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Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel
processing digital phased array system, particularly for high-performance embedded computing
platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale
backend performance benchmark from simulating beamforming, pulse compression, and Doppler
filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO
protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased
array radar is emulated by using the similar configuration. Interestingly, the performance of a
barebones design is compared to that of emerging tools that systematically take advantage of
parallelism and multicore capabilities, including the Open Computing Language.
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1. Introduction

1.1. Real-Time, Large-Scale, Phased Array Radar Systems

In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro
Telecom Computing Architecture (MTCA) chassis. PAR, especially digital PAR, ranks among the
most important sensors for aerospace surveillance [2]. A PAR system consists of three components:
a phased array antenna manifold, a front-end electronics system, and a backend signal processing
system. In current digital PAR systems, the radar pushes the backend system closer to the antennas,
which makes the front-end system more digitalized than its analog predecessors [3]. Accordingly,
current front-end systems are mixed-signal systems responsible for transmitting and receiving radio
frequencies (RF), digital in-phase and quadrature (I/Q) sampling, and channel equalization that
improves the quality of signals. Meanwhile, digital PAR backend systems control the overall system,
prepare to transmit waveforms, transform received data for use in a digital processor, and process data
for further functions, including real-time calibration, beamforming, and target detection/tracking.

Many PAR systems demonstrate high throughput rates for data of significant computational
complexity in both the front- and backends, especially in digital PARs. For example, [4] proposed a
400-channel PAR with 1 ms pulse repetition interval (PRI); assuming 8192 range gates, each 8 bytes
long in memory, in each PRI, the throughput in the front-end can reach up to 5.24 GB/s. As the
requirements for such data throughput are extraordinarily demanding, at present, such front-end
computing performance requires digital I/Q filtering to be mapped to a fixed set of gates, look-up
tables, and Boolean operations on the field-programmable gate array (FPGA) or very-large-scale
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integration (VLSI) with full-custom design [5]. After front-end processing, data are sent to the backend
system, in which more computationally intensive functions are performed. Compared with FPGA or
full-custom VLSI chips, programmable processing devices, such as digital signal processors (DSPs),
offer a high degree of flexibility, which allows designers to implement algorithms in a general purpose
language (e.g., C) in backend systems [6]. For application in aerospace surveillance, target detection
and tracking are, thus, performed in the backend. Target tracking algorithms, including the Kalman
filter and its variants, predict future target speeds and positions by using Bayesian estimation [7],
whose computational requirements vary according to the format and content of input data. Accordingly,
detection and tracking functions require processors to be more capable of logic and data manipulation,
as well as complex program flow control. Such features differ starkly from those required for baseline
radar signal processors, in which the size of data involved dominates the throughput of processing [6].
As such, for tracking algorithms, a general purpose processor or graphic processor unit (GPU)-based
platform is more suitable than FPGA or DSP. In sum, for PAR applications, the optimal solution is a
hybrid implementation in hardware dedicated for front-end processing, programmable hardware for
backend processing, and a high-performance server for high-level functions.

1.2. High-Performance Embedded Computing Platforms

A high-performance embedded computing (HPEC) platform contains microprocessors, network
interconnection technologies, such as those of the peripheral component interconnect Industrial
Computer Manufacturers Group and OpenVPX, and management software that allows more
computing power to be packed into a reduced size, weight, and power consumption (SWaP) system [8].
Choosing an HPEC platform as a backend system for digital PAR can meet the requirements of
substantial computing power and high bandwidth throughput with a smaller SWaP system or in other
SWaP-constraint scenarios, including those with airborne radars. Using an HPEC platform is, therefore,
the optimal backend solution.

Open standards, such as the Advanced Telecommunications Computing Architecture (ATCA)
and MTCA [9,10], can be used for open architectures in multifunction PAR (MPAR) systems.
Such designs achieve compatibility with industrial standards and reduce both the cost and duration
of development. MTCA and ATCA contain groups of specifications that aim to provide an open,
multivendor architecture that seeks to fulfill the requirements of a high throughput interconnection
network, increase the feasibility of system upgrading and upscaling, and improve system reliability.
In particular, MTCA specifies the standard use of an Advanced Mezzanine Card (AMC) to provide
processing and input–output (I/O) functions on a high-performance switch fabric with a small
form factor.

An MTCA system contains one or more chassis into which multiple AMCs can be inserted.
Each AMC communicates with others via the backplane of a chassis. Among chassis, Ethernet, fiber,
or Serial Rapid IO (SRIO) cables can serve as data transaction media, and the number of MTCA
chassis and AMCs are adjustable, meeting the requirements of scalable and diversified functionality
for specific applications. Due to PAR’s modularity and flexibility, its demands can be satisfied by
using configurations in a physically smaller, less expensive, and more efficient way than general
purpose computing center and server clusters. Compared with the legacy backplane architectures
VME (Versa Module Europe) [11], the advantage of using MTCA is the ability to leverage various
options of AMCs (i.e., processing, switching, storage, etc.) that are readily available in the marketplace.
Moreover, MTCA provides more communication bandwidth and flexibility than VME [12]. For this
paper, we have chosen different kinds of AMCs as I/O or processing modules in order to implement
the high-performance embedded computing system for PAR based on MTCA. Each of those modules
works in parallel and can be enabled and controlled by the MTCA carrier hub (MCH). According to
system throughput requirements, we can apply a suitable number of processing modules to modify
the processing power of the backend system.
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1.3. Comparison of Different Multiprocessor Clusters

Central processing units (CPUs), FPGAs, and DSPs have long been integral to radar signal
processing [13,14]. FPGAs and DSPs are traditionally used for front-of-backend processing, such as
beamforming, pulse compression, and Doppler filtering [15], whereas CPUs, usually accompanied
by GPUs, are for sophisticated tracking algorithms and system monitoring. As a general purpose
processor, a CPU is designed to follow general purpose instructions among different types of tasks
and thus allow the advantage of programming flexibility and efficiency in flow control [6]. However,
since CPUs do not accommodate for a range of scientific calculations, GPUs can be used to support
heavy processing loads. The combination of a CPU and GPU offers competitive levels of flow control
and mathematical processing, which enable the radar backend system to perform sophisticated
algorithms in real-time. The drawback of the combination, however, is its limited bandwidth
for handling data flow in and out of the system [16]. CPUs and GPUs are designed for a server
environment, in which Peripheral Component Interconnect Express (PCIe) can efficiently perform
point-to-point for on-board communication. However, PCIe is not suitable for high throughput data
communication among a large number of boards. If the throughput of processing is dominated by the
size of data involved, then the communication bottleneck downgrades the computing performance
for a CPU–GPU combination. Therefore, when signal processing algorithms have demanding
communication bandwidth requirements, DSP and FPGA are better options, since both can provide
significant bandwidth for in-chassis communication by using SRIO while simultaneously achieving
high computing performance. FPGA is more capable than DSP of providing high throughput in
real-time for a given device size and power. When the DSP cluster cannot achieve performance
requirements, the FPGA cluster can be employed for critical-stage, real-time radar signal processing.
However, such improved performance comes at the expense of limited flexibility in implementing
complex algorithms [5]. In all, if an FPGA and DSP both meet application requirements, then DSP can
be a more preferred option given its reduced cost and less complicated programmability.

1.4. Paper Structure

This paper explores the application of high performance embedded computing to digital PAR with
a detailed description of backend system architectures in Section 2. This is followed by a discussion of
implementing fundamental PAR signal processing algorithms on these architectures and an analysis
of the performance results in Section 3. Section 4 shows a complete example of the performance
of large-scale PAR. Finally, Section 5 describes that the implementation of PAR signal processing
algorithm by using an automatic parallelization solution, Open Computing Language (OpenCL),
and the performances comparison between barebones DSP design and OpenCL has been made.
Summaries are drawn in Section 6. In this paper, the work focuses on the front of the backend,
for which we consider using DSP as the solution for general radar data cube processing.

2. Backend System Architecture

2.1. Overview

Typically, an HPEC platform for PAR accommodates a computing environment [6] consisting
of multiple parallel processors. To facilitate system upgrades and maintenance, the multiprocessor
computing and interconnection topology should be flexible and modular, meaning that each processing
endpoint in the backend system needs to be identical, and its responsibility entirely assumed or shared
with another endpoint without interfering other system operations. Moreover, the connection topology
among each processing and I/O module should be flexible and capable of switching a large amount of
data from other boards. Figure 1 shows a top-level system description of a general large-scale array
radar system. In receiving arrays, once data are collected from the array manifold, each transmit and
receive module (TRM) downconverts the incoming I/Q streams in parallel. To support the throughput
requirement, the receivers group I/Q data from each coherent pulse interval (CPI) and send grouped
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data for beamforming, pulse compression, and Doppler filtering. Beamforming and pulse compression
are paired into pipelines, and the pairs process the data in a round-robin fashion. At each stage,
data-parallel partitioning is used to mitigate the massive amount of computations into smaller, more
manageable pieces.
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Fundamental processing functions for PAR (e.g., beamforming, pulse compression, Doppler
processing, and real-time calibration) require tera-levels of operations per second for large-scale PAR
applications [4]. Since such processing is executed on a channel-by-channel basis, the processing
flow can be parallelized naturally. A typical scheme for parallelism involves assigning computation
operations to multiple parallel processing elements (PE). In that sense, from the perspective of radar
applications, a data cube containing data from all range gates and pulses in a CPI is distributed across
multiple PEs within at least one chassis. A good distribution strategy can ensure that systems not
only achieve high computing efficiency but fulfill the requirements of modularity and flexibility, as
well. In particular, modularity permits growth in computing power by adding PEs and ensures that
an efficient approach to development and system integration can be adopted by replicating a single
PE [6]. The granularity of each PE is defined according to the size of a processing assignment that
forms part of an entire task. Although finer granularity allows designers to attune the processing
assignment, also poses the disadvantage of increased communication overhead within each PE [17].
To balance computation load and real-time communication in one PE, the ratio of the number of
computation operations to communication bandwidth needs to be checked carefully. For example,
as a PE in our basic system configuration, we use the 6678 Evaluation Module (Texas Instruments Inc.,
Dallas, TX, USA), which has eight C66xx DSP cores; an advanced configuration of that design uses a
more powerful DSP module from Prodrive Technologies, Son, The Netherlands [18], which contains
24 DSP cores and four advanced reduced instruction set computing machine (ARM) cores in a single
board. Texas Instruments claims that each C66xx core has 16 giga floating point operation per second
(GFLOPS) at 1 GHz [19]. In our throughput measurement, the four-lane SRIO (Gen 2) link reaches up
to 1600 MB/s in NWrite mode; since the single-precision floating point format (IEEE 754) [20] occupies
four bytes in memory, the SRIO link provides 400 million floating point data per second. The ratio of
computation to bandwidth is 40 [6], meaning that the core performs up to 40 floating point operations
for each piece of data that flows into the system without halting the SRIO link. As such, when the
ratio reaches 40, the PE balances the computation load with real-time communication. In general,
making each PE work efficiently requires optimizing algorithms, entirely using computing resources,
and ensuring that I/O capacity reaches its peak.
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2.2. Scalable Backend System Architecture

As mentioned earlier, the features of a basic radar processing chain allow for independent and
parallel processing task divisions. In pulse compression, for instance, the match filter operation in
each channel along the range gate dimension can perform independently; as such, a large throughput
radar processing task can be assigned to multiple processing units (PUs). Since each PU consists
of identical PEs, the task would undergo further decomposition into smaller pieces for each PE,
thereby allowing an adjustable level of granularity that facilitates precise radar function mapping.
At the same time, a centralized control unit is used for monitoring and scheduling distributed
computing resources, as well as for managing lower-level modules. PU implementations based
on the MTCA open standard can balance tradeoffs among processing power, I/O functions,
and system management. In our implementation, each PU contains at least one chassis, each of
which includes at least one MCH that provides central control and acts as a data-switching entity
for all PEs, which could be an I/O module (e.g., RF transceiver) or a processing card. The MCH of
each MTCA chassis could be connected with a system manager that supports the monitoring and
configuration of the system-level setting and status of each PE by way of an IP interface. Within a
single MTCA chassis, PEs exchanges data through the SRIO or PCIe fabric on the backplane, and the
MCH is responsible for both switching and fabric management.

Figure 2 illustrates one way to use an MTCA chassis to implement the fundamental functions
of radar signal processing. Depending on the nature of data parallelism within each function,
computing load is divided equally and a portion assigned to each PU. The computational capability
is reconfigurable by adjusting the number of PUs, and for each processing function, a different PU
can constitute at least one MTCA chassis with various types of PEs inserted into it, all according to
specific needs. In the front, several PUs handle a tremendous amount of beamforming calculations,
and by changing the number of PUs and PEs, the beamformer can be adjusted to accommodate different
types and numbers of array channels. Since computing loads are smaller for pulse compression and
Doppler filtering, assigning one PU for each function is sufficient in MPAR systems.
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backend system.

Figure 3 shows an overview of the proposed MPAR backend processing chain that focuses only
on a non-adaptive core processing chain. Adaptive beamforming, alignments, and calibrations are not
included in that chain until further stable results are obtained from algorithm validations. Data from
the array manifold and front-end electronics are organized into three-dimensional data cubes, and Nrg,
Nch, Np, and Nb represent the total number of range gates, channels, pulses, and beams, respectively.
When any of those four numbers are red in Figure 3, the data are aligned in their corresponding
dimensions. Mr, Mb, Mp, and Md represent the number of PUs or PEs contained in analog to digital
conversion, beamforming, pulse compression and Doppler filter, respectively. Initially, the analog
to digital converters (ADC) in one receiving PUs would collect the data with the dimension equals
to (Nch/Mr)× Np × Nrg. In total, the number of Mr-receiving PUs would form a data cube with the
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dimension of Nch × Np × Nrg, which would be further divided into a number of Mb portions and
re-arranged, or corner turned, the data in the channel domain. As there are Mb number of beamforming
PUs, each one handles the dataset with the dimension of (Nch/Mb)× Np × Nrg. Since the output of
beamforming is already aligned in the range gates, such an approach can save time form the data
corner turn. In the pulse compression stage, each pulse compression PE takes the data cube with
dimension of

(
Nb/Mp

)
× Np × Nrg. Prior to Doppler filtering, another corner turn reorganizes data in

the pulse domain. Ultimately, each PEs in the Doppler filtering stage would take the data size with the
dimension of

(
Np/Md

)
× Nb × Nrg.
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2.3. Processing Unit Architecture

We currently operate an example of a receiving digital array at the University of Oklahoma
(Figure 4) with two types of PUs—namely, a receiving (i.e., data acquisition) PU and a computing
PU. In the receiving PU, six field-programmable RF transceiver modules [21] (e.g., VadaTech AMC518
+ FMC214) sample the analog returns from TRM and send the digitalized data to a DSP module by
way of an SRIO backplane. The DSP module combines and sends raw I/Q data to the computing
PU through two Hyperlink ports. In the computing PU, the number of PEs is determined based on
required computational loads. Moreover, each computing PU can be connected with others by way of
the Hyperlink port. With that proposed PU architecture, we test the performance of the computing PU
by using a VadaTech VT813 as the MTCA chassis and C6678 as the PE.
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2.4. Selecting a Backplane Data Transmission Protocol

With more powerful and efficient processors, HPEC platforms can acquire significant computing
power and meet scalable system requirements. However, more often than not, HPEC performance
is limited by the availability of a commensurate high-throughput interconnect network. At the
same time, the communication overhead may be larger than the computing time, which makes the
processors halt. Since that setback significantly impacts the efficiency of executing system functions,
a proper implementation of the interconnection network among all processing nodes is critical to the
performance the parallel processing chain.

Currently, SRIO, Ethernet, and PCIe are common options for fundamental data link protocols.
RapidIO is reliable, efficient, and highly scalable; compared with PCIe, which is optimized for a
hierarchical bus structure, SRIO is designed to support both point-to-point and hierarchical models.
It also demonstrates a better flow control mechanism than PCIe. In the physical layer, RapidIO offers a
PCIe-style flow control retry mechanism based on tracking credits inserted into packet headers [22].
RapidIO also includes a virtual output queue backpressure mechanism, which allows switches and
endpoints to learn whether data transfer destinations are congested [23]. Given those characteristics,
SRIO allows an architecture to strike a working balance between high-performance processors and the
interconnection network.

In light of those considerations, we use SRIO as our backplane transmission protocol [24], and
our current testbeds are based on SRIO Gen 2 backplanes. Each PE has a four-lane port connected
to an SRIO switch on the MCH. In our system, SRIO ports on the C6678 DSP support four different
bandwidths: 1.25, 2.5, 3.125, and 5 Gb/s. Since SRIO bandwidth overhead is 20% in 8-bit/10-bit
encoding, the theoretical effective data bandwidths are 1, 2, 2.5, and 4 Gb/s, respectively. In reality,
SRIO performance can be affected by transfer type, the length of differential transmission lines,
and the specific type of SRIO port connectors. To assess SRIO performance in our testbed,
we conducted the following throughput experiments.

Figure 5 shows the performance of the SRIO link in our MTCA test environment by using NWrite
and NRead packets in 5 Gb/s, four-lane mode. Performance is calculated by dividing the payload size
by the elapsed transaction time from when the transmitter starts to program SRIO registers and the
receiver has received the entire dataset. First, the performance of the SRIO link is enhanced along with
larger payload sizes. Second, the closer the destination memory to the core, the better the performance
achieved with the SRIO link. Optimally, SRIO 4× mode can reach a speed of 1640 MB/S, which is 82%
of its theoretical link rate.
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2.5. System Calibration and Multichannel Synchronization

2.5.1. General Calibration Procedures

Calibrating a fully digital PAR system is a complex procedure involving four general stages
(Figure 6). During the first stage, transmit–receive chips in each array channel need to calibrate
themselves in terms of direct current and frequency offsets, on-chip phase alignment, and local
oscillator calibration. During the second stage, subarrays containing fewer channels and radiating
elements are aligned precisely in the chamber environment by way of near-field measurements, plane
wave spectrum analysis, and far-field active element pattern characterizations. During this stage,
the focus falls upon antenna elements, not the digital backend, and initial array weights for forming
focused beams at the subarray level are estimated precisely. During the third stage, far-field full
array alignment is performed in either chamber or outdoor range environments. For this stage,
we use a simple unit-by-unit approach to ensure that each time a subarray is added, it maximizes the
coherent construction of the wavefront at each required beam-pointing direction. Array-level weights
obtained at the third stage are combined with chamber-derived initial weights from the second stage
to numerically optimize array radiation patterns for all beam directions. When multiple beams are
formed at once, the procedure repeats for all beamspace configurations. This stage requires a far-field
probe in the loop of the alignment process and requires synchronization and alignments in the backend.
Initial factory alignment is finished after this stage. During the final stage, the system is shipped for
field deployment, in which a series of environment-based corrections (e.g., regarding temperature,
electronics drifting, and platform vibration, which is necessary for ship- or airborne radar). Based
on the internal sensor (i.e., calibration network) monitoring data, algorithms in the backend perform
channel equalization and pre–post distortions, as well as correct system errors of deviations from the
factory standard. The final step entails data quality control, which compares the obtained data product
with analytical predictions to further correct biases at the data product level for desired pointing.
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2.5.2. Backend Synchronization

Our study focuses only on backend synchronization during the third stage, a step necessary
before parallel, multicore processing can be activated. Additionally, synchronized backend enables
that reference clock signals in the front-end PU (and the AD9361 chips in the front-end PU) to be
aligned through a FPGA Mezzanine Card (FMC) interface. For the testbed architecture in Section 2.3,
the front-end PU, referred to as simply “front-end” in this section, of the digital PAR systems includes
a number of array RF channels. In each channel, there is an integrated RF digital transceiver with an
independent clock source in its digital section.

Synchronization in this front-end system can be categorized according to either in-chassis or
multichassis synchronization. In-chassis synchronization ensures that each front-end AMC in a chassis
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works synchronously with those in the other chassis. Figure 7 shows the architecture of a dual-channel
front-end AMC module, which is based on an existing product from VadaTech Inc., Henderson, NV,
USA. The Ref Clock and Sync Pulse in Figure 7 are radial fan-out by the MCH to each slot in the chassis,
and each front-end AMC uses the Sync Pulse and Ref Clock to accomplish in-chassis synchronization.
As an example, Figure 8 shows the timing sequence of synchronizing two front-end AMCs. Since
commands from the remote PC server or other MTCA chassis may arrive at AMC 1 and AMC 2 at
different times, transmitting or receiving synchronizations requires sharing the Sync Pulse between
the AMCs. When AMCs acknowledge the command and detect the Sync Pulse, the FPGA triggers the
AD9361 chip on both boards at the falling edge of the next Ref Clock cycle. By using that mechanism,
multichannel signal acquisition and generation can be synchronized within a chassis. The accuracy of
in-chassis synchronization depends on how well the trace length is matched from an MCH to each
AMC. If the trace length is fully matched, then synchronization will be tight.
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For multichassis synchronization, the chief problem is so-called clock skew [25] which, to
overcome, requires a clock synchronization mechanism. The most common clock synchronization
solution is the Network Time Protocol (NTP), which synchronizes each client based on messaging
with the User Datagram Protocol [26]. However, NTP accuracy ranges from 5 to 100 ms, which is
not precise enough for PAR application [27]. To get more accurate synchronization in the local area
network, the IEEE 1588 Precision Time Protocol (PTP) standard [28] can provide sub-microsecond
synchronization [29]. To implement PTP, the front-end chassis needs to be capable of packing
or unpacking Ethernet packets, and additional dedicated hardware and software are required,
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which increase both the complexity and cost of the front-end subsystem. A better method of
implementing multichassis synchronization would take advantage of GPS pulses per second (PPS)
since, by connecting each chassis to a GPS receiver, the MCHs can use PPS as a reference signal to
generate the Ref Clock and Sync Pulse for in-chassis synchronization. Since the PPS signal among
different MCHs is synchronized, the Ref Clock and Sync Pulse in each chassis is phase matched at any
given time. In case that all of the MCHs are using the PPS from the same satellites, the synchronization
accuracy is between 5 and 20 ns [30]. However, when the GPS signal is inaccessible or lost,
the front-end subsystem should be able to stay synchronized by sharing the Sync Pulse from a
common source, which could be an external chassis clock generator or a signal from one of the chassis.
In both methods, the trace length to each MCH from the common Sync Pulse source can vary, thereby
making the propagation time delay of the Sync Pulse from each chassis differ. To address this issue,
we need to know the delay time difference of each chassis compared with the reference (i.e., master)
chassis. With that knowledge, all chassis can use the time difference as an offset to adjust the
triggered time.

To implement that approach, we designed a clock counter to measure the elapsed clock cycles
between the Sync Pulse and the return Sync Beacon, the latter of which is transmitted only from
antennas connected to the reference chassis. Since the beacon arrives at all antennas simultaneously,
each front-end subsystem stops its counter at the same time. The time differences in delay can be
obtained by subtracting the counter number from each slave chassis to the reference chassis. Figure 9
illustrates a model timing sequence after each chassis receives the Sync Pulse. At time T0, the reference
chassis begins to transmit the Sync Beacon and starts the counter. After two and a half clock cycles
of propagation delay, the slave chassis launches the counter as well. At time T3, the Sync Beacon
is received by both chassis, however, since the chassis detects the signal only at its rising edge, the
reference chassis detects the signal at time T5 with counter number 16. By contrast, in the slave chassis,
the counter stops at 13. In turn, when the Sync Pulse is received the next time, the reference chassis
is delayed by three clock cycles and triggers AD9361 at time T6, whereas the slave chassis starts it
at T7. In our example, T6 is not the same as T7. Such deviation arises because the clock phase angle
between the two chassis is not identical. When this phase angle approaches 360◦, it is possible for the
Sync Beacon to arrive when the rising edge of one clock has just passed, while the rising edge of the
next clock cycle is still approaching. In the worst-case scenario, only one clock cycle synchronization
error will occur, meaning that the accuracy of multichassis synchronization refers to the period of the
reference clock. One way to enhance its accuracy is to reduce the period of the reference clock; however,
the sampling speed of the ADC confines the shortest period of the clock, because a front-end AMC
cannot read new data in every clock cycle from the ADC when the AMC’s reference clock frequency
exceeds the ADC’s sampling speed. In our example, since the maximum data rate in the AD9361
is 61.44 million samples per second, the interchassis synchronization accuracy without using the GPS
signal is 16 ns.
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2.6. Backend System Performance Metrics

To measure the benchmarks of digital PAR backend system performance, millions of instructions
per second are often used as the metric. Meanwhile, to measure the floating point computational
capability of a system, we use GFLOPS [31]. To evaluate the real-time benchmark performance,
we simulate the complex floating point data cubes. For parallel computing systems, parallel speedup
and parallel efficiency are two important metrics for evaluating the effectiveness of parallel algorithm
implementations. Speedup is a metric of latency improvement for a parallel algorithm compared with
a serial algorithm distributed over M PUs, defined as:

SM = TS/TP (1)

In Equation (1), TS and TP are the latency of the serial algorithm and the parallel algorithm,
respectively. Ideally, we expect SM = M, or perfect speedup, although such is rarely achieved in
practice. Instead, parallel efficiency is used to measure the performance of a parallel algorithm,
defined as:

EM = SM/M (2)

EM is usually less than 100%, since the parallel components need to spend time on data
communication and synchronization [6], also known as overhead. In some cases, overhead is possible
to overlap with computation time by using multiple buffering mechanisms. However, as the number
of parallel computing nodes increases, the data size of each computing node lessens, meaning that the
computing nodes would need to switch between processing and communication more often, thereby
inevitably resulting in what is known as method call overhead. When the algorithm is distributed
across more nodes, such overhead can preclude the benefit of using additional computing power.
Parallel scheduling, thus, needs to minimize both communication and method call overhead.

3. Real-Time Implementation of a Digital Array Radar Processing Chain

3.1. Beamforming Implementation

The procedure of beamforming is to convert the data from channel data (range gate) to beamspace,
steer the radiating direction, and suppress the sidelobes by applying the beamformer weight, Wi,
to the received signal, Yi, indicated in Equation (3). The parameters used in Equations (3)–(6)
are shown in Table 1. In the nonstationary conditions, adaptive beamforming is necessary to
synthesize high gains in the beam-steering direction and reject/minimize energy for other directions.
Here we assume the interference environment, as well as the array radar system itself is stable and
does not change dramatically, hence the beamforming weights do not need to be updated rapidly and
provided offline from the external server. Any adaptive weight computing, (e.g., adaptive calibration),
is not included in this study. The benefit of off-line computing is the flexibility of modifying and
developing in-use adaptive beamforming algorithms.
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∑
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Typically, multiple beams pointing at different directions are formed independently in the
beamforming process. A straightforward implementation is to provide a number of beamformers to
form concurrent beams in parallel. Since each beamformer requires the signal from all of the antennas,
the data routing between the antennas and beamformer would become complex when the number of
channels is large. To reduce the routing complexity, as showing in Equations (4) and (5), the entire data
are divided equally and a portion assigned to each sub-beamformer, (i.e., computing node), in which
the term ∑C

i=1

(
Wb

jC+iYjC+i

)
is calculated independently. A formed beam is generated by accumulating

the results from each sub-beamformers. This method is named systolic beamforming [32].

Table 1. Equation parameters.

Parameter Definition

C Number of channels obtained by each PU
B Number of beams processed by each PE
M Numbers of PUs
N Numbers of PEs in a PU

Ω = M× C Total number of receiving channels
Θ = N × B Total number of beams

WΘ
i The number of B weight vectors for the ith receiving channel

Yi The ith receiving channel
BeamΘ The number of B formed beams from total of Ω channels

In our implementation, the received data from Ω channels are sent to a number of M PU, in which,
as showing in Equation (6), each PE calculates the term ∑C

i=1 W(k−1)B+1
i Yi to form B partial beams

in parallel. After all the PEs finish computing, one PU starts to pass the result to its lower neighbor,
in which the received data are summed with its own and the results are sent downstream. In turn,
after the last PU combines all of the results, the entire number of Θ beams based on Ω channels are
formed. Based on the PU shown in Figure 4, a scalable beamforming system architecture is represented
in Figure 10.
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In the Equation (3), there is one multiplication and one addition for each range gate. Since each
complex multiplication and addition require six and two real floating-point operations, respectively,
the computing complexity of the proposed real-time beamforming is (6 + 2)× Nc × Nrg = 8NcNrg,
where Nc and Nrg are the number of channel and range gates. For given processing time interval T,
the throughput of beamformer is

(
8NcNrg

)
/T floating-point operations per second (FLOPS). Figure 11

shows the performance of beamforming by using different numbers of PUs as an example, in which
Nc = 480 and Nrg = 1024. In this figure, the speedup and efficiency is calculated according to
Equations (1) and (2), in which the speedup grows with the number of PUs, but the efficiency is
degraded due to the method call overhead. For this reason, we need to seek a balance between the
performance and effectiveness based on the system requirements. According to Figure 11, an optimal
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choice, for example, M = 28, allows the system to achieve a good speedup while maintaining a
reasonable level of efficiency.
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Capacity cache miss [33] is another issue affecting the performance of real-time beamforming.
A cache miss occurs when the cache memory does not have sufficient room to store the data used
by the DSP core. For example, in Figure 12, when the channel number equals to 16, if there are no
cache misses, four cases should have the same number of GFLOPS. However, for the cases that the
numbers of range gates is equal to 128 and 256, the beamformer can outperform than in the cases
that range gates are 512 and 1024. This variation is caused by the capacity cache misses the happened
in the last two cases, in which the DSP core needs to wait for the data to be cached. The markers
in Figure 12 represent the maximum number of channels that the DSP cache memory can hold for
a specific number of range gates. Before reaching each maker point, the performance improvement
of each case is from using larger sized vectors, which reduces the method call overhead. However,
after reaching the marker points, the benefit of using large sizes of the vectors is compromised by the
cache misses.
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Fortunately, the capacity cache miss can be mitigated by splitting up datasets and processing one
subset at each time, which is referred as blocking or tiling [34]. In that sense, the data storage
is handled carefully so the weight vectors will not be evicted before the next subset reuses it.
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As an example, one DSP core forms 15 beams from 24 channels, and each channel contains
1024 range gates, so Wb

i and Yi in Equation (3) are the matrices of dimensions 24 × 15 and 24 × 1024,
which are 3 KB and 192 KB. As the size of L1D cache is 32 KB, to allow the weight vectors and
input matrix fitting into L1D cache, the data from 24 channels should be divided into 16 subsets.
So, one large-size beamforming based on 1024 range gates is converted into 16 small-size beamforming
based on 640 range gates. The beamforming performance of this example is listed in Table 2, in which
the performance of the DSP core remains the same regardless the size of input data. Note that the
performance shown in Table 2 is based on one C66xx core in C6678. Since we already considered
the I/O bandwidth limited when all eight core works together, C6678, or similar multi-core DSP,
performances can be deduced from multiplying the number in Table 2 by the number of DSP cores.

Table 2. DSP core performance measured in GFLOPS after mitigating cache misses.

Channel
Range Gates (Subsets)

1024 (16) 512 (8) 256 (4) 128 (2)

4 0.67 0.67 0.67 0.67
8 1.34 1.34 1.34 1.33
12 1.97 1.96 1.96 1.95
16 2.42 2.42 2.41 2.40
20 2.81 2.81 2.80 2.78
24 3.15 3.15 3.14 3.12
28 3.45 3.44 3.43 3.40
32 3.71 3.70 3.67 3.66
36 3.92 3.91 3.87 3.82
40 4.10 4.09 4.04 3.96
44 4.25 4.24 4.19 4.08
48 4.39 4.38 4.34 4.23
52 4.19 4.48 4.46 4.35

3.2. Pulse Compression Implementation

The essence of pulse compression is matched filtering operation, in which the correlation of the
return signal, s [n], and a replica of the transmitted waveform, x [n], is performed. Matched filter
implementation converts the signal into the frequency domain, point-wise multiplies with a waveform
template, and then converts the result back to the time domain [6], as shown in Equations (7)–(10).
Since the length of the fast Fourier transform (FFT) in Equations (7) and (8) needs to be the first power
of 2 greater than N + L − 1, zero padding x [k] and s [k] are necessary. As zero padding increases
the length of the input vectors, the designer should properly select the values of N and L to avoid
unnecessary computation.

S [k] FFT← s [n] 0 ≤ n ≤ N (7)

X [k] FFT← x [n] 0 ≤ n ≤ L (8)

Y (k) = S [k] X [k] 0 ≤ k ≤ (N + L− 1) (9)

y [n] IFFT← Y [k] 0 ≤ n ≤ (N + L− 1) (10)

Based on Equations (7)–(10), the computing complexity of pulse compression depends on FFT,
inverse FFT (IFFT), and point-wise vector multiplication. In radix-2 FFT, there are log2N butterfly
computation stages, in which it consists of N/2 butterflies. Since each butterfly requires one complex
multiplication, one complex addition, and one complex subtraction, the complexity of computing
radix-2 FFT is: CFFT = (6 + 2 + 2)× (N/2)× log2 (N) = 5Nlog2 (N) floating-point operations. Since
the computing complexity of IFFT is the same as FFT, the throughput of the pulse compression
in the frequency domain is (2× CFFT + NCmult) /T = (10Nlog2 (N) + 6N/T) FLOPS, in which
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N is the number of range gates after zero padding, and Cmult is the complexity of point-wise
complex multiplication.

The computation throughput of pulse compression and FFT measured on one C66xx core is shown
in Figure 13, in which dots represent the maximum number of range gates that the L1D cache can hold.
It is evident that the calculation performance would degrade dramatically when the data size is close
to or over the cache size, and the performance of pulse compression and FFT correlates to each other.
Similar to beamforming, the pulse compression performance in a multi-core or multi-module system
can be calculated by multiplying the throughput shown in Figure 13 by the number of cores enabled.Aerospace 2016, 3, 28 15 of 23 
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3.3. Doppler Processing and Corner Turn

The first objective of the Doppler processing is to extract moving targets from stationary
clutters. The second objective is to measure the radial velocity of the targets by calculating the
Doppler shift [35], from the Fourier transform of a data cube along the CPI dimension. Hence,
the throughput of the Doppler filter is CFFT/T = 5Nplog2

(
Np
)

/T FLOPS, where Np is the number
of pulses in one CPI. In our environment, the throughput per core of a Doppler filter is shown
in Table 3. Again, hardware-verified performance in FLOPS linearly increases with the number
of DSP cores. As the output of the pulse compression is arranged along the range gate dimension,
the output needs to undergo a corner turn before being handled by the Doppler filtering processors [36].
This two-dimensional corner turn operation is equivalent to a matrix transpose in the memory space.
Using EDMA3 [37] on TI generic C66xx DSP, the data can be reorganized into the desired format
without interfering with the real-time computations in the DSP core. Table 4 shows the performance of
the data corner turn by using EDMA3 under different conditions.

Table 3. Doppler filtering performance measured in GFLOPS per core.

Range Gates
Pulses

8 16 32 64 128

1024 0.7293 1.6036 2.6852 3.8543 4.2866
2048 0.7294 1.6000 2.6841 3.8543 4.2867
4096 0.7294 1.5999 2.6842 3.8544 4.2867
8192 0.7295 1.6000 2.6842 3.8544 4.2732
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Table 4. Time consumption measured in µs of corner turn for one beam.

Range Gates
Pulses

8 16 32 64 128

1024 21 33 64 126 253
2048 40 66 130 254 502
4096 135 265 513 1011 2028
8192 528 1025 2033 4070 8107

4. Performance Analysis of Complete Signal Processing Chain

In the previous sections, we measured the computing throughput of each basic processing stage
in our backend architecture, in which the performance for both communication and computing are
sensitive to the size of data involved. Based on previous discussions and inspired by a future full-size
MPAR type system, we use the overall array backend system parameters in Table 5 as an example.

Table 5. Example digital array radar system parameters.

Parameters Value Depends on

Range gates 4096 Pulse Compression
Pulses 128 Doppler Filtering

Channels per chassis 48 Beamforming
Beams per PE 22 Number of channels per chassis

PRI 1 ms Pulse compression computing time
CPI 128 ms PRI × number of pulses

No. of beamforming PU 16 Total number of antennas required by application
No. of PE in each PU 12 Total number of beams required by application
Total No. of Beams 264 PE × number of beams per PE

Total No. of Channels 768 PM × number of channels per chassis
Total No. of PU 18 Beamforming + Match Filter + Doppler Processing

In our study, the entire backend processing chain is treated as one pipeline. Similar to a traditional
FIFO memory, the depth of the pipeline represents the number of clock cycles or steps between the first
data flow in the pipeline until the result data comes out. In Table 5, the critical parameter is the number
of range gates. As shown in Figure 13, when the number of range gates is 4096, the pulse compression
performance is well-balanced. Based on this range gate number, we can estimate the processing time of
pulse compression. This latency confines the shortest PRI that the backend system allows for real-time
processing. Based on the parameters in Table 5, the time scheduling of the radar processing chain is
shown in Figure 14. This scheduling is a rigorous and realistic timeline including all of the impacts
of SRIO communication and memory access, and has been verified by real-time hardware running
tests. The numbers of PU and PE are chosen as an example, which can be changed based on different
requirements. The overall latency, depth of pipeline, for the backend system is 1.5 CPI, or 187.7 ms.
Firstly, the parallel beamforming processors use 123 ms to generate 264 beams for the 128 pulses in one
CPI. After all the beamforming results are combined to the last PU and sent to the pulse compression
processors, the pulse compression takes another 123 ms. For the Doppler processing, in 16 ms, the first
96 beams from 128 pulses will be realigned in the CPI domain and sent out to the Doppler filter. In total,
there are 192, 12, and 12 DSPs are involved for the beamforming, pulse compression, and Doppler filter,
respectively, and for each processing function, it achieves 6880 GFLOPS, 370 GFLOPS, and 140 GFLOPS
real-time performance, respectively. By using the MTCA chassis and choosing SRIO as the backplane
interconnection technology, this system benefits over the legacy form factors (i.e., Eurocard [11],
which uses VME bus architecture) due to its robust system management, inter-processor bandwidth
with better flexibility and scalability, and built-in error detection, isolation, and protection [12].
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5. Parallel Implementation Using Open Computing Language (OpenCL)/Open
Multi-Processing (OpenMP)

The previous section summarizes the approach of “manual task division and parallelization.”
Another option is using standard and automatic parallelization solutions. For example, OpenCL
is a standard for parallel computing on heterogeneous devices [38]. The standard requires a host
to dispatch tasks, or kernels, to devices which perform the computation. To leverage OpenCL,
the 66AK2H14 is loaded with an embedded Linux kernel that contains the OpenCL drivers. The ARM
cores run the operating system and dispatch kernels to the DSP cluster. For systems with more than
one DSP cluster, OpenCL can dispatch different kernels to each cluster. Kernels must be declared in
the host program. Since OpenCL is designed for heterogeneous processors that do not necessarily
share memory, OpenCL buffers are used to pass arrays to the device. When the kernel is dispatched,
arrays must be copied from host memory to device memory. This communication adds significant
overhead to computation time that increases linearly with buffer size. The K2H platform does share
memory between host and device, so the host can directly allocate memory in OpenCL memory.

The DSP cluster registers only as a single OpenCL device, so once it has received the kernel, the
computation must be distributed across the DSP cores. There are two options for distributing the
workload. OpenCL can distribute computation among the DSP cores, but this requires all cores to
execute the same program (similar to the way a GPU operates). This distribution limits flexibility
and complicates algorithm development. The second option is OpenMP. OpenMP is a parallel
programming standard for homogenous processors with shared memory. The OpenMP runtime
dynamically manages threads during execution. These threads are forked out from a single master
thread when it encounters a parallel region in the program. These areas are denoted with OpenMP
pragmas (#pragma omp parallel) in C and C++. Ideally, a coder would write code that can easily
be computed in a serial manner (i.e., on a single thread), and then add in the OpenMP pragma to
parallelize the task. This mechanism allows us to incorporate parallel regions into serial code very
easily, and also allows easy removal of OpenMP regions. A prime use case for OpenMP is for loops.
If the result of each iteration is independent of all the others, the OpenMP pragma #pragma omp
parallel for can be used to dynamically distribute the each iteration to its own thread. Without OpenMP,
a single thread will execute each iteration one-by-one. With OpenMP, iterations are distributed among
the threads in real-time and are executed in parallel. Each thread handles one iteration at a time
until the OpenMP runtime detects the end of the loop. This ease of use comes with a performance
penalty. OpenMP spends processor time on managing threads so the coder must take steps to
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minimize OpenMP function calls. This overhead can be overcome by allocating larger workloads
to each thread. For example, if doing vector multiplication, the coder should allocate blocks of the
vectors to each thread instead of assigning a single multiplication to each thread. Another penalty
to take into consideration is memory accesses. With multiple threads trying to access (in most cases)
non-contiguous memory locations, the overhead can be increased drastically. This is part of the reason
why most multi-core system’s performance does not scale linearly with the number of processors.
This effect can clearly be seen in Section 5.3 below.

5.1. Beamforming Implementation with OpenCL/OpenMP

For beamforming, we design to make the kernel processes an arbitrary number of datasets; in each
dataset, it contains the sampled return data from 24 channels. The processing of each set is allocated
to its OpenMP thread. Figure 15 shows that as the number of datasets sent to the kernel increases,
the time it takes to form a beam from each set decreases. Due to OpenMP overhead, the performance
does not increase linearly with the number of datasets. When processing a small amount of datasets,
the overhead contributes a greater percentage to the overall execution time than when a large number
of pulses are processed. Although OpenMP overhead is not present in single-threaded execution, there
is still overhead from memory accesses, instruction fetching, etc. Thus, the single-threaded execution
follows a similar logarithmic increase in performance as the number of datasets increases. The benefit
of multithreaded execution is that the maximum performance (when the datasets number are large) is
higher than with a single thread.
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Comparing the performance of OpenCL/OpenMP implementation to the manually optimized
scheme, the overhead of standard scheme can be seen more clearly in Figure 16. In the manually
optimized method, as the memory access from external memory to DSP can be done without interfering
with computing by using EDMA3 and the size of data can be fine-tuned to the cache memory, so those
advantages make the manually optimized method outperform the OpenCL implementation.
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5.2. Pulse Compression Implementation with OpenCL/OpenMP

In pulse compression, once again the kernel can receive an arbitrary number of pulses.
Each beam is processed in its OpenMP thread. However, in this case, multi-threaded execution
is not favorable as shown in Figure 17. This difference is due to the highly non-linear memory accesses
required by the FFT and IFFT. This effect is more pronounced for large-sized FFTs. When multiple FFTs
and IFFTs are running in parallel, the non-linear accesses are compounded, which results in severely
degraded performance.
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The comparison in Figure 18 shows the performance of OpenCL/MP implementation compared
with the manually optimized codes. It should be noted that the L1D cache loading optimizations
were not used in the kernel as L1D cache cannot be used as a buffer in OpenCL kernels. As discussed
previously in Section 5.1, the advantage of using manually optimized methods comes from eliminating
the memory access time from outside memory and fine-tuned the algorithm.
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5.3. Doppler Processing Implementation with OpenCL/OpenMP

The Doppler processing kernel is set up differently from the previous two steps due to the large
amount of small FFTs to be done. In this kernel, we configure the number of threads manually.
Each thread is allocated a fixed portion of the data to process. The number of threads must be a power
of 2 so that an even amount of data is sent to each one. It is possible to set any number of threads that
is a power of 2, but if that number exceeds the number of physical cores, OpenMP and loop overhead
begin to degrade overall performance. Figure 19 shows the performance of the kernel for different
numbers of threads with varying numbers of range gates, and Figure 20 compares the performance of
manual optimization scheme with OpenCL/MP scheme.

Aerospace 2016, 3, 28 20 of 23 

 

Figure 18. Comparing OpenCL performance to manually optimized code for pulse compression. 

5.3. Doppler Processing Implementation with OpenCL/OpenMP 

The Doppler processing kernel is set up differently from the previous two steps due to the large 
amount of small FFTs to be done. In this kernel, we configure the number of threads manually. Each 
thread is allocated a fixed portion of the data to process. The number of threads must be a power of 
2 so that an even amount of data is sent to each one. It is possible to set any number of threads that is 
a power of 2, but if that number exceeds the number of physical cores, OpenMP and loop overhead 
begin to degrade overall performance. Figure 19 shows the performance of the kernel for different 
numbers of threads with varying numbers of range gates, and Figure 20 compares the performance 
of manual optimization scheme with OpenCL/MP scheme. 

 

Figure 19. Doppler processing performance using OpenCL. 

OpenMP allows the programmer to change the maximum number of threads that are used at 
runtime. Figure 19 shows the performance of the kernel for different numbers of threads with varying 
numbers of range gates. In single threaded execution, there is no OpenMP overhead. For any number 
of threads above 1, the overhead is present. Note that there is not a very large difference in 
performance between one, two, and four threads. This is because OpenMP does not distribute a 
thread to more than one core. To fully utilize the DSP, OpenMP must be allowed to create as many 
threads as there are cores in the system. Figure 20 compares the performance of manual optimization 

Figure 19. Doppler processing performance using OpenCL.

OpenMP allows the programmer to change the maximum number of threads that are used at
runtime. Figure 19 shows the performance of the kernel for different numbers of threads with varying
numbers of range gates. In single threaded execution, there is no OpenMP overhead. For any number
of threads above 1, the overhead is present. Note that there is not a very large difference in performance
between one, two, and four threads. This is because OpenMP does not distribute a thread to more than
one core. To fully utilize the DSP, OpenMP must be allowed to create as many threads as there are cores
in the system. Figure 20 compares the performance of manual optimization with OpenCL/OpenMP.
The large difference in performance shows that OpenMP, while convenient and simple to use, tends to
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be inefficient. Distributing execution at runtime using the software as opposed to built-in hardware
consumes processor cycles that could otherwise be used for computation.
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6. Summary

In this study, we present a development model of an efficient and scalable backend system
for digital PAR based on Field-Programmable-RF channels, DSP core, and the SRIO backplane.
The architecture of the model allows synchronized and data-parallel real-time surveillance for radar
signal processing. Moreover, the system is modularized for scalability and flexibility. Each PE in
the system has a proper granularity to maintain a good balance between computation load and
communication overheads.

Even for the basic radar processing operations studied in this work, tera-scale floating point
operations are required in the MPAR- type backend system. For such requirement, using software
programmable DSPs that can be attuned to the processing assignment in parallel would be a good
solution. The computational aspects of a 7400 GFLOPS throughput phased array backend system have
been presented to illustrate the analysis of the basic radar processing tasks and the method of mapping
those tasks to an MTCA chassis and DSP hardware. In our implementation of a PAR backend system,
the form-factor can be changed based on requirements of various systems. By changing the number of
PUs, the total capacity of the system can be easily scaled. By changing the number of inputs for each
PE, we can adjust the throughput performance of a PU. A carefully customized design of different
processing stages in the DSP core also helps to achieve the optimal performance regarding latency
and efficiency. When we parallelize a candidate algorithm, there are two steps in the design process.
First, the algorithm is decomposed into several small components. Next, each algorithm component
is assigned to different processors for parallel execution. In parallel computing, the communication
overhead among parallel computing nodes is a key impact on the parallel efficiency of the system.
Within each parallel processor, dividing the entire data cube into small subsets to avoid cache miss
is also necessary when the size of input data is larger than the cache size of processors. For data
communication links, the SRIO, HyperLink, and EDMA3 handle the data traffic between and/or
within each DSP. By using SRIO, the data traffic among DSPs can be switched through the SRIO fabric
controlled by an MCH of the MTCA chassis, which is more flexible than PCIe and efficient than Gigabit
Ethernet. A novel advantage of our proposed method is utilizing EDMA3 and the ping-pong buffer
mechanism, which helps the system to overlap the communication time with computing time and
reduce the processing latency. This embedded computing platform can not only be used for the phased
array radar backend system, but is also suitable for other aerospace applications that require high I/O
bandwidth and computing power (i.e., situational awareness systems [39], target identification [40],
etc.). OpenCL is a framework to control the parallelism at a high level, in which the master kernel
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assigns the tasks to each slave kernels. Compared with the barebones method of paralleling algorithms
in DSP, OpenCL is platform-independent and enables heterogeneous multicore software development,
which leads to the drawback of being less customized and efficient to specific hardware.

The future works of this research involve in fulfilling the first two synchronization stages
mentioned in Section 2.5.1, including the adaptive beamforming weight calculation in the real-time
processing, and the buildup of an overall real-time backend system for the cylindrical polarimetric
phased array radar [41] currently operated by the University of Oklahoma.
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