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Abstract: The impact of COVID-19 measures on airport performance is obvious, and there have been
numerous studies on this topic. However, most of these studies discuss prevention measures, the
effects on airport operations, forecasts of economic impacts, changes in service quality, etc. There
is a lack of research on the effects of various prevention measures on airport operations and the
interrelationships between these measures. This study focuses on addressing this gap. In this
study, an integrated approach is devised that combines the decision-making trial and evaluation
laboratory (DEMATEL) method and interpretive structural modeling (ISM). This integrated method
is useful for exploring the relationship between pandemic measures and airport performance as
well as the complex relationship between them, and the combination of methods improves upon
the shortcomings of the original models. This study reveals that mandating vaccination certificates
for entry into a country is the most significant measure affecting airport performance. Additionally,
aircraft movement at the airport has the greatest overall impact and can be considered the most
crucial factor influencing airport performance from an operational standpoint. The findings show
that both factors directly influence financial performance, as reflected in the net income. Some
management implications are provided to mitigate the consequences of the measures taken to counter
the pandemic crisis. This integrated approach should also assist authorities and policy-makers in
planning cautious action for future crises.

Keywords: DEMATEL; ISM; MCDM; airport performance; COVID-19 pandemic

1. Introduction

There have been numerous studies related to how international air transportation has
been affected by the outbreak of epidemic disease; for example, the outbreaks of H1N1 [1],
the Ebola virus [1,2], SARS [3], and MERS [4]. Others have studied the in-flight transmis-
sion of communicable diseases such as influenza, measles, smallpox, and tuberculosis [5,6].
However, the COVID-19 pandemic has had an unprecedented effect on air transportation
systems and airport operations worldwide, as reflected in their financial statements. Due
to the rapid human-to-human transmission and spread of multiple variants of COVID-19,
various nations responded by declaring travel bans, closing their borders, and following
up with internal lockdowns, limiting any non-essential activities involving human contact,
which included traveling [6]. The pandemic has affected every aspect of the air transporta-
tion industry, with most of these effects associated with health risks to passengers, crew,
airport ground staff, and all stakeholders directly involved, with repercussions spreading
to the overall population and the country as a whole. The immediate effect of government-
initiated travel and immigration restrictions was a dramatic reduction in demand for air
transportation [7]. Currently, according to the latest statistics from the International Air
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Transport Association (IATA), in 2023, Revenue Passenger Kilometers (RPK) reached 94.1%
of the 2019 levels. In 2023, the aviation industry’s RPK reached 94.1% of the 2019 levels.
Available Seat Kilometers (ASK) increased by 24.1% year-on-year, recovering to 94.4% of
the pre-pandemic levels. The global passenger load factor was 82.3%, slightly below the
threshold in 2019. However, the impact of various measures to prevent COVID-19 in the
aviation industry on airport operations remains worth exploring.

Measures such as banning the entry of international flights and the requirement
that all passengers hold negative PCR tests, as well as other external factors (e.g., the
proliferation of new COVID-19 variants and mutations of the virus) and internal factors
(e.g., spikes in the number of local COVID-19 cases), have had unavoidable operational and
financial impact on airports around the world. According to International Air Transport
Association [8] data, there was a 66% decline in demand for world air travel in 2020, as
expressed in Revenue Passenger Kilometers (RPKs), compared to the levels of the year
before, in 2019. Additionally, the number of flights declined from 38.9 million in 2019 to
16.4 million in 2020; there was a 56.5% decline in the available seat capacity (Available Seat
Kilometers) in 2020 [9]. The air cargo sector was also affected by the pandemic [10] but
has recovered significantly better than passenger traffic, with only a 0.5% year-on-year
decrease in Cargo Ton Kilometers (CTKs) in December 2020 [9]. This is because, with the
decline in passenger aircraft movement, passenger aircraft were converted to carry freight
as a short- to medium-term strategy for revenue generation [11]. Cargo movement in the
absence of passenger movement allowed airlines and airports to remain active and continue
receiving some revenue during the pandemic crisis [12]. However, given the nature and
severity of the disruptive situation, the financial statements still showed massive losses,
with many airlines and airports receiving emergency aid from their respective governments.
In the real world, the response to this sort of disturbance requires consultation between
governments, airport authorities, airlines operating from the affected airports, and the
entities involved in airport operations to discuss their options for changing the original
plans to cope with the uncertainties of the situation. However, dependence upon subjective
opinions or ambiguous policies and bureaucratic red tape can lead to biases and obstacles in
solving the problems related to the operational and financial performance of air transport.

Clearly, managers and decision-makers require a tool specifically tailored to the air
industry to help them identify the most influential factors and delineate the complex
relationship between these factors, not just to generate an understanding of the issues but to
formulate policies and take action that will overcome the damage and mitigate the negative
impact of this crisis and possible future events. Multiple-criteria decision-making (MCDM)
models are valuable tools for exploring the complex relationship between the factors and
identifying the main causal factors. This study aims to provide a tool for instances that
require a rapid analytical approach that will allow decision-makers to understand the
situation and generate policies to handle emergencies, such as the pandemic situation,
that affect airport operations. There have been relatively few studies on the impact of the
pandemic on airport operations using MCDM methods. Aurora et al. proposed a method
for the assessment of impact and strategies on air transportation systems [6], aviation
strategy, a comparison of coronavirus responses, and aviation policies. Shaban et al. applied
a duopoly model and quantity discount to manage air cargo disruptions caused by global
catastrophes such as COVID-19 [13]. Dabachine et al. utilized parametric modeling and
processing algorithms to generate a strategic design for precautionary measures for airport
passengers in times of the global health crisis of COVID-19 [14]. Štimaca et al. analyzed the
impact of the COVID-19 pandemic on Croatian airports [15], focusing on the level of service
and anti-virus measures. Deveci et al. [16] studied the economic impact of COVID-19 on
the Turkish civil aviation industry. While there have been many studies on the impact of
COVID-19 on airports and the evident effects on airport operations, the literature does not
explore which measures are most crucial, nor does it address the relationship between these
measures. Therefore, this study aims to fill this gap in the existing literature. The research
question we developed is how to assist government departments and management teams
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in utilizing our research model to quickly identify key influencing factors and propose
correct decision-making methods to mitigate the adverse effects of the epidemic crisis.

The proposed model is divided into three stages: (1) finding the relevant factors,
criteria, or measures impacting financial and operational performance; (2) exploring the
criteria relationship using the decision-making trial and evaluation laboratory (DEMATEL)
method and interpretive structural modeling (ISM) method; and (3) mapping and analyzing
the causal influential factors (i.e., the network relationship map (NRM) and ISM map)
to provide improvement strategies. The proposed model can be used by governmental
departments, airport authorities, and management teams in general to facilitate the decision-
making process to overcome the adverse effects of the pandemic crisis. This study also
contributes to the field of operations research by proposing an integrated approach to
analysis based on the MCDM models, which can be applied to explore the relationship
between pandemic measures and airport performance to help governments and managers
establish an improved policy-making framework.

The remainder of the paper is organized as follows. Section 2 provides a brief review
of the related literature. Section 3 describes the proposed analytic MCDM models. Section 4
demonstrates the effectiveness of the MCDM methods by examining the airlines and air
traffic industries impacted by pandemic measures over operational and financial factors.
Finally, Section 5 presents some conclusions and closing remarks.

2. Literature Review Regarding Airport Performance

Several authors have conducted literature reviews related to airport performance,
including those of [17], who presented a collection of papers published between 1997
and 2010 with 59 studies on airport benchmarking; Bezerra et al. [18], who carried out
a systematic literature review about performance measurement in airport settings; and
Chaouk et al. [19], who published a comprehensive overview of the literature related to per-
formance measurement in airport settings and classified more than 80 related studies that
fall into either one of two quantitative approaches: one-dimensional or multi-dimensional.
They found that more than 75% of previous studies in the literature had used frontier
approaches such as parametric stochastic frontier analysis (SFA), and more than 80% of
them had adopted non-parametric data envelopment analysis (DEA).

DEA, a non-parametric approach, has been applied to measure airport performance,
followed by a second-stage censored Tobit regression to identify the factors affecting airport
efficiency. For example, Graham et al. [20] elaborated a partial performance-measurement
framework for examining the economic and financial performance of U.K. airports. They
built a model around the derivation of ratios from specific combinations of inputs and
outputs. These partial performance frameworks have been applied more extensively in
recent studies related to airport management applications. In addition to the traditional
DEA models, other researchers have recently proposed network DEA models [21], where
airport efficiency is deconstructed into several subsystem efficiencies, which are then used
to discuss airport performance. Others have applied DEA to evaluate the physical character-
istics, managerial strategies, and governance structures related to airport performance [22].
Chi-Lok and Zhang [23] investigated the influence of competition and aviation policy
reform in China on the efficiency of Chinese airports. They estimated both the productivity
level and its growth for 25 sample Chinese airports using DEA. They considered runway
length and terminal size as the inputs and passengers, cargo, and aircraft movement as
the outputs. Güner et al. [24] proposed a weight-restricted network DEA model, which
considers network centrality measures as the cornerstone intermediates that establish the
link between airport resources and the traffic volume handled. Yu and Rakshit [25] also
used the network DEA to analyze the dynamic efficiency and changes in technology gaps
of 50 European airports with different ownerships in the period 2011–2017 within the
meta-frontier framework.

While most studies have applied DEA to discuss airport performance, other ap-
proaches have attempted to assess and address disruptions and issues caused by COVID-19
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in the field of air transportation using MCDM or other methods [26,27]. Raghavan and
Yu [28] used a regression analysis and proposed a strategy for evaluating financial perfor-
mance, emphasizing the financial viability and strength of commercial service airports in
the United States affected by COVID-19. Guevara and Bonilla [29] developed an algorithmic
method that combines fuzzy logic and a Markov chain technique to prevent the spread of
COVID-19 in airports and air routes. Additionally, Dimitriou and Sartzetaki [30] developed
an ex-ante-assessment-based framework for evaluating the economic effects on the business
ecosystem associated with airport operations. Their approach conveyed a key message
to national governments, decision-makers, and stakeholders regarding the importance
of airport investment for regional economic development, particularly its contribution to
the business ecosystem, especially after the COVID-19 pandemic. Tanrıverdi et al. [31]
explored the factors affecting airport selection during the COVID-19 pandemic from the
perspective of air cargo carriers, aiming for profit optimization. They applied a triangular
fuzzy Dombi–Bonferroni BWM methodology. Their study findings reveal that location
and costs are the two most important aspects, with airport charges and handling charges
being the most crucial factors. Dey Tirtha et al. [32] proposed an airport-level framework
for examining the impact of COVID-19 on airline demand. Their framework provided a
blueprint for recovering airline demand with the evolution of COVID-19 cases over time.
In relation to the optimization of airport consumption, Xue et al. [33] presented a case study
of four international airports in China, analyzing the impact of COVID-19 on aircraft usage
and fuel consumption based on automatic dependent surveillance-broadcast surveillance
data. Gajewicz et al. [34] focused on the criteria for evaluating airport service quality
and conducted a statistical analysis of data collected from a diagnostic survey of over
263 passengers at European airports just before the pandemic lockdown. Wu et al. [35] ex-
amined the impact of the COVID-19 pandemic on multi-airport systems (MASs) worldwide.
Sun et al. [36] applied the data-driven method to examine the patterns underlying market
entry decisions during the aviation recovery phase. Hiney et al. [37] explored the impact of
the pandemic on airports and Irish airport stakeholder relationships. Furthermore, some
authors investigated the effect of COVID-19 on aviation industries from various aspects,
such as policies, revenues, or service attributes [38–41].

From the literature review, it can be seen that although many different approaches
have been applied in prior studies discussing issues related to the pandemic and its
impact, few have used MCDM methods to discuss the impact of pandemic measures on
airport performance. There have also been few articles discussing financial and operational
factors and the relationship between them specific to the airport industries. This study
thus proposes a hybrid method to enable governmental authorities and airport or airline
managers to previsualize and thus evaluate the impact of pandemic policy measures before
they are made, thus mitigating their possible impacts. The developed MCDM model can
be applied as the starting point to achieve a better decision-making process when facing
future crises.

It is true that MCDM methods have been applied in the airline industry for problems
relating to corporate social responsibility [42], airline strategic management [43], and low-
cost carrier problems [44]. Previous studies using the MCDM approach in the air transport
industry have relied heavily on the DEMATEL method to construct complex relationships
between the criteria [45]. The DEMATEL technique is an analytical method for constructing
a structural model to solve complex problems, which relies on an influence relational matrix
and related mathematical theories [46]. The proposed DEMATEL method, combined with
interpretive structural modeling (ISM), can effectively explore the causal relationship
between the factors and elucidate their hierarchical structure, thereby providing decision-
makers with useful information for designing strategies for improvement.

3. The Proposed Hybrid MCDM Model

This study proposes a managerial tool for analysis to facilitate decision-making be-
tween airport managers, civil aviation entities, and government policy-making entities.
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Figure 1 presents a graphical representation of the methods included in the proposed
model. The model was constructed with the application of a Delphi survey method to a
group of experts in the air transportation industry, coupled with a review of the literature
related to airport management aimed at identifying the essential factors or criteria. The
experts suggested and selected the relevant criteria, collected data, and elucidated the
contextual relationships using the DEMATEL method. The group of experts responded
to the DEMATEL survey to provide the data required for this methodological application.
Additionally, after the DEMATEL results were obtained, the ISM method was applied to
obtain the final cause-and-effect models from both methods for analysis and comparison to
obtain the final results and arrive at the conclusions.
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3.1. Delphi Method

The main goal of the Delphi technique is to reach a group consensus from a structured
panel of individual experts. It is an efficient process regulated by group-based relationship
structures and is used in cases where there is insufficient/indeterminate information. This
technique involves going through multiple rounds of surveys where experts may modify
their responses until reaching a group consensus [47]. In the classical Delphi method,
hesitation, vagueness, and uncertainty may arise since experts express subjective judgments
in the form of specific numbers. The application of the fuzzy-Delphi technique, developed
by Atanassov in 1983, avoids the aforementioned drawbacks inherent in such a situation.
The fuzzy-Delphi technique records experts’ opinions in the form of natural language, and
analysis occurs through fuzzy sets [48]. Fuzzy numbers, most frequently triangular or
trapezoidal fuzzy numbers, are applied in this method to yield valuable results.

In this study, a Delphi survey method was used to arrive at a consensus regarding
what the most important pandemic measures to be considered are and which operational
and financial factors should be included. In our research survey, we first collected COVID-
19 prevention and control measures proposed by various countries. We then invited
senior executives from major airports in the Southeast Asian region via email to assess the
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importance of each measure. Measures considered important by executives, with a rating
of over 80%, were retained for the subsequent DEMATEL-ISM investigation stage. The
factors relating to pandemic measures were arrived at based on the policies implemented
at several major Southeast Asian airports, including Taipei Taoyuan International Airport
(TPE), Hong Kong International Airport (HKG), Narita International Airport (NRT), Tokyo
International (Haneda) Airport (HND), Incheon International Airport (ICN), Singapore
Changi Airport (SIN), Beijing Capital International Airport (PEK), and Pudong International
Airport (PVG). The dimension of operational factors was based on data from the Airports
Council International (ACI) statistics center, and the dimension of financial factors was
based on the annual financial reports for the airports mentioned above. The experts came
to a consensus regarding the most important factors for evaluation in the analysis. The
Delphi surveys were completed by a panel of air transportation industry experts. After
the criteria were determined, the DEMATEL and ISM methods were applied to detect the
complex relationships between them and build a relational structure among the relevant
factors/criteria.

3.2. DEMATEL Method

The DEMATEL method approach can be used for analysis and decision-making in
complex systems. It is micro-oriented and part-based [49]. After obtaining the experts’
judgments required to perform the method, the values of influences given or received
among the elements under investigation were extracted and presented based on the prin-
ciples of graph theory. The resulting graphic structural model divides all the factors into
cause-and-effect groups [50]. The DEMATEL method shares similarities with the ISM
method, but the ISM method cannot determine the intensity of the quantified interactions
or the relationships among the factors involved [49]. In this study, we overcome these
shortcomings by dividing the analysis into two stages, using the DEMATEL method for
analysis in the first stage and applying ISM in the second stage to confirm the presence and
the levels of influence. The steps in this method are summarized below.

Step 1: Calculate the initial influence matrix X.

Following the identification of important preventive measures through the first-stage
Delphi survey, we asked experts to compare the preventive measures generated by the
Delphi method pairwise with airports’ operational performance to assess their mutual
influence levels, thus generating the initial impact matrix X. After these scores were
obtained, an average matrix of the results could be calculated. The experts’ scores serve to
establish what degree of influence factor i has on factor j, as indicated by xij. These results
indicate the ranking of influences between elements on an integer scale ranging from 0 to 4,
where 0 = an inexistent influence and 4 = an extremely high influence. An average matrix
X can be obtained from direct matrices provided by the group of experts’ responses, where
each element of the average matrix is taken as the mean of the same element given in the
responses of each of the experts.

Step 2: Calculate the normalized matrix P.

The normalized influence matrix P is derived by normalizing the direct influence
matrix X. Matrix P reveals the initial effect that each element has on and receives from
every other element. The principal goal of using DEMATEL is to create a graphic map of
the interrelationship between the elements of a system, wherein the degree of influence
is represented by a number (the intensity of influence). The DEMATEL method makes it
possible to identify the core causes and effects occurring in a relationship structure and the
strength of influence that each factor has over every other criterion.

The full direct/indirect influence matrix is needed to conduct a continuous reduction
in the indirect effects of the problems of the powers of matrix P, e.g., P1, P2, P3, . . . , P∞ , so
that it will ensure convergent solutions to the matrix inversion. By applying this analytical
method, we can display an infinite series of direct and indirect effects.
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Matrix P can be calculated by

P = z.X, r > 0, (1)

where

z = min

[
1

max1≤i≤n∑n
j=1

∣∣xij
∣∣ ,

1
max1≤i≤n∑n

i=1
∣∣xij

∣∣
]

; (2)

lim
m→∞

Pm = [0]n×n, P =
[
pij

]
n×n, and 0 ≤ pij < 1.

Step 3: Calculate the total-influence matrix B.

The total-influence matrix B can be obtained by

B = P + P2 + P3 + · · ·+ Pm = P(I − P)−1 , when m → ∞ . (3)

In Equations (4) and (5), the rows and columns are summed by placing vectors r and c,
respectively, within the total-influence matrix B.

B =
[
bij

]
; i, j = 1, 2, . . . , n;

r = [ri]n×1 =
(
∑n

j=1 bij

)
n×1

; (4)

c = [ci]
′
1×n =

(
∑n

i=1 bij

)
′1×n. (5)

In Equation (5), the superscript ′ indicates transposition.
Suppose that ri indicates the row sum of the ith row matrix B; then, ri shows the sum

of the direct and indirect effects of factor i on the other factors/criteria. If ci denotes the
column sum of the jth column of matrix B, then ci shows the sum of direct and indirect
effects that factor i has received from the other factors. Moreover, when i = j (i.e., the sum of
the row and column aggregates), (ri + ci) provides an index of the intensity of influences
given and received; that is, (ri + ci) gives the degree that factor i poses in the problem. If
(ri − ci) is positive, then factor i affects the other factors, and if (ri − ci) is negative, then
factor i is influenced by the other factors [51].

Step 4: Obtain the IRM.

Each element bij of matrix B gives information about how element i influences element
j. The network relationship map (NRM) can be constructed by detecting and selecting
elements from matrix B. The threshold value is identified from expert opinions (e.g.,
obtained by group creativity techniques such as brainstorming) and by deriving the average
of the matrix B after the threshold value and relative NRM are established. The final results
of the application of the DEMATEL method are illustrated as an NRM.

3.3. Interpretive Structural Modeling

The ISM method can use qualitative data to transform a complex structure into mul-
tiple alternatives based on expert opinions, which simplifies the creation of a structural
model [52]. The ISM is frequently applied in management problems that involve complex
structures and multiple criteria. The problem’s structure is divided into subcategories, and
the aim of the method is to identify and summarize the relation among the elements based
on the levels [53]. The steps for the application of the ISM method are as follows:

Step 1: Generate the SSIM from the results of the DEMATEL analysis

Formulate the Structural Self-Interaction Matrix (SSIM) based on the DEMATEL
method. In this study, the SSIM was derived from the total influence matrix produced by
DEMATEL. For each element (i, j) of the SSIM, if the degree of influence of i on j is greater
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than the average of the total influential degree, then (i, j) is assigned a value of 1; otherwise,
it is 0. {

kij = 1, bij > δ

kij = 0, bij ≤ δ
(6)

where δ is the average of total influential degree.

Step 2: Calculate the reachability matrix from the SSIM

Conduct a transitivity check of the reachability matrix by applying the rules of transitiv-
ity, which gives a matrix model that has thus been developed to derive the final reachability
matrix. The transitivity principle establishes that if “Factor-W” affects “Factor-X” and
“Factor-X” affects “Factor-Y”, then “Factor-W” affects “Factor-Y”.

Step 3: Determine the reachable set Ri and antecedent set Ai

Ri =
{

αj
∣∣αj ∈ X, kij ̸= 0

}
(7)

Ai =
{

αj
∣∣αj ∈ X, k ji ̸= 0

}
(8)

Check whether Equation (9) holds. If it does, it indicates that the factor i is a funda-
mental factor, and should be deleted from the i-th row and column in reachability matrix.

Ri = Ri ∩ Xi (9)

Step 4: Divide the factors into different levels

Rank the factors by splitting them into different levels based on the final reachability
matrix, applying the reachability and antecedent sets. The reachability set requires the
assembly of criteria that contain the inner and external influence of each criterion, whereas
the antecedent set is integrated from the criteria that affect itself and the other criteria.

Step 5: Plot the factors as hierarchical levels

Compute the canonical matrix by classifying the criteria into different levels to es-
tablish their driving and dependence power along the rows and columns obtained by
assembling the antecedent and reachability sets. Repeat steps three and four to ensure that
all factors i are removed. Plot the digraph based on the SSIM and reachability matrix and
rank them accordingly; then, proceed to obtain the final structural ISM from the digraph.

4. Investigation and Analysis

In the empirical example, we selected experts with knowledge related to airport opera-
tions, flight operations administration, financial management, and civil aviation procedures
who had also been involved in decision-making for COVID-19 pandemic measures to
mitigate operational and financial disturbances in the past few years. These experts had
professional experience and understood all of the airports’ operational and financial factors,
as well as being familiar with international airport standards and government regulations.
According to the research by Rezaei et al. [54] and Quayson et al. [55], expert opinion
surveys of this kind require experts with sound knowledge regarding the entire system’s
operation and a clear grasp of the survey methodology. Therefore, obtaining credible
results typically requires only 4–15 experts. The entire survey was conducted from April
to November 2021. Due to some experts holding official positions and preferring not to
be identified, the survey was conducted anonymously. The seven experts involved in
this study included operation control center employees, airport management employees,
and airline station managers and supervisors (including airline operations controllers and
dispatchers) from different airports. They included civil aviation authorities and airline cus-
tomer service coordinators and worked for different airlines and institutions (e.g., General
Directorate of Civil Aeronautics of Guatemala, Civil Aeronautics Administration (Taiwan),
United Airlines, American Airlines, Delta Airlines, and Emirates Airlines). In this study,
the main criteria were derived from ACI statistics.
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The experts were asked to complete surveys based on the Delphi method, from which
we obtained a set of well-defined criteria (factors) related to the impact of pandemic
measures on operational and financial factors. The Delphi method also enabled the experts
to suggest additional criteria. Finally, the experts were able to obtain a consensus. The final
list of criteria appears in Table 1.

Table 1. Factors affecting airport performance and pandemic measures.

Goal Dimensions Criteria/Factors

Establish performance
improvement planning goals for
airport performance to
overcome the pandemic crisis

(D1) COVID-19 measures (C11) PCR COVID-19 testing required to enter the country
(C12) Vaccination Certification required to enter the country
(C13) Ban restriction of entry for specific countries
(C14) Amount of COVID-19 cases imported to the country
(C15) Amount of domestic COVID-19 cases within the country

(D2) Operational Factors (C21) Passenger movements in the airport
(C22) Cargo movement in the airport
(C23) Aircraft movement in the airport

(D3) Financial Factors (C31) Net income
(C32) Operating profit
(C33) Operating revenue
(C34) Operating expenses

4.1. Measuring the Relationship between Criteria and Dimensions

After the criteria were defined, the DEMATEL method was applied to determine
whether the criteria exhibit an interrelationship (influence degree) and the direction of
this interrelationship. On the basis of the DEMATEL method, the experts determined the
influential levels of the criteria. These data determined the content of matrix X, which was
established by calculating the mean obtained from the DEMATEL survey. The average ini-
tial direct-relation 12 × 12 matrix X, obtained using the pairwise comparisons of influences
and directions between criteria, is shown in Table 2.

Table 2. Initial influence matrix.

C11 C12 C13 C14 C15 C21 C22 C23 C31 C32 C33 C34

C11 0.000 0.429 3.000 3.714 3.327 3.714 0.286 3.429 2.857 3.429 2.571 3.714
C12 1.429 0.000 3.286 2.857 3.000 1.429 0.143 1.000 0.857 1.286 2.000 0.429
C13 2.857 3.429 0.000 4.000 1.714 3.857 0.571 2.714 3.571 3.143 2.857 3.429
C14 3.857 3.429 2.286 0.000 3.714 1.857 0.286 1.286 1.714 1.571 1.143 1.857
C15 3.571 3.714 2.857 0.286 0.000 2.857 0.143 1.143 2.286 2.000 2.143 3.571
C21 0.286 0.000 0.143 0.286 0.571 0.000 0.429 3.429 3.429 2.571 2.286 3.286
C22 0.000 0.143 0.429 0.286 0.143 0.429 0.000 3.714 3.714 3.286 3.000 2.429
C23 0.857 0.143 0.286 2.429 2.286 4.000 4.000 0.000 3.714 3.857 3.571 3.857
C31 0.000 0.000 0.000 0.000 0.000 1.000 0.714 0.857 0.000 0.000 0.000 0.000
C32 0.000 0.000 0.000 0.000 0.000 0.429 0.286 0.143 4.000 0.000 2.000 0.286
C33 0.000 0.000 0.000 0.000 0.000 1.286 1.714 1.714 4.000 4.000 0.000 1.286
C34 0.000 0.000 0.000 0.000 0.000 2.429 2.143 1.571 4.000 4.000 3.286 0.000

The normalized direct relation can be calculated by applying Equations (1) and (2).
After the calculation is carried out, the total influence matrix can be derived by using
Equation (3), as shown in Table 3. The sums of the influences given and received by each
dimension are calculated using Equations (4) and (5) (see Table 4). The network relationship
map (NRM) is plotted from the total influence matrix (Table 3), as illustrated in Figure 2.
Furthermore, Table 5 gives the sums of influences given and received by the dimensions;
we also provide the NRM mapping of the relations between the dimensions (see Figure 3).



Aerospace 2024, 11, 373 10 of 16

Table 3. Total influence matrix.

C11 C12 C13 C14 C15 C21 C22 C23 C31 C32 C33 C34

C11 0.051 0.058 0.123 0.150 0.146 0.204 0.065 0.180 0.237 0.221 0.178 0.204
C12 0.084 0.040 0.128 0.120 0.127 0.110 0.035 0.086 0.124 0.118 0.124 0.083
C13 0.129 0.136 0.048 0.163 0.110 0.207 0.071 0.164 0.255 0.214 0.186 0.194
C14 0.154 0.137 0.112 0.052 0.157 0.140 0.047 0.110 0.170 0.147 0.121 0.139
C15 0.136 0.134 0.119 0.058 0.047 0.164 0.047 0.107 0.191 0.161 0.149 0.179
C21 0.019 0.008 0.013 0.023 0.032 0.044 0.048 0.132 0.176 0.134 0.114 0.132
C22 0.011 0.012 0.020 0.024 0.020 0.056 0.037 0.140 0.186 0.154 0.134 0.108
C23 0.053 0.029 0.033 0.092 0.095 0.181 0.158 0.076 0.240 0.213 0.186 0.183
C31 0.002 0.001 0.002 0.003 0.004 0.036 0.027 0.034 0.015 0.012 0.011 0.011
C32 0.001 0.001 0.001 0.002 0.002 0.023 0.018 0.016 0.135 0.015 0.066 0.017
C33 0.005 0.003 0.004 0.008 0.008 0.062 0.070 0.075 0.170 0.150 0.034 0.062
C34 0.005 0.003 0.004 0.009 0.009 0.099 0.088 0.081 0.186 0.164 0.134 0.034

Table 4. Sum of influences given and received on criteria.

Criterion r c r + c r − c

C11 1.818 0.651 2.468 1.167
C12 1.180 0.561 1.741 0.619
C13 1.878 0.606 2.484 1.272
C14 1.486 0.703 2.190 0.783
C15 1.491 0.757 2.248 0.733
C21 0.876 1.328 2.205 −0.452
C22 0.901 0.713 1.614 0.189
C23 1.541 1.201 2.742 0.339
C31 0.159 2.085 2.244 −1.927
C32 0.298 1.703 2.001 −1.405
C33 0.650 1.438 2.088 −0.788
C34 0.816 1.346 2.162 −0.530
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Table 5. Sum of influences given and received on dimensions.

r c r + c r − c

COVID-19 factors (D1) 0.394 0.145 0.539 0.250
Operational factors (D2) 0.293 0.265 0.558 0.027

Financial factors (D3) 0.132 0.409 0.542 −0.277
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The NRM provides a graphic representation of the direction of influence between the
dimensions and the criteria. In the NRM appearing in Figure 3, the pandemic measure
dimension (D1) is marked with an arrow pointing to the operational criteria dimension
(D2), both of which point to the financial criteria dimension (D3), indicating how external
criteria, such as pandemic factors (uncontrollable factors in managerial terms), directly
affect the internal operational criteria (controllable factors as the operational and financial
dimensions). The network relationships within dimension (D1) indicate that all the criteria
directly or indirectly affect the net income (C31), which is thus displayed in the very lowest
part of the graph. These results reveal how all actions or influential factors related to the
pandemic and changes affect airports economically.

4.2. Using ISM to Obtain the Hierarchical Structure of the Factors

Based on the total influence matrix (Table 3), we proceed to integrate the reachability
matrix by converting the resulting numbers. If the elements of the total influence matrix
have an average value less than the total matrix value, then they are assigned a value of 0;
if the value is greater than the average, then they are assigned a value of 1. The reachability
matrix can be obtained, as shown in Table 6.

This is followed by the iterations for level partitioning in ISM. These are guided to
plot the final levels graph, and the iterations are performed for the partitions of different
levels for the criteria contained in each dimension. Based on the iteration level, the final
hierarchy levels between the criteria are obtained, as shown in Figure 4.
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Table 6. Final reachability matrix.

C11 C12 C13 C14 C15 C21 C22 C23 C31 C32 C33 C34

C11 1 0 1 1 1 1 0 1 1 1 1 1
C12 0 1 1 1 1 1 0 0 1 1 1 0
C13 1 1 1 1 1 1 0 1 1 1 1 1
C14 1 1 1 1 1 1 0 1 1 1 1 1
C15 1 1 1 0 1 1 0 1 1 1 1 1
C21 0 0 0 0 0 1 0 1 1 1 1 1
C22 0 0 0 0 0 0 1 1 1 1 1 1
C23 0 0 0 1 1 1 1 1 1 1 1 1
C31 0 0 0 0 0 0 0 0 1 0 0 0
C32 0 0 0 0 0 0 0 0 1 1 0 0
C33 0 0 0 0 0 0 0 0 1 1 1 0
C34 0 0 0 0 0 1 0 0 1 1 1 1
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5. Results and Discussion

The ISM results indicate the presence of influence factors among all the other di-
mensions. Level 1 includes the requirement of a PCR test to enter the country (C11), a
vaccination certification required to enter the country (C12), bans and restrictions to entry
for specific countries (C13), the number of COVID-19 cases imported to the country (C14),
and the number of domestic COVID-19 cases in the country (C15). These are the most
critical measures that impact airport performance. Aircraft movement in the airport (C23)
had the largest total influence degree, so it is viewed as the most essential factor for airport
performance. The aforementioned factors had a direct impact on the financial performance.
An increase in operating expenses had an overall effect on the final net income. Increased
losses prevailed for a long period of time during the pandemic crisis. The findings show
that both factors directly influenced the financial performance of the airport, as reflected in
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the net income. Some management implications are provided in the discussion to mitigate
the negative impact of the pandemic crisis.

Important management implications can be derived from the preceding DEMATEL
analysis and by examining the influence on the dimensions and the criteria (Tables 4 and 5).
From the results, we found that the dimension of COVID-19 (D1) had a higher influence
than other operational factors, with a positive (r − c) value of 0.250 compared to a value
of (0.027) for (D2). This indicates that the airport authorities should consider COVID-19
factors (D1) as having a higher priority when evaluating the impact of pandemic measures
on the airport ecosystem. In terms of criteria related to airport operations (D2), the results
of ISM and DEMATEL combined show that the “movement of aircraft in the airport” (C23)
had the highest impact, greater than “cargo movement in the airport” (C22) or “passenger
movement in the airport” (C21). All are in the same dimension, and all are affected by the
COVID-19 factors (D2), whereas “Net income” (C31) had a negligible effect on establishing
measures to overcome the problems caused by the pandemic crisis.

According to the DEMATEL results, the COVID-19 factors (D1), and operational factors
(D2) directly impacted the financial dimension (D3), which was deemed an essential factor
because it directly influenced all the other criteria and airport performance. In other words,
the results reveal that every decision affected the airports’ overall net income. This result is
also represented in the NRM, as shown in Figure 2, where dimension (D3) appeared in the
lower part of graph C31, indicating that it was influenced by all the other criteria, having the
largest (r + c) value. In addition, the graph reveals that the criterion (C13), “ban restriction
of entry for specific countries”, was on level one of the ISM results. It also had the highest
net influence (r − c) value of 1.272 (see Table 4). Therefore, authorities should avoid using
this measure to counter pandemic problems because it will have such a significant impact
on airport performance. Furthermore, the criteria on ISM level one (Figure 4) were the
root causes of disruption of airport performance. Observing the NRM (Figure 3), we found
that the COVID-19 dimension (D1) influenced the operations dimension (D2). However,
the COVID-19 factors were subject to uncertainty (e.g., the arrival of new sub-variants
of the virus or the emergence of new epidemic diseases), which suggests that internal
airport operations should be adjusted on the basis of external conditions. Therefore, airport
managers and policy-makers should consider external conditions before selecting pandemic
measures that might impact overall airport performance.

Airport managers and policy-makers can refer to the results obtained from this hybrid
model approach to make better, more informed decisions. The proposed model provides
an efficient method for evaluating the most appropriate pandemic measures and the
impact of the process because it reflects the consensus of experienced airport managers
from five different airports (in the U.S., Guatemala, Aruba, Egypt, and Taiwan). Unlike
previous approaches, this hybrid model considers all the factors involved (criteria) in terms
of priorities (impact and interrelationship). The application of the model to the current
case clarifies the main criteria and their impact levels. The calculations are performed to
minimize the negative consequences of the selection of future measures related to pandemic
crises. Both financial costs and airport operation measures need to be established based
on performance improvement planning goals to overcome a crisis such as the presented
pandemic case.

This practical and flexible tool can help airport managers focus on performance
improvement planning goals for airport performance issues while maintaining control
over operational costs and the impact of financial factors. It can help airports remain
competitive and also lead to improved safety during a crisis. The results show that the
proposed model is suitable for making decisions in a disruptive situation. In addition,
this study demonstrates how this combination of the DEMATEL and ISM methods can
provide air transportation professionals with a means of measuring the influence and
interrelationships of the relevant criteria. In short, this hybrid method enables individuals
and companies to make multi-criteria decisions in a timely and cost-efficient manner,
different from previous studies using complex programming models. Companies can easily
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change the parameters used in the proposed model to suit their own needs and make
efficient performance improvement planning goals to determine airport performance in
future situations caused by other types of disturbances.

6. Conclusions

In this study, the Delphi method was used to identify the criteria that would affect
airport performance. The criteria were derived by a group of experts composed of airport
managers and other managerial authorities. The expert consensus yielded twelve criteria
and three dimension factors. Following the proposed procedures, the DEMATEL method
was applied to discover existing interrelationships among the criteria. This method, when
used in conjunction with the ISM, enabled us to confirm the presence of interrelationships
and synthesize and express priorities as levels of influence. Our results indicate that factors
and conditions related to COVID-19 do indeed affect airport operations and financial
performance. Regarding COVID-19 factors, we found that restrictions banning entry
from specific countries (C13) were a causal factor (net influence = 1.272) and that the net
income was the affected factor (C31) (net influence = −1.927). Aircraft movement (C23) had
the largest total influence, with a total degree of influence equal to 2.742. Additionally,
the ISM results indicate that the requirement of a vaccination certification to enter the
country is the most critical measure but less harmful to airport performance, while the
movement of aircraft in the airport has the largest total degree of influence, so it can
be viewed as the essential factor for airport performance. The findings show that both
factors directly influenced the financial performance of the airport as reflected in their net
income. Managers should select emergency pandemic measures and policies that satisfy the
requirements of national security but consider airport operational conditions and prioritize
feasible alternatives according to other criteria. In summary, this study provides a new
systematic approach that can be used to solve decision-making problems related to airport
performance impacted by pandemic measures over operational and financial factors. In
this study, it was found that restrictions banning entry from specific countries are the
measures with the highest degree of net influence, as they significantly impact airport
revenues. Therefore, in the event of a similar emergency situation like COVID-19 in the
future, authorities should avoid implementing this measure to prevent airports from facing
operational challenges.

Although the present study contributes to the literature related to the air transportation
industry, it does have some limitations. The data collected in this study were converted
into set values. However, these values may be uncertain because of incomplete information
provided by the experts. Furthermore, inherent conflicts between various departments and
differences in expertise levels among the study participants may have skewed these results.
By using other analytical methods, such as a complementary DANP, BWM, fuzzy numbers,
or gray theory, researchers can re-examine and expand on our findings.
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