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Abstract: The higher harmonic terms of Earth’s gravitational potential slowly modify
the nominal longitude of geostationary Earth orbit (GEO) satellites, while the third-body
presence (Moon and Sun) mainly affects their latitude. For this reason, GEO satellites
periodically need to perform station-keeping maneuvers, namely, east–west and north–south
maneuvers to compensate for longitudinal and latitudinal variations, respectively. During
the operational lifetime of GEO satellites, the thrusters’ response when commanded to
perform these maneuvers slowly departs from the original nominal impulsive behavior.
This paper addresses the practical problem of how to perform reliable east–west
station-keeping maneuvers when thruster response is degraded. The need for contingency
intervention from ground-based satellite operators is reduced by breaking apart the scheduled
automatic station-keeping maneuvers into smaller maneuvers. Orbital alignment and attitude
are tracked on-board during and in between sub-maneuvers, and any off nominal variations
are corrected for with subsequent maneuvers. These corrections are particularly important
near the end of the lifetime of GEO satellites, where thruster response is farthest from
nominal performance.
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1. Introduction

Over time, a geostationary Earth orbit (GEO) satellite will drift both in longitude and latitude because
of the presence of various perturbations. These perturbations mainly are the gravitational forces caused
by Earth longitudinal mass variations, the gravitational presence of the Moon and Sun and the solar
radiation pressure [1,2]. The persistent gravitational perturbations create two stable and two unstable
equilibrium points along the GEO belt at 75.91◦ east and 102.92◦ west and 164.1◦ east and 10.62◦

west, respectively. Because of these perturbations, the nominal location of a GEO satellite, in the
Earth-centered Earth-fixed (ECEF) reference frame, changes as the satellites drift away from the unstable
equilibrium points towards the stable equilibrium points. To maintain the GEO satellite within its
specified longitudinal and latitudinal bounds, periodic corrective impulses must be applied (satellite
station keeping), with satellites nearer the unstable equilibrium points requiring more vigorous station
keeping. Current methods of station keeping rely on a single maneuver, which corrects the longitude and
longitude drift rate once the satellite drifts near the edges of the acceptable longitudinal range, as shown
in Figure 1. The effect of the maneuver is illustrated in Figure 2.

Figure 1. East–west (E–W) station-keeping deadband of a GEO satellite.

Figure 2. Phase trajectory of the GEO E–W station-keeping using a stable thruster under
λ̈ < 0.
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However, station-keeping maneuvers will provide unreliable or unexpected results if the thruster
performance changes from its expected nominal behavior. This leads to an imperfect correction and
potentially to extreme longitudinal drift of the satellite, causing loss in communications quality. It is
especially dangerous if the satellite operators are not aware of the degraded thruster response and
have not accounted for the imperfect correction in their control scheme. The degradation of thrusters’
performance (electrical or chemical) is especially noticeable at the end of the GEO lifetime. Furthermore,
thruster mounting deviations, installation bias, shock shift, thermal deformation, etc., may all lead to
non-nominal and/or asymmetric thrusts.

In these cases, the east–west (E–W) maneuver strategy to adjust the mean longitude must be
re-formulated, and a new model is needed to still provide efficient control. The design of this model is
the main purpose of this paper. In other words, this paper provides an answer to the following question:
“How can a GEO satellite still performing E–W maneuvers using unreliable and degraded thrusters?”.
To solve this problem, the following issues must be resolved:

1. Modeling the effect of degraded thruster response on longitudinal station keeping;
2. The new control approach is more complex and, therefore, is at higher risk of performing the

wrong maneuvers;
3. The number of satellite operations increases, as well as extra work is required from

ground operators;
4. In some cases, the thrusters generate unexpected orbital deviations; in these cases, the on-board

program must be able to eventually interrupt and alter the control strategy;
5. Orbital elements and satellite dynamics must be tracked during and between maneuvers in order

to ensure correct station keeping.

This paper investigates a potential solution to this problem by analyzing the variation of angular
momentum in the satellite’s momentum wheels to estimate the change of orbital elements, such as
the semi-major axis and eccentricity. Once these variations are known, a correcting maneuver loop is
constructed and executed. A concise work-flow, which follows this methodology for performing reliable
E–W station keeping under degraded thrusters, is presented at the end of this paper.

2. Nominal East–West GEO Satellite Drift

2.1. Longitudinal “Deadband”

Figure 1 shows the latitudinal and longitudinal range (deadband) within which a GEO satellite is
supposed to remain during its operative time. This box is usually small, because ground users do not
want to re-point their communications antenna and because the GEO belt is becoming very crowded
in terms of frequency allocation [3]. By going outside that deadband, the communications quality
degrades (or even gets lost), and the communications may interfere with the communications of neighbor
GEO satellites. However, the asymmetric distribution of the Earth’s gravitational field creates persistent
perturbation forces pushing the GEO satellite outside the assigned deadband.

The purpose of GEO station keeping is to keep the GEO satellite longitude and latitude point inside
the rectangular “deadband” box [4]. Let ∆λDB be the E–W maximum allowed longitudinal excursion.
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This means that the satellite longitude is constrained to be in the longitude range λ ∈ [λ0 −∆λDB, λ0 +

∆λDB], where λ0 is the assigned GEO satellite’s nominal longitude. Depending on the λ0 value and on
the communications constraints, the E–W deadband ranges from a fraction to a few degrees.

2.2. Lagrange’s Equations of Drift Rate

The main perturbing forces acting on GEO satellites are: (1) the “third body” (Moon and Sun
gravitational presence); (2) the solar pressure (GEO satellites usually have large solar arrays); and (3) the
tangential forces generated by the non-axially symmetric distribution of the Earth’s mass. While the
third body and the solar pressure are periodic perturbations, the higher harmonic terms of the Earth
gravitational potential have a persistent perturbing effect on the GEO satellites, because their nominal
positions should be, in theory, fixed in the ECEF reference frame [5]. The orbital parameters that mainly
change are: inclination (i), eccentricity (e) and semi-major axis (a). Variation of e and a cause variations
of the geographic longitude [6].

The perturbing potential generated by the non-axially symmetric distribution of the Earth’s mass can
be described by a limited set of coefficients describing the Earth gravitational potential:
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where Re is the mean equatorial radius of the Earth, r is the geocentric distance of the satellite, µ is the
Earth’s central gravity constant and J2, J22, J31, J33 and J4 are the zonal harmonic coefficients of the
Earth’s gravity potential field.

The vector {a, λ}, made by the semi-major axis and the mean longitude, is used to describe the drift
of the GEO satellite. In particular, the mean longitude can be expressed as:

λ = ω + Ω +M − θ(t) (2)

where ω is the argument of perigee, Ω is the right ascension of the ascending node, M is the mean
anomaly and θ(t) is the true anomaly.

The rate of change of the drift vector can be described by the Lagrange planetary equations, which
can be written as (with eccentricity and inclination expanded to the first order):
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where a is the perturbed semi-major axis (affected by the harmonic terms of the Earth potential),
nc = 2π/86, 164.09 is the Earth’s rotation rate and λ̈ is the longitudinal acceleration:
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Consider the equations of the longitudinal dynamics with some specific initial values:
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Under the practical assumption that the longitude variation over one cycle is small (the typical
longitudinal range, or deadband, for the E–W cycle is usually lower than ±0.5◦), it is reasonable to
consider as constant the longitudinal acceleration during a cycle. The solution for the longitudinal
variation under constant acceleration is then obtained by integrating Equation (5):{

λ = λ0 + λ̇0 t+ 1
2
λ̈n t

2

λ̇ = λ̇0 + λ̈n t
(6)

where the subscript “0” indicates values evaluated at time t = 0. Equation (6) describes a parabolic
motion in the phase space, as seen in Figure 2.

The initial drift velocity, λ̇0, is an initial condition, and the required bound, ∆λDB, is the assigned
deadband requirement in which the satellite must remain. The drift time between two consecutive
E–W maneuvers,

T = 4

√
∆λ

| λ̈ |
, (7)

and ∆V , the impulse provided at each cycle, are computed as specified in [7] and Equation (8).
Over the drift time, T , the GEO satellite changes the drift rate from λ̇0 to −λ̇0, as seen in Figure 2.

The associated impulse, ∆V , for each maneuver is:

∆V = 11.32

√
∆λ |λ̈| (8)

2.3. Nominal Single E–W Maneuver

Figure 2 shows the nominal E–W station-keeping maneuver of a GEO satellite, subject to the constant
longitude drift acceleration (here assumed negative, λ̈ < 0), with assigned nominal longitude λ0.
Every time the longitude reaches the value λ0 −∆λDB, the E–W thruster provides an impulse changing
the longitude velocity from −λ̇ to +λ̇. This burn brings the GEO satellite to reach the other edge of his
E–W deadband, λ0 + ∆λDB, with longitude velocity λ̈ = 0. This cycle is then repeated, and the GEO
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satellite is kept within the deadband limits, λ0 ± ∆λDB. The perturbing longitudinal acceleration λ̈ is
known from Equation (4).

Figure 3. Simple control scheme near the stable node with λ̈ < 0.

Figure 4. Simple control scheme using incorrect thrust near the unstable node with λ̈ < 0.

Control schemes require different levels of thrust depending on the nominal latitude of the satellite.
More thrust is required to maintain latitude within the deadband for satellites near the unstable longitude
nodes. Figure 3 demonstrates how a nominal repeated control scheme would work near the stable node.
Figure 4 demonstrates a control scheme that uses the same thrust applied near the unstable node. The
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satellite latitude still remains within the deadband; however, much more frequent thrusting is required.
A degraded thruster might respond in a similar fashion, leading to the more frequent need for emergency
thrusts to keep the satellite within the required deadband. Settling near one edge of the deadband might
also reduce the utility of the satellite or decrease the communication signal strength. Obviously, if the
degraded thruster response is unpredictable, it is possible to over-correct, sending the satellite out beyond
the permissible deadband.

2.4. Station-Keeping Strategy Using a Degraded E–W Thruster

The proposed station-keeping strategy consists of a cyclic procedure using the following steps:

• Step 1: Station-keeping. In this phase, the on-board control thrusters execute the orbital maneuvers
to keep the GEO satellite in its assigned deadband. These maneuvers can be evaluated on-board or
at ground stations.
• Step 2: Longitude drift. In this phase, the GEO satellite, subject to the Earth’s tesseral harmonics,

drifts in its longitude toward east or west, depending on where the closest stable longitude
point sits.
• Step 3: Orbit measurements. In this phase, all of the input data for the orbit determination

algorithms are measured. These measurements can be obtained by ground-based observers,
telescopes or radars. These data usually consist of time, azimuth, elevation, range and/or range
rate. Usually, to obtain enough accuracy for orbit determination, measurements should be taken
over at least one full day.
• Step 4: Orbit determination. Specific orbit determination algorithms are used to estimate the

orbit. These algorithms can be run on the ground or simplified versions can be run on-board.
The difference between the expected orbit (before the impulse) and the measured orbit (after
the orbit determination phase) constitutes the error. The analysis of this error then dictates
the next station-keeping strategy as more reliable knowledge is obtained on the effectiveness of
the thrusters.

The above station-keeping strategy is simplified in the cyclic activities shown in Figure 5.

Figure 5. Ideal cycle of the E–W station-keeping operation.
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The cycle described above is repeated until the velocity reaches the nominal curve in the phase plane.
This may require several cycles. Just to show an example, Figure 6 shows the resulting variations of
velocity (∆λ̇) obtained by five cycles to reach the curve in the phase plane.

Figure 6. Example of five loops of the operation ring of E–W station-keeping.

The nominal single E–W maneuver is split here into five smaller E–W maneuvers. Between any two
consecutive maneuvers, there will be a short drifting time and then a period of time dedicated to the orbit
measurements to perform the orbit determination.

2.5. Control Equations of the E–W Maneuver

The equation of the dynamics of a GEO satellites can be linearized by introducing the variation in
geographical longitude with respect to the nominal value [7]. Under the assumption that the impulse is
planar (∆Vr = 0, ∆Vn = 0 and ∆Vt 6= 0), the linearized equations of motion describing E–W orbit
maneuvers yield the following equations ruling the orbital parameter variation:
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2
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where as = 42, 168.74 km is the semi-major axis of the geosynchronous orbit, `b is the sidereal angle
to the GEO satellite position, Vs = 3.0747 km/s is the orbital velocity of the GEO satellite and ∆ex and
∆ey are the first and second components of the eccentricity vector.

If the impulse is tangential and instantaneous, then ∆r = 0 and ∆λ = 0. Therefore, Equation (9) can
be rewritten in matrix form:
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whose solution is: 
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where τ = 360.985647 deg/day is the Earth’s rotation angle per mean sidereal day and `0 is the sidereal
angle at the thrust firing time tb.

3. Degraded Thruster Response

3.1. Comparison of the Time-Domain Output of the Thruster Pulse

The thrust performing the E–W maneuver usually fires for a short time (about a minute) as compared
to the GEO orbital period. For this reason, this maneuver is considered impulsive. Unfortunately,
an impulsive thrust (constant thrust during the firing time) is an idealization that approximates the thrust
behavior only at the beginning of its lifetime (see Figure 7).

Thruster performance degrades over time, especially near the end of the mission lifetime
(see Figure 8).

Figure 7. Thruster response at the beginning of its lifetime.

Figure 8. Thruster response at the end of its lifetime.
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In Figures 7 and 8, the dark curves indicate the ideal thruster responses (or the electrical “ON”
command), while the lighter curves describe the actual thruster responses.

3.2. E–W Maneuver with Degraded Thruster Response

The complexity of system Equation (10) is due to the existence of the parasitic unstable thrust
response. This effect can be removed from the equations and instead treated as mere disturbance, which
must be considered during the analysis stage of the maneuver operation. This analysis would be done in
between maneuvers, such as the ones shown in Figure 6.

4. Attitude Dynamics of the Momentum-Biased GEO Satellites

4.1. Momentum-Biased Wheel Configuration

Let us consider a typical momentum-biased GEO satellite, as shown in Figure 9, where MW indicates
the momentum wheels. The satellite body frame is indicated by the three orthogonal axes x̂b, ŷb and ẑb.
The pitch axis, ẑb, is kept pointing to nadir (to Earth) and is the axis along which the communication
antenna is aligned. The roll axis, x̂b, is the orbit tangential axis, which is aligned with the orbital velocity
vector, and the yaw axis, ŷb, which is the axis orthogonal to the orbital plane, is aligned with the orbital
angular momentum. The typical attitude control of this GEO satellite involves three momentum wheels.
Two of them, which are the nominal control wheels, are mounted in a “V” configuration with the two
spinning axes on the ŷb–ẑb plane and displaced form the ŷb axis by an angle γ.

Figure 9. Momentum-biased wheel configuration.

In this type of satellite, a constant momentum bias, hwy0, is applied along the ŷb axis to keep the GEO
spin rate (around the ŷb axis) equal to the orbit mean motion. The two momentum wheels in the “V”
configuration provide E–W inertial angular stability and are dedicated to controlling yaw angle. A third
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smaller momentum wheel, MWZ , is mounted with its spin axis aligned along the ẑb body axis. If one
of the primary wheels (MW1 or MW2) fails, then this backup wheel, which is nominally kept inactive,
can now be used to provide the momentum bias in place of the failed wheel.

The two primary wheels,MW1 andMW2, provide a total momentum bias ofHw = 2H1 cos γ aligned
along the ŷb axis. The torques, T c

y and T c
z , provided by these wheels are related to the angular momentum

rate components, Ḣ1 and Ḣ2, by the equation:{
T c
y

T c
z

}
=

[
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Ḣ1

Ḣ2

}
(12)

This means that, to obtain the torque commands (as required by the attitude control law), the wheels
should provide the angular momentum rates:{
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The angular momentum of the wheels is related to the wheels’ moment of inertia, Iwx, Iwy and Iwz,
and to the wheels’ angular velocities, ωwx, ωwy and ωwz, by:

hwx = Iwx ωwx, hwy = Iwy ωwx + hwy0, and hwz = Iwz ωwz. (14)

Thus, we have:{
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The angular momentum vector in body coordinates is:

h =


hx

hy + hwy

hz + hwz

 =


hx

hy + (H1 +H2) cos γ

hz + (H1 −H2) sin γ

 (16)

If the wheels’ momentum biases are equal, H1(0) = H2(0) = H(0), we can write:

H1 +H2 = 2H(0) +

∫
T c
y

cos γ
dt (17)

and:
H1 −H2 =

∫
T c
z

sin γ
dt (18)

Euler’s moment equation, M = ḣI = ḣ + ω × h, can be written with hwx ≡ 0, since there is
no momentum wheel projection on the x̂b axis. In this equation, subscript “I” indicates the derivative
evaluated in the inertial frame, while ḣ is the derivative of the angular momentum vector, h, in the body
frame. This yields the equations used to simulate the body attitude dynamics:

T c
x + T d

x = ḣx + ωyωz(Iz − Iy) + ωy(H1 −H2) sin γ − ωz(H1 +H2) cos γ

T c
y + T d

y = ḣy + ωxωz(Ix − Iz) + (Ḣ1 + Ḣ2) cos γ − ωx(H1 −H2) sin γ

T c
z + T d

z = ḣz + ωxωy(Iy − Ix) + (Ḣ1 − Ḣ2) sin γ + ωx(H1 +H2) cos γ

(19)
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Consider that the products of inertia are zero and hwx = ḣwx = 0. Under these assumptions, the
linearized attitude dynamics equations from [12] are derived:

T c
x + T d

x = Ixψ̈ + 4ω2
0(Iy − Iz)φ+ ω0(Iy − Iz − Ix)ψ̇ − ω0(H1 −H2) sin γ

T c
y + T d

y = Iyθ̈ + 3ω2
0(Ix − Iz)θ + (Ḣ1 + Ḣ2) cos γ

T c
z + T d

z = Izψ̈ + ω0(Iz + Ix − Iy)φ̇+ ω2
0(Iy − Ix)ψ + (Ḣ1 − Ḣ2) sin γ

(20)

In these equations, the angular velocity vector, ω, is provided by its components, ωx, ωy and ωz,
along the body axes, and φ, θ and ψ are the Euler angles defined about the coordinate axes x̂b, ŷb
and ẑb, respectively.

4.2. Orbital Element Estimation Based on the Angular Momentum Wheel Variations

For an elliptical orbit, the orbital energy conservation equation (vis-vivaequation) is written as:

v2

2
− µ

r
= − µ

2a
where r = a (1− e cosE). (21)

Using this energy equation, it is easy to derive the relationship between applied velocity variation,
∆v, and semi-major axis variation:

∆a =
2 a2
√
µ

√
2

r
− 1

a
∆v (22)

For a geostationary satellite, we have r ≈ a ≈ as = 42, 164.2 km and ωs ≈ ωe = 7.2921158479 ·
10−5 rad/s. Furthermore, using ∆VT = ∆v for the impulsive velocity variation, Equation (22) can be
rewritten as:

∆a =
2

ωe

∆VT (23)

Let Jx, Jy and Jz, be the three principal moments of inertia of the satellite body. Ωx,Ωy,Ωz are the
angular velocities defined about the body axes. Considering two equally-balanced momentum wheels
with angular momentum Hw, the net effect is:

Jx = Jz = 0, Jy = J and Ωy = Ω, Ωx = Ωz = 0. (24)

The momentum bias of the wheel about the ŷb axis is denoted by hw, with its radius Rw, so that:

hw = J Ω = J Rw vw (25)

Next, we differentiate Equation (25); this yields:

∆hw = J ∆Ω = J Rw ∆vw (26)

From which, together with Rw = h0

J v0
, we find that:

∆hw
∆vw

=
h0
v0

(27)

where h0 denotes the nominal angular momentum of an MW with respect to its nominal speed v0.
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For practical reasons, the total torque Ty, acting on the ŷ-axis in the body frame, is broken down into
two principal parts: T c

y , the control moments to be used for controlling the yaw attitude motion of the
satellite, and T d

y , the moments due to different environmental disturbances. The total torque vector is
thus Ty = T c

y + T d
y . According to Equation (20), the MW’s momentum change (e.g., ḣw) will produce

an equal and opposite angular torque on the body about its ŷb body axis, T c
y = −ḣw. If Ω̇ is the angular

acceleration of the ŷb axis wheel, then ḣw = J Ω̇ is the negative of the angular moment that the ŷb wheel
exerts on the satellite about its ŷb axis.

Assuming that the net torque on the satellite is zero, we have:

T c
y + T d

y = 0 (28)

This means that, if a torque is induced by a thrust vector on the body about the ŷb axis, a torque in
the opposite direction must be produced by the rotor of the electrical motor. Thus, T c

y = −T d
y . In the

momentum differential expression, we get:

∆hw =

∫
T d
y dt = T d

y ∆t = lx fz∆t (29)

The term ∆hw is the angular moment that the wheel exerts on the satellite along the ŷb body axes.
In Figure 10, the thrust vector f along the ẑb body axis is denoted as fz î, which is perpendicular to
the corresponding equivalent torque arm lx ĵ, where lx fz∆t is the torque impulse generated by thrust
component fz ĵ.

Figure 10. Thruster output of longitudinal station-keeping (westward) defined in the
body frame.

Let us denote m the entire mass of the satellite. Assuming that β is the satellite yaw angle and based
on the theorem of momentum, we get:

m∆VT = fx ∆t where fx =
fz

tan β
(30)
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Moreover, substituting Equations (27) and (30) into (29), we derive:

h0
v0

∆vw =
lx

tan β
m∆VT (31)

from which it follows that:
∆VT =

h0 tan β

v0mlx
∆vw ≡ κ∆vw (32)

Knowing the tangential velocity change, we can calculate the change of corresponding orbital
elements from Equations (11) and (23); it is easily found that:

∆a =
2

ωe

∆VT =
2κ

ωe

∆vw ≡ Ka ∆vw

∆λ̇ =
−3 τ

Vs
∆VT =

−3 τ κ

Vs
∆vw ≡ KD ∆vw

|∆e| = 2

Vs
∆VT =

2κ

Vs
∆vw ≡ Ke ∆vw

(33)

with Ka, Kd, Ke and κ defined as follows:

κ ≡ h0 tan β

v0mlx

Ka ≡
2κ

ωe

KD ≡
−3 τ κ

Vs

Ke ≡
2κ

Vs

(34)

Substituting all known m, lx, β, h0, ωe, v0 and Vs into Equation (34) yields the constants Ka, KD,
Ke and κ. Equation (33) is the desired result, because it gives the expression of the variation in orbital
elements with respect to the variation in MW velocity.

5. Simulation Case

The following steps describe the application of the theoretical models described so far.

1. Scenario and inputs: Let us adopt the following values for the purposes of simulation: mean
east longitude = 80.0◦ E, satellite mass = 2400 kg, cross-sectional area = 10 m2 and reflectivity
constant = 1.85. The momentum biases in the wheels, H1 andH2, have both been determined to be
10 N·m·s; the installation inclination angle γ = 25◦ is a reasonable choice. To provide momentum
bias attitude control, the momentum wheels are spun with an angular velocity of 1000 rpm, which
is inside the permitted bounds for the MWs. A reaction bipropellant low-thrust system consists of
two 10 N thruster pairs. Illustrated in Figure 11, the thrusters are arranged so that they provide
the necessary torques for attitude control about the three body axes, as well as the necessary thrust
for station keeping. Thruster pairs of T1 and T2, T3 and T4 are used for E–W (longitude) station
keeping and also for eccentricity corrections. Thrusters T1 and T2 provide the positive and the
negative yaw control torques respectively about the ŷb axis; likewise, thrusters T3 and T4 yield the
positive and the negative torques individually about the ẑb axis.
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Figure 11. Possible thruster setup for a GEO satellite.

2. Dynamics: From Equation (4), we can obtain the longitude drift acceleration, λ̈ = −3.628 ·
10−4 deg/day2. Then, we calculate the needed ∆V from Equation (8) for the entire sequence of
corrections. This is useful for giving a rough estimate for how much fuel will be spent during the
maneuvering sequence. Substituting all constants into Equation (34) and simplifying, we obtain
∆a1 = 1.44927 · 10−4 ∆v1w km, ∆a2 = 1.492537 · 10−4 ∆v2w km. We also get the desired
correction in longitude drift rate ∆λ̇. After each thruster firing, ∆v1w and ∆v2w will be measured,
and ∆a1 and ∆a2 will be calculated and used to determine how much more correction is needed.

3. Thruster control: According to Euler’s moment equations, a thruster pulse in the correct direction
from thruster T1 or T2 can increase the angular momentum of spacecraft about the +ŷb or−ŷb axis.
With no active attitude control, the body accumulates angular velocity as the angular momentum
of the spacecraft increases, changing the attitude of the spacecraft. However, if momentum wheels
are used to stabilize the attitude, then the accumulated angular momentum will be transferred to
the wheels. As shown in Figure 12, alternating the ignition of thruster T1 or T2 will produce cyclic
variations in MW speed. In Figure 12, the lighter solid line indicates the increasing MW speed
when T1 fires, and the dark line is the decreasing MW speed when T2 fires. Ru andRl are the speed
limits corresponding to the control overshoot limits R̂u and R̂l. Figure 13 demonstrates that the
evolution of the yaw is bounded by the thrusting maneuvers. Therefore, it is possible to implement
thruster attitude control while still keeping MW speed within acceptable bounds. The measured
change in wheel speed induced by thruster firing can then be used to calculate the variation in the
semi-major axis. Furthermore, this method works even under degraded thruster response.
The whole process is shown in Table 1; a longitudinal or east–west thrust changes both the
longitudinal drift rate and the eccentricity of the orbit. The net semi-major axis variation is
1.25 km, which produces a drift rate of D = −0.016 deg/day. The maneuver provides good
longitudinal correction while also ensuring that the attitude remains within bounds.
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Figure 12. Momentum wheel (MW) rotation rate.

Figure 13. Yaw evolution.

Table 1. Simulation showing the correction of orbital elements using thruster firing.

Firing Thruster
∆nw ∆a ∆λ̇

|∆e|
(rpm) (km) (deg/day)

1 T2 1000 −0.145 0.192 3.54 · 10−4

2 T1 1000 −0.149 0.186 3.44 · 10−4

3 T2 1000 −0.145 0.192 3.54 · 10−4

4 T1 1000 −0.149 0.186 3.44 · 10−4

5 T2 1000 −0.145 0.192 3.54 · 10−4

6 T1 1000 −0.149 0.186 3.44 · 10−4

7 T2 1000 −0.145 0.192 3.54 · 10−4

8 T1 1000 −0.149 0.186 3.44 · 10−4

9 T2 503 −0.073 0.094 1.73 · 10−4
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6. Workflow

In summary, the E–W station-keeping maneuver consists of the following four steps:

• Step 1: Preliminary spacecraft tracking gives initial data consisting of range (ρ) and/or antenna
angles azimuth (Az), elevation (El) measured from one or more ground stations at discrete time
points. The range rate (ρ̇) is of less interest for geostationary orbits. The precisely-determined and
predicted orbit can be estimated using the most recent available tracking data.
• Step 2: Subsequently, the prescribed longitude boundary must be used to design the E–W

station-keeping maneuver. From the prescribed longitude boundary, the thruster ignition start time
tc, the change of the semi-major axis ∆a, the executed velocity increment ∆V , the mean fuel
consumption and other variables are calculated. Performing longitude maneuvers near apogee
(or perigee), we can prevent eccentricity from becoming too great due to a single thrust. At
the beginning, some short impulses (quarter or half width) are fired to evaluate the thrusters’
performance and to calibrate the system.
• Step 3: Next, Figure 14 gives the workflow for performing station keeping assuming nominal

thruster performance. At the start time tc, thruster pair T1, T2 fires. In order to prevent large
yaw attitude errors, the yaw θ must be monitored. Thruster firing must be modified when thruster
performance is degraded. A modified workflow assuming degraded thruster performance is shown
in Figure 15. The main difference between the nominal and modified workflow is marked with
dark grey. Instead of simultaneous firing of thrusters T1 and T2, firing is alternated, while keeping
angular wheel velocity RMW between the lower and upper bounds. Furthermore, in order to
prevent the wheel momentum from approaching the permitted limits, the length of single thruster
firings must be confined. Moreover, the workflow loop termination condition is affected by how
far ∆a is from its desired value.
• Step 4: In the end, for orbit re-estimation, the new orbital elements can be determined from the

latest tracking data. Through data post-processing, the updated orbital ∆a′, D and e can be used
to estimate the effect of the maneuver. Finally, the next station-keeping maneuver can be started
with a new thruster firing scheme.

In reference to Figure 16, the modified workflow procedure can be conceptually divided into a “data
level” and an “operation level”.
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Figure 14. Nominal thruster workflow.
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Figure 15. Modified workflow for degraded thruster performance.
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Figure 16. Illustration of the workflow.

7. Conclusions

In this paper, we present an approach for longitudinal station keeping of a GEO satellite with degraded
thrusters and with momentum wheels or gyros for attitude control. The approach introduces a procedure
for station keeping that reduces the need for last minute contingency maneuvers being performed
by satellite operators. A simulation implementing the proposed approach is presented with results
summarized in Table 1. The results show that tight control of the orbital elements can be achieved
with degraded thruster response when control moment gyros are used for correcting attitude dynamics
and measuring deviations in the orbital elements. The proposed method requires more maneuvers to be
performed in order to maintain correct station keeping. The extra maneuvers require more involvement
from satellite operators on the ground with additional maneuver cost and risk increased. However, the
need for last minute correction is reduced in the case of excessive longitudinal drift, especially for
satellites near the unstable longitudinal nodes, which experience the most drift. Furthermore, tighter
control minimizes excessive unwanted variation in orbital elements due to degraded thruster firing, thus
providing higher quality communications. This increases mission robustness by ensuring that GEO
satellites remain within the required operational deadband.
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