge”.

Specimen Flexural Modulus
[MPa]

Flexural Strength
[MPa]

Conventional
Deflection (3.5%

Strain) [mm]

Flexural Stress at
Conventional

Deflection [MPa]

F6 2526 108 5.2 80

F7 2544 109 5.2 85

F8 2610 112 5.2 86

F9 2670 115 5.4 89

F10 2657 115 5.4 88

Mean value 2601 112 5.2 86

Standard deviation 65 3.4 0.10 3.3

In [30], 3D-printed PEKK is studied but with different printing parameters (±45 raster
angle, 90 ◦C heated chamber, 130 ◦C bed temperature). The study also concludes that the
“on edge” printing direction enhances mechanical properties. With this printing direction,
the inter-layer cohesion allows an even distribution of normal and shear stresses between
layers that leads to intralayer tensile and shear failures.

Between neat [31] and 3D-printed PEKK, there is a −30% difference for specimens
printed “flat” and 20% difference for those printed “on edge” for the flexural modulus and
the flexural strength. Poor adhesion between layers can be the reason for such deviations.

3.2.2. Tensile Tests

In Figure 10, the stress and strain curves of specimens T1 to T10 are presented. Accord-
ing to Tables 6 and 7, the difference for the Young’s modulus between specimens printed
“flat” and “on edge” is lower, but only by 5%. However, printing “on edge” offers +27%
improved performances in tensile strength and a +31% increase in elongation at break.

The surfaces of “on edge” layers are smaller. References [32,33] show the temperature
gradient along the printed surfaces. This means that, from one layer to another, “flat”
surfaces are cooler than “on edge” surfaces because they are larger. They are then reheated
by the new layer printed on top. This phenomenon can impact their crystallinity and
thus their mechanical performances. Moreover, chamber temperature of the printer is
uncontrolled, which can increase the gradient along the surface. Without proper control,
the chamber temperature can be influenced by the duration of printing, the nozzle, and
the bed temperature. In [34], parts printed with a chamber temperature under the glass
transition had lower crystallinity rates and a lower Young’s modulus. Lack of controlled
ambient temperature inside the printer could also influence the crystallization of PEKK
through the thickness of the part.



Aerospace 2024, 11, 294 9 of 17

Aerospace 2024, 11, x FOR PEER REVIEW 9 of 18 
 

 

The surfaces of “on edge” layers are smaller. References [32,33] show the temperature 
gradient along the printed surfaces. This means that, from one layer to another, “flat” sur-
faces are cooler than “on edge” surfaces because they are larger. They are then reheated 
by the new layer printed on top. This phenomenon can impact their crystallinity and thus 
their mechanical performances. Moreover, chamber temperature of the printer is uncon-
trolled, which can increase the gradient along the surface. Without proper control, the 
chamber temperature can be influenced by the duration of printing, the nozzle, and the 
bed temperature. In [34], parts printed with a chamber temperature under the glass tran-
sition had lower crystallinity rates and a lower Young’s modulus. Lack of controlled am-
bient temperature inside the printer could also influence the crystallization of PEKK 
through the thickness of the part. 

This can explain the deviation between injected [35] and 3D-printed PEKK. There is 
a −33% difference for specimens printed “flat” and a 29% difference for those printed “on 
edge” for the tensile modulus and the flexural strength. These differences between in-
jected molded and 3D-printed parts have already been observed for other polymers, such 
as ABS, PLA, or nylon 6 [36,37]. The porosity induced by the process and the poor adhesion 
between layers lowers the mechanical properties of these polymers. 

 
Figure 10. Stress/strain curves of 3D-printed PEKK depending on printing orientation. 

Table 6. Results of tensile tests for specimens printed “flat”. 

Specimen 
Young’s Modulus 

[MPa] 
Tensile Strength 

[MPa] Elongation at Break [%] 

T1 2218 53 2.8 
T2 2795 50 2.5 
T3 2506 51 3.4 
T4 2950 48 2.2 
T5 2991 52 3.6 

Mean value 2692 51 2.9 
Standard deviation 326 1.7 0.6 

Table 7. Results of tensile tests for specimens printed “on edge”. 

Figure 10. Stress/strain curves of 3D-printed PEKK depending on printing orientation.

Table 6. Results of tensile tests for specimens printed “flat”.

Specimen Young’s Modulus
[MPa]

Tensile Strength
[MPa]

Elongation at Break
[%]

T1 2218 53 2.8

T2 2795 50 2.5

T3 2506 51 3.4

T4 2950 48 2.2

T5 2991 52 3.6

Mean value 2692 51 2.9

Standard deviation 326 1.7 0.6

Table 7. Results of tensile tests for specimens printed “on edge”.

Specimen Young’s Modulus
[MPa]

Tensile Strength
[MPa]

Elongation at Break
[%]

T6 2892 69 4.1

T7 2474 74 4.4

T8 3420 68 4.0

T9 3027 69 3.9

T10 2351 71 4.5

Mean value 2833 70 4.2

Standard deviation 432 2.3 0.3

This can explain the deviation between injected [35] and 3D-printed PEKK. There is a
−33% difference for specimens printed “flat” and a 29% difference for those printed “on
edge” for the tensile modulus and the flexural strength. These differences between injected
molded and 3D-printed parts have already been observed for other polymers, such as
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ABS, PLA, or nylon 6 [36,37]. The porosity induced by the process and the poor adhesion
between layers lowers the mechanical properties of these polymers.

3.2.3. Density Measurements

In Figure 11, the density of specimens printed “flat” is 1.07 ± 0.02 g/cm3 and
1.15 ± 0.01 g/cm3 for those printed “on edge”. This 9% difference could be another expla-
nation for the enhancement of “on edge” mechanical properties. However, it is difficult to
know about water absorption due to ambient humidity, even if it is controlled. Thus, more
measurements will be made in the future works to validate these results. Moreover, the
specimens printed “on edge” are 11% less dense than the PEKK-A filament, confirming
the presence of voids caused by the process, as seen in the literature [38]. A tomography
analysis is needed to quantify the volume of voids and their distribution.
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The effects of printing direction on mechanical properties are studied. Printing “on
edge” improves both tensile and flexural properties of the specimen as well as its density.
These results justify these authors’ decision to print the blades of both CAFPs “on edge”.

3.3. Finite Element Analysis and Experiment Correlation

In Figure 12, the set-up for the experiments is displayed. For both designs, one
extremity of the CAFP is embedded, while a mass of 180g is attached to the other. Pictures
of the mechanism deformation are taken, and the experiment is repeated five times. The
pictures are analyzed with the image correlation software GOM CORRELATE 2018 where
the displacements of the points A, B, and C are measured.
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A static general finite element analysis of the pivots is created using volumic quadratic
C3D10 elements. Blades are printed “on edge”, so it is assumed that the density and
mechanical properties measured in the previous tests are the same. Therefore, the material
defined in the model is isotropic, has a Young’s modulus of 2833 MPa, and a Poisson’s
ratio of 0.4 [39]. For CAFP1, free tetrahedral elements of this model have different lengths:
0.5 mm for the blades and 1.5 mm for the rest of the pivot. For CAFP2, the blades have
elements around 0.5 mm and 1 mm for the rest of the model. A total of 296,593 nodes and
161,182 elements are used for CAFP1, and 244,432 nodes and 161,053 elements are used
for the CAFP2. The boundary conditions are the same as for the experiment presented
in Figure 12: an effort of 1.8 N is applied at the drilling site at Point B, and the two other
drillings are constrained in every DOF. The distance covered by Points A and C are mea-
sured between the neutral fiber and the circular arc of the extremities of the geometries,
while Point B is measured at the drilling site.

In Figure 13 and Table 8, the displacements of the CAFP1 model have less than 10%
difference with the experiments. If these results are satisfactory, the model still can be
perfected by considering the anisotropy of the material [11].
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Table 8. Tests versus model results of CAFP1.

AY AZ BY BZ CY CZ

Displacement
test [mm] −4.21 −3.71 −3.73 0.23 −3.42 3.97

Standard
deviation [mm] 0.27 0.27 0.29 0.06 0.19 0.20

Displacement
model [mm] −4.55 −3.99 −3.93 0.19 −3.31 4.36

Difference −8% −7% −5% 17% 3% −10%

In Figure 14 and Table 9, the difference increases from 3% to 20%, which is higher
than the previous model. These deviations can be explained by the complexity of the
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geometry. During slicing, the software makes an estimation of the geometry with the given
parameters, so it is possible that parts of the design are left out. Another cause could be an
embrittlement of the blades when the supports are taken out. Metrology and tomography
studies are needed to confirm these theories.
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Figure 14. CAFP2: comparison between the finite element analysis model (a) and one of the tests
analyzed on GOM CORRELATE (b).

Table 9. Tests versus model results of CAFP2.

AY AZ BY BZ CY CZ

Mean distance
test [mm] −2.34 −5.14 −5.68 0.76 −1.00 5.43

Standard
deviation [mm] 0.09 0.31 0.10 0.29 0.06 0.31

Distance
model [mm] −1.88 −4.54 −4.79 0.413 −1.03 4.596

Difference 20% 12% 16% 46% −3% 15%

3.4. Metrology Analysis

To investigate tests and model deviation, a comparison between the CAD of both
CAFP designs and the scan of their 3D-printed twin is made. In Figure 15, the views of
the bottom face are presented for both CAFPs, which is the surface that is facing the bed
of the printer and the view of the top face. Pink sections of the analysis are considered
“out of range”. They are either excess stringing material that was not taken off before the
analysis or they are extruded material when drilling the specimen before setting it up for
the previous tests.
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Figure 15. Deviation between CAD and 3D-printed CAFPs: (a) top facing view of CAFP1, (b) bottom
facing view of CAFP1, (c) top facing view of CAFP2, (d) bottom facing view of CAFP2.

The analysis of these scans is focused on the blades of the CAFPs. Figure 16 displays
the surfaces that are studied for CAFP2. They are the same for the standard design. Twenty
measures are taken on each surface, and their mean deviations are provided in Figure 17.
For both designs, the studied surfaces have a mean deviation in an interval from −0.10 mm
to +0.10 mm, which is considered sufficient knowing that the layer’s thickness is 0.2 mm.
However, their standard deviations are high, which corresponds to the irregularity of the
surfaces. Deviations from areas 1 and 3 are the highest. Indeed, these surfaces are in direct
contact with the supports, and some of them might have stayed attached to the surfaces
during their removal. Their standard deviations are also the highest. The irregularity of
their surface can be observed in Figure 15. Area 7 also stands out for CAFP2 as the curves
of the blade had to be sliced, which resulted in a lack of material compared to the CAD.
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Figure 17. Comparison of the mean deviation in different surfaces for both CAFPs.

The overall deviation is low enough, so the impact on the inertia does not impact the
mechanical behavior of the mechanism. Even if the accuracy of the 3D printer needs to be
studied further, it does not seem to be the source of the test versus model differences.

A preliminary analysis of X-ray tomography of the two studied designs is carried out.
In Figures 18 and 19, slices of the design are shown. In black, voids inside the material are
visible. Thus, the grid infill is seen on both sides of the blades. However, by zooming in
on the walls and the blades, what seem like voids can be spotted, especially for CAFP2.
According to the printing parameters, the blades should be 100% filled. These voids are not
considered in the model but could be essential in the mechanical behavior of the CAFPs.
Indeed, they could facilitate the propagation of cracks in the blades. Further analyses will
be pursued in future works by studying simpler specimens and the impacts of printing
parameters on porosity.
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4. Conclusions

The authors’ work goes through several steps in the development of a potential
spatializable compliant mechanism printed with PEKK. This study focuses on the creation
of an accurate finite element model of the CAFP. First, thermal analysis confirmed PEKK’s
high temperature properties. Then, the influence of printing direction was highlighted
through tensile and flexural tests. Printing “on edge” improves the flexural modulus by
13% and tensile strength by 27%.

With the previous data, a finite element model of the CAFP was created and compared
to the experiments. It was validated for the standard version of the CAFP (with less than
10% test/model error). Although these results are satisfying, improvements can be made
for CAFP2. If the first lead was targeted on geometry accuracy, a scan analysis revealed
that the overall deviation between the CAD and the 3D-printed model was below 0.1 mm,
which is not enough to influence the model. However, a preliminary tomography study
displayed the presence of voids inside the blades of the CAFPs, which could have an impact
on mechanical behavior. Other leads on improving our results can consider the anisotropy
of the material in the model and the impact of uncontrolled chamber temperature on
mechanical properties to investigate a way to balance its effects.

Our future works will focus on deepening these findings by studying the effects of
printing parameters on the distribution and quantity of voids through X-ray tomography.
Thermal vacuum tests will be performed as vacuum resistance is a key requirement for the
spatialization of 3D-printed systems.
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Abbreviations
DOF Degree of freedom
CAFP Cross-axis flexural pivot
PEKK Polyetherketoneketone
PEEK Polyetheretherketone
PLA Poly(lactic acid)
FFF Fused filament fabrication
TGA Thermogravimetric analysis
DSC Differential scanning calorimetry
FTIR Fourier transform infrared
CAD Computer-Aided Design

List of Symbols
χ Degree of crystallinity [%]
∆Hm Experimental melting enthalpy [J/g]
∆H0

m Melting enthalpy of a 100% crystalline material [J/g]
∆Hc Enthalpy of crystallization [J/g]
Tg Glass transition temperature [◦C]
Tc Crystallization temperature [◦C]
Tm Melting temperature [◦C]
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