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Abstract: This paper presents a novel and robust two-stage pursuit strategy for the incomplete-
information impulsive space pursuit-evasion missions considering the J2 perturbation. The strategy
firstly models the impulsive pursuit-evasion game problem into a far-distance rendezvous stage and
a close-distance game stage according to the perception range of the evader. For the far-distance
rendezvous stage, it is transformed into a rendezvous trajectory optimization problem and a new
objective function is proposed to obtain the pursuit trajectory with the optimal terminal pursuit
capability. For the close-distance game stage, a closed-loop pursuit approach is proposed using one
of the reinforcement learning algorithms, i.e., the deep deterministic policy gradient algorithm, to
solve and update the pursuit trajectory for the incomplete-information impulsive pursuit-evasion
missions. The feasibility of this novel strategy and its robustness to different initial states of the
pursuer and evader and to the evasion strategies are demonstrated for the sun-synchronous orbit
pursuit-evasion game scenarios. The results of the Monte Carlo tests show that the successful pursuit
ratio of the proposed method is over 91% for all the given scenarios.

Keywords: space pursuit-evasion mission; incomplete-information game; reinforcement learning;
impulsive propulsion; J2 perturbation

1. Introduction

The space pursuit-evasion (PE) game is a typical zero-sum game [1,2], where the
goals of both confrontation sides are completely opposite and irreconcilable. With the
development of space technology, it is one of the focuses of space security and has been
investigated extensively by many scholars. Differential game theory was firstly proposed by
Isaacs [3] in 1965 and is an effective approach to address the zero-sum game problem [4,5].
In differential game, the PE game is transformed into a two-point boundary value problem
(TPBVP) using Hamilton–Jacobi–Bellman equation [6]. However, for the space PE game, it
is a challenge to solve the transformed TPBVP due to its high dimensionality and strong
nonlinearity.

Some approaches were proposed to address these two challenges and improve the per-
formance of differential theory on space PE game problems. Anderson et al. [7] linearized
the equations of the spacecraft motion and approximated the thrust angle control using
polynomial to obtain a simplified spacecraft planar PE analytical expression. Li et al. [8]
modeled the relative states of two spacecraft in near-circular orbits with the circular-orbit
variational equations to reduce the dimensionality. Jagat and Sinclair [9] applied the state-
dependent Riccati equation method to obtain nonlinear control law for two spacecraft PE
game in the Hill coordinate system. Blasch et al. [10] degenerated the three-dimensional
(3D) PE game into a two-dimensional coplanar PE game by firstly assuming that the pur-
suer matches the orbital plane of the escaper, which is easy to address. However, both
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the linear simplified approaches and the planarity assumptions are inconsistent with the
actual situation as the space PE game is a typical 3D nonlinear PE game. Furthermore, the
perturbations in realistic dynamics of the actual space PE game missions make it more
challenging to solve the game. The major perturbation is from the J2 spherical harmonic
term of the Earth gravity field.

Li et al. [11] developed the combined shooting and collocation method to address
the accurate saddle point of the 3D PE game using the J2-perturbed dynamics. Based
on the state-dependent Riccati equation method, Jagat et al. [12] used a state-dependent
coefficient matrix to derive a nonlinear control law from the linear quadratic differential
game theory. Pontani and Conway [13] proposed a semi-direct collocation with nonlin-
ear programming (SDCNLP) method, which obtains the solution for one side with the
analytical necessary conditions of another side, and the initial guesses of the nonlinear
programming method are generated using the genetic algorithm (GA). Carr et al. [14]
developed a fast method to obtain initial guesses of the co-states needed in the SDCNLP
method and a penalty-functions technique to deal with state inequality constraints in the
indirect player’s objective. Because SDCNLP only uses the analytic optimal necessary
condition for the evader, the obtained saddle point is not accurate. Therefore, Sun et al. [15]
proposed a hybrid method combining the new SDCNLP that introduces two optimal
control problems corresponding to the differential game and the multiple shooting method
to improve the convergence and accuracy of solving the TPBVP of the space PE game.
Hafer et al. [16] employed the sensitivity method to address space PE game problems and
utilized a homotopy strategy to improve the efficiency of the algorithms. Shen et al. [17]
applied an indirect optimization method to the 3D space PE game and found the local
optimal solutions, which satisfy the analytical necessary conditions for optimality. Further,
the constraints of the minimum altitude and mass variation were considered for making
the saddle-point solution more accurate.

For the above studies, the information of both players is completely disclosed and
both two players in space PE game are assumed to be sane enough. Actually, due to the
communication delay and the non-cooperation of the players, there are large uncertainties
during the PE game. Cavalieri et al. [18] applied a two-step dynamic inversion to allow
behavior learning methods to estimate the opponent behavior for incomplete-information
PE games with uncertain relative dynamics. Shen et al. [19] considered the uncertainty of
the J2-perturbed dynamical model and used quantitative indicators of uncertainty as the
game payoff function to solve the incomplete-information space PE problem. Li et al. [20]
developed a currently optimal evasive control method using a modified strong tracking
unscented Kalman filter to modify the guess and to update the strategy during the game.

The closed-loop control method, which can update the trajectory based on the real-time
feedback, is a valid approach to deal with uncertainties and emergencies and is widely used
in space missions, especially for the realistic space PE game that is a dynamical process [20].
However, the approaches based on the differential game theory are mainly used for
continuous-thrust cases and inapplicable for impulse cases. In addition, the computational
time cost of solving the saddle point is expensive. Therefore, it is challenging to develop a
feedback closed-loop control method with high efficiency for the impulsive space PE game
missions considering the perturbations of the dynamics. The development of artificial
intelligence provides alternative ways to address this challenge. Reinforcement learning
(RL) as the representative of intelligent algorithms can interact with the environment in real
time and obtains the optimal control of the maximum reward through data training [21,22].
RL has been widely employed to solve PE problems in the field of unmanned aerial
vehicle (UAV) [23–25]. Different from the UAV PE game, the space PE game has a long
mission duration and complex dynamics. In the field of space PE game, Liu [26] and
Wang [27] developed the improved branching deep Q networks and the fuzzy actor-critic
learning algorithm, respectively. These previous researches usually restricted the initial
distance between the two spacecraft to reduce the PE game duration and used a simplified
dynamical model to improve the computational efficiency. To remove this limitation and
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consider realistic space PE game problems, in this paper, a novel two-stage pursuit strategy
is developed to find a robust solution for incomplete-information impulsive space pursuit-
evasion missions considering J2 perturbation. For the far-distance rendezvous stage (FRS),
a new game capability index of the pursuer is proposed as the objective function of multi-
impulses transfer trajectory optimization with the J2-perturbed dynamical model. For the
close-distance game stage (CGS), a novel closed-loop approach using the deep deterministic
policy gradient (DDPG) algorithm is developed to solve the impulsive maneuver strategy
according to the incomplete feedback information. The proposed method is applied
to the scenarios of spacecraft games in the sun-synchronous orbit, which demonstrates
outstanding advantages in robustness to various initial states of the pursuer and the evader
and to the different evasion strategies.

2. Problem Formulation

This section introduces the dynamical model considering the J2 non-spherical term of
the Earth and the formulations of the space pursuit-evasion game problem.

2.1. Dynamical Model with J2 Perturbation

Motion of the spacecraft during impulsive PE game is described in the J2000 Earth-
centered inertial frame, and both the pursuer and evader use impulse maneuvers to
perform orbital transfer. J2 perturbation is considered in the dynamical model, and the
corresponding equations of the spacecraft’s motion are given as follows:
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where [x, y, z]T and [vx, vy, vz]T denote the position and velocity vectors of the spacecraft in
the J2000 Earth-centered inertial frame. r =

√
x2 + y2 + z2 is the magnitude of the position.

J2 is the J2 zonal harmonic coefficient representing the effect of the Earth’s oblateness, and
R0 represents the mean equatorial radius of the Earth. [∆vx, ∆vy, ∆vz,]T denotes the impulse
maneuver of the spacecraft.

2.2. Formulation of Non-Cooperation Target Pursuit Problem

Actually, the pursuit and evasion spacecraft move in different orbits at a safe distance
before the space PE game mission starts. Considering the perception range constraint of the
evasion spacecraft (e.g., 200 km), the practical space PE game mission usually breaks down
into two phases: the far-distance rendezvous stage and the close-distance game stage, as
shown in Figure 1. The evader and pursuer spacecraft have different game strategies at
different stages of missions.

In the FRS, the pursuit spacecraft implements impulse maneuvers to be injected
into the rendezvous trajectory of the evader and approaches the evader until reaching its
perceived boundary. During this stage, the evader stays in its initial orbit with no response
to the pursuer’s action, since the pursuit spacecraft is out of its perception range. Thus, the
PE game problem is transformed to a multi-impulse rendezvous trajectory optimization
problem of the pursuit spacecraft. The formula of the objective function is given as follows,

JF = f (t1, ∆v1, · · · , tn−2, ∆vn−2, tn−1, tn) (2)
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where ti is the epoch of the i-th impulse maneuver, and ∆vi denotes the i-th velocity
increments. n is the total number of impulse maneuvers. The last two impulse maneuvers
are calculated by solving the Lambert problem.
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Figure 1. Illustration of FRS and CGS for a practical space PE game mission.

The CGS starts when the pursuit spacecraft moves within the evader’s perception
range. At this stage, the evader performs impulsive maneuvers to evade the pursuer.
Meanwhile, the pursuit spacecraft also try to rendezvous the evader by impulsive maneuver
operations. For complete-information games, the pursuer and evader know each other’s
objective function and game strategy. However, for a more general and realistic space PE
mission, the players only know their own game strategies and the delayed information of
their opponent’s actions, which is defined as the incomplete-information game.

Without loss of generality, the state of space PE game is defined as s = sP − sE, where
si = [xi, yi, zi, vxi, vyi, vzi]T denotes the state vector of the spacecraft in the J2000 Earth-
centered inertial frame, where the subscript i = P or E indicates the pursuer and evader
respectively. Therefore, the general objective functions of the pursuit and evasion spacecraft
are defined in Equations (3) and (4) [20]. The objective function consists of two parts: the
process state and the terminal state. The former includes the relative states of the pursuer
and evader and their control consumption during the mission. The game strategy of the
spacecraft is determined by the weight matrix of each item.

JP = 0.5
∫ t f

t0

[
sTQPs + uT

PWP-PuP − uT
EWP-EuE

]
dt + 0.5sf

TQfPsf (3)

JE = 0.5
∫ t f

t0

[
sTQEs + uT

PWE-PuP − uT
EWE-EuE

]
dt + 0.5sf

TQfEsf (4)

where t0 and tf are the initial and final epoch of the mission, respectively. sf denotes the
final state of the game mission. ui = [∆vxi, ∆vyi, ∆vzi]T represents the impulsive maneuver
of spacecraft, where the subscript i = P or E indicates the pursuer and evader respectively.
Qi and Qfi present the weight coefficient matrices of the process and terminal states,
respectively. WP-P and WE-E denote the self-control weight coefficient matrices of pursuer
and evader. WP-E and WE-P are the weight coefficient matrices of opponent’s control
strategy of pursuer and evader, respectively. These weight coefficient matrices are defined
as follows [20] {

Qi = qiI6×6, Qfi = qfiI6×6

WP−i = wPiI3×3, WE−i = wEiI3×3 , i = P or E (5)

where qi, qfi, wPi, and wEi are the preference parameters of the player i between the relative
distance and consumed energy in the game, which are the private information of player i.

For traditional zero-sum game problems, the values of the weight matrices in
Equations (3) and (4) are the same, and the signs are opposite. However, the game
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strategies of players have different preferences and the information obtained by both
players is also incomplete in realistic missions. Therefore, the weight coefficient matrices in
Equations (3) and (4) have different values.

The game mission ends when the states of the spacecraft firstly meet the successful
pursuit conditions in Equation (6) or any other terminal constraints in Equation (7).{

‖rP − rE‖ ≤ rmax
‖vP − vE‖ ≤ vmax

(6)

{
t f = tmax

∆vPres ≤ 0 km/s
(7)

where rmax and vmax are the maximum distance and velocity tolerances for a successful
pursuit, respectively. tmax is the maximum mission duration. These mission parameters
are set according to realistic mission requirements. ∆vPres denotes the residual velocity
increment of the pursuit spacecraft.

Both players in the space PE game aim to minimize their own objectives. However,
the incomplete-information game is a non-zero-sum game due to the different preferences
of the players. It is a challenge to address the robust pursuit solution due to the lack of
the information of the evader’s game strategy. A novel method using the RL technique is
proposed to obtain a robust pursuit solution efficiently, which will be introduced in detail
in Section 3.2.

3. Two-Stage Pursuit Strategy Using Reinforcement Learning

A two-stage pursuit strategy that consists of an FRS and a CGS is proposed in this
section for incomplete-information impulse pursuit-evasion missions. Firstly, a GA is
employed to solve the multi-impulse rendezvous trajectory with the optimal terminal game
capability. Then, a closed-loop pursuit method using the DDPG algorithm is developed to
address a robust impulsive pursuit trajectory for the incomplete-information PE game.

3.1. Multi-Impulse Pursuit Trajectory Optimization for FRS

During the FRS, the pursuit trajectory solving is a typical transfer trajectory optimiza-
tion problem because the evader cannot perceive the pursuer. The process of multi-impulse
rendezvous is shown in Figure 2. In order to ensure successful rendezvous with the evader
at the terminal time epoch, the last two impulse maneuvers are obtained by solving the
Lambert problem. Therefore, the independent variables to be optimized are the maneuver
time ti and the first n−2 velocity increments ∆vi, i.e., X = {t1, t2, . . . , tn, ∆v1, ∆v2, . . . ,
∆vn−2,}.
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Figure 2. The multi-impulse pursuit trajectory for the far-distance rendezvous stage.

Different from the traditional rendezvous mission trajectory, the pursuit trajectory
of the FRS terminates when it reaches the perception range of the evader. Therefore, the
maneuvers planned in the perception range of the evader are not actually implemented.
The pursuit trajectory aims to achieve the optimal terminal game capability for the FRS.
Firstly, the pursuer has a stronger pursuit potential when the terminal residual velocity
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increment is large. Secondly, when the pursuer’s terminal state is closer to that of the evader,
it is easier for the subsequent operations in the CGS. The required velocity increment for
the close-distance PE game is the minimum if the evader does not perform any evasive
maneuvers, which is equal to the sum of the ∆v that were planned in FRS but not executed
because they are within the perception range. Therefore, the terminal game capability of
the pursuer is defined as the ratio of the minimum velocity increments required for the
close-distance PE game to the terminal residual velocity increments of the pursuer in the
FRS. The corresponding formula is defined as follows,

JF = min


n
∑

j=k+1
‖∆vj‖

∆vtol −
k
∑

j=1
‖∆vj‖

 = f (t1, ∆v1, · · · , tn−2, ∆vn−2, tn−1, tn) (8)

where n is the number of the planned impulse maneuvers, and k is the number of impulse
maneuvers actually performed in the FRS. ∆vj denotes the j-th velocity increment vector.
∆vtol is the total velocity increment of the pursuit spacecraft.

The equations of motion of the spacecraft with the J2-perturbed dynamics are given as
Equation (1), and it is assumed that the impulsive maneuver is performed instantaneously.
Therefore, the constraints on the states before and after impulsive maneuver are listed as
follows. 

r+i = r−i
t+i = t−i
v+

i = v−i + ∆vi

(9)

where the superscripts “+” and “−” indicate before and after the i-th impulse maneuver,
respectively.

Finally, the GA is used to search the optimal pursuit trajectory for the FRS. The velocity
increment vector is described by the spherical coordinate to improve the optimization
performance of algorithm, i.e., ∆vj = [∆v, α, β]T, where ∆v, α, and β are the magnitude,
azimuthal angle, and polar angle of the velocity increment vector.

3.2. DDPG-Based Pursuit Method for CGS

After completing the FRS, the pursuer moves within the evader’s perception range
and is discovered by the evader. Then, the evader will perform evasive maneuvers in
response to the threat of the pursuer during the CGS. As mentioned in Section 2.2, the
close-distance PE game is actually an incomplete-information game, where the pursuer
does not know the game strategy of the evader. Therefore, the pursuer must have the
capability to continuously update its pursuit strategy based on the feedback information,
to improve the robustness of the pursuit during the CGS. Reinforcement learning, as an
important methodology of machine learning, is mainly used to describe and solve the
problem of maximizing returns or achieving specific goals through learning strategies in
the process of interaction between the agent and the environment. Therefore, a closed-loop
pursuit method using a deep deterministic policy gradient algorithm, which is one of the
earliest deep RL algorithms, is proposed in this section to solve the robust pursuit strategy
for the incomplete-information PE game.

3.2.1. Deep Deterministic Policy Gradient Algorithm

The DDPG algorithm is designed to operate on the large potential state and action
spaces with a deterministic policy, which combines both Q-learning and Policy gradients
and uses the deep neural networks to approximate the action and the Q-value [25]. DDPG
adopts the actor and critic (AC) architecture, as shown in Figure 3. The actor is a policy
network that takes the state as the input and outputs the exact action, rather than a
probability distribution over actions. The critic is a Q-value network to evaluate the value
of the action, which takes state and action as the inputs and outputs the Q-value. Both
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actor and critic have two networks: the online network and the target network. The roles
of these four networks in DDPG are briefly introduced as follows.
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• Online actor network a = A(s, θA): it takes state s and returns the corresponding action
a that maximizes the long-term reward R.

• Target actor network a′ = A′(s′, θA′ ): it outputs the next action a′ using the next state
s′ sampled in the experience replay memory. Its parameters θA′ are regularly updated
according to the parameters of the online actor network θA.

• Online critic network q = Q(s, a, θQ): it takes state s and action a as inputs and returns
the corresponding expectation of Q-value q.

• Target critic network q′ = Q′(s′, a′, θQ′ ): it outputs the next expectation of Q-value q′

using the next action a′ and the next state s′ sampled in the empirical playback pool.
Its parameters θQ′ are regularly updated according to the parameters of the online
critic network θQ.

θQ and θQ′ are the weights of the online critic network and the target critic network,
respectively. θA and θA′ denote the weights of the online actor network and the target actor
network, respectively.

The soft update technique and the target network are applied to improve the conver-
gence and robustness of the training. The parameters of the online networks are firstly
updated through the optimizers (e.g., stochastic gradient descent algorithm), and then the
parameters of the target networks are updated through the soft update algorithm, where
only a fraction of the weight parameters is transferred in the following manner.{

θQ′ ← τθQ + (1− τ)θQ′

θA′ ← τθA + (1− τ)θA′ (10)

where τ∈[0, 1] is the parameter of soft update algorithm.
The loss function of the online critic network is formatted as follows

Li =
1
N ∑i

(
yi −Q

(
si, ai, θQ))2

yi = Ri + γQ′
(
si+1, A′

(
si+1, θA′), θQ′) (11)

where N is the number of samples from the replay memory buffer. Ri is the reward of the
i-th action. γ is the discount factor of the future reward.
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The policy gradient of the online actor network was formulated according to the
deterministic policy gradient method as,

∇θA J ≈ 1
N ∑i∇aQ

(
s, a, θQ

)∣∣∣∣s=si ,a=A(si)
∇θA A

(
s, θA

)∣∣∣∣si (12)

According to the deterministic policy gradient method, the actor-network only out-
puts the action with the highest probability. This effectively improves the computational
efficiency of the algorithm, while its exploration capability was significantly insufficient.
Therefore, the off-policy method, which chooses the action at based on the current policy
and the exploration noise Nt, was employed to improve the exploratory capability of the
algorithm.

at = A
(

st, θA
)
+ Nt (13)

3.2.2. Closed-Loop Pursuit Method Using DDPG

This section presents a closed-loop pursuit method using DDPG, which enables the
pursuer to interact with the environment, to address the incomplete-information PE game
problem, as shown in Figure 4. Markov Decision Process (MDP) [28], which is a common
model for RL, was used to model the space PE game problem. According to the MDP
theory, the agent (here, it is the pursuit spacecraft) takes action after interacting with the
environment to change its state for obtaining a reward.
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The state and action spaces of the PE game are defined as follows{
SPE = {rP, vP, rE, vE}
APE = {∆vP}

(14)

The states of the pursuer and the evader are propagated using Equation (1). The
return and reward functions are defined as follows

Ri = 0.5
∫ ti+1

ti

[
sTQPs + uT

PWP-PuP − uT
EWP-EuE

]
dt + 0.5si+1

TQfPsi+1 (15)

G = εf − κ
Nf−1

∑
i=0

Ri
i

(16)

where the variables in Equation (15) have the same definition as those in Equation (3). WP-E
is equal to 06 × 6 because the strategy of the evader was unknown. Nf denotes the number
of steps when the successful pursuit condition in Equation (6) or terminal constraints in
Equation (7) are met. κ is the scale coefficient, whose default value is 0.0001. εf is the reward
of the mission completion and is defined as

εf =

{
10, if it satisfies successful pursuit conditions in Equation (6)
−10 , else

(17)
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If the pursuer has a successful rendezvous with the evader, it receives a positive constant
reward. Otherwise, it was punished with a negative constant reward.

It is assumed that the evader will perform an impulse maneuver to evade the pursuer
when the evasive condition was activated. The evasive condition is defined as

min(‖rtP − rtE‖) < rec, t ∈ [tc, tf] (18)

where rtP and rtE are the position vectors of the pursuer and evader at time t. tc and tf
are the current and terminal time of the mission. rec denotes the warning distance of the
evader.

The maneuver time tm and delta-v ∆v are optimized using the sequential quadratic
programming (SQP) with the following objective function

JE = 0.5
∫ tf

tc

[
sTQEs− uT

EWE-EuE

]
dt + 0.5sf

TQfEsf = f (tm, ∆vE) (19)

where the variables in Equation (19) have the same definition as those in Equation (4).
Therefore, the evader’s strategy was adjusted by changing the weight matrix QE, WE-E and
QfE during the training.

In order to improve the robustness and generalization capability of the training agent,
the initial states of the pursuer and evader and the evasive strategy of the evader are
randomly initialized before each episode. The initial states of the pursuer and evader for
the CGS are their terminal states of the FRS that are solved using the multi-impulse pursuit
trajectory optimization for FRS in Section 3.2.1.

4. Simulations and Analysis

A series of PE games in the sun-synchronous orbit (SSO), whose right ascension of
ascending node drifts with a fixed precession rate under the effect of J2 perturbation, are
studied to verify the feasibility and performance of the proposed two-stage pursuit strategy.
The pursuit and evasion spacecraft park on a sun-synchronous circular orbit and a sun-
synchronous elliptical orbit, respectively. Both the pursuer and the evader use the impulse
to implement orbital maneuver. According to the realistic space PE mission requirements,
the mission constraints are listed in Table 1. The mission duration was limited to 4 h for
the consideration of the timeliness of the space PE mission. In addition, considering the
difference between the initial orbital planes of the pursuer and evader, the total delta-V of
the pursuer was set to be 3 times of that of the evader.

Table 1. The mission constraints of the sun-synchronous orbit PE game case.

Constraints Value

Mission duration 0~4 h
Total delta-v of the pursuer 1.5 km/s
Total delta-v of the evader 0.5 km/s

Perceived distance of the evader 200 km
Warning distance of the evader 20 km

Maximum distance tolerances of successful pursuit 1 km
Maximum velocity tolerances of successful pursuit 0.1 km/s

The initial orbital ranges of the pursuit and evasion spacecraft are given in Table 2. We
always generate the initial conditions starting from an initial set of orbital elements. Values
of the orbital elements for each sample are randomly generated with the rand function in
MATLAB using the intervals defined in Table 2.



Aerospace 2021, 8, 299 10 of 17

Table 2. The initial orbital ranges of the pursuit and evasion spacecraft.

Orbital Elements Pursuer Evader

Semi-major axis, a0 (km) [6678, 7178] [6678, 7178]
eccentricity, e0 0 [0, 0.02]

inclination, Inc0 (deg) [96.67, 98.6] [96.67, 98.6]
Right ascension of the ascending node, RAAN0 (deg) [56.25, 60] [56.25, 60]

Argument of perigee, w0 (deg) [0, 180] [0, 180]
Mean anomaly, M0 (deg) [0, 180] [0, 180]

A pair of pursuer and evader forms one PE game sample scenario and 50,000 game
sample scenarios are randomly generated. The disparity of the initial parking orbits of
the pursuer and evader of all sample scenarios are given in Figure 5. It is seen that the
difference of the semi-major axis and the orbital plane are limited to 500 km and 5 deg
respectively. In addition, the initial relative distances between the pursuers and evaders
are all over 200 km, making sure that the pursuer was out of the perceived range of the
evader. Therefore, the proposed two-stage pursuit strategy in Section 3 can be applied to
generate the pursuit trajectory.
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4.1. Far-Distance Rendezvous

The number of the impulse maneuvers was set to three for the FRS because the
mission duration was limited to 4 h. GA was used as the optimizer to find the optimal
transfer trajectory, and the fitness function is defined as Equation (8). For the training,
the population was 200 and the maximal generation was 300. The rates of reproduction,
crossover and mutation are 0.9, 0.75 and 0.05, respectively.

A specific scenario (denoted as case A) with initial states given in Table 3 was imple-
mented to verify the performance of the proposed method. The variation of the pursuer’s
terminal game capability JF with the generations is given in Figure 6. After 216 generations,
the JF finally converges to 0.00789, which indicates that the pursuer retains a strong pursuit
potential when reaching the evader’s perception boundary.

Table 3. The initial orbits of the pursuer and evader in case A.

Player a0 (km) e0 Inc0 (deg) RAAN0 (deg) w0 (deg) M0 (deg)

Pursuer 7045.317 0 98.054 56.542 116.152 249.070
Evader 6688.282 0.002 96.707 57.635 225.359 63.076
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The pursuit trajectory of the FRS for case A is shown in Figure 7. The pursuer
performed the first impulse maneuver at 25.11 min to be injected into the pursuit trajectory.
Then, the second impulse maneuver was performed at 2 h 51 min to rendezvous with
the evader. With these two maneuvers, the trajectory of the pursuer until it reached the
evader’s perception boundary is given as the red solid line in Figure 7. The trajectory
represented by the pink dotted line is the planned pursuit trajectory but not executed
because it is within the evader’s perception range. The third maneuver was planned at the
rendezvous position with the evader, which was also not executed. The obtained pursuit
trajectory in the FRS allowed the pursuer to retain the pursuit potential and obtain more
advantage in the subsequent close-distance PE game.
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Similarly, the pursuit trajectory of the FRS is optimized using GA for all 50,000 sample
scenarios to obtain the initial state of the close-distance game, which generates the initial
state database for the DDPG training. The optimization results of 50,000 sample scenarios
are given in Figure 8.

The terminal game ability of the pursuer JF represents the pursuit potential of the
pursuer. If JF is greater than 1, it means the pursuer does not have enough delta-v to reach
the evader. A smaller JF indicates the greater pursuit potential of the pursuer. There are
41,926 sample scenarios, whose JF are all less than 1, have enough delta-v to continue the
subsequent close-distance game. The JF distribution of these 41,926 sample scenarios is
given in Figure 9.
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4.2. Close-Distance Pursuit-Evasion Game

DDPG includes four deep neural networks that are fully connected, and the specific
parameters of these neural networks are given in Table 4. All critic neural networks have
five hidden layers and actor neural networks have three hidden layers. Based on the
experience from the multiple tests and the test results, the number of neurons per hidden
layer was 100 for all neural networks. The activation functions of all deep neural networks
used a combination of the linear function “relu” and the hyperbolic tangent function
“tanh”.

Table 4. The specific parameters of the neural networks in DDPG.

Type Online Critic Target Critic Online Actor Target Actor

Hidden layers 5 5 3 3
Neurons per hidden layer [100; 100; 100; 100; 100] [100; 100; 100; 100; 100] [100; 100; 100] [100; 100; 100]

Activation function [relu; relu; relu; relu; tanh] [relu; relu; relu; relu; tanh] [relu; relu; tanh] [relu; relu; tanh]

The maximum time duration of the CGS was set to 3600 s, and the time-step of the
training was set to 10 s. Therefore, the maximal steps of each game were 360. The learning
rates of online actor network and online critic network are 0.001 and 0.0001, respectively.
The discount factor of future reward was 0.95. In order to increase the agent’s exploration
ability, the action interference factor was introduced with the initial value of 0.1, and it
decayed at a rate of 0.8 per episode. The capacity of the experience library was set to
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30,000. When the experience library was full, the network training was carried out. In
the follow-up training, the experience library was gradually updated. In order to obtain
independent samples as many as possible, each episode extracted a small batch of samples
from the experience library for training. The number of the batch samples set was 256.

For each episode, the sample scenario was randomly selected from the initial state
database that is obtained in Section 4.1, and the evasion strategy of the evader was updated
as well. According to Equations (5) and (19), the weight matrices QE, WE-E and QfE in
Equation (19) are updated by the random parameters qE, wE-E, and qfE, whose value ranges
are listed in Table 5. Similarly, the weight matrices in Equation (15), which are defined in
Equation (5), and the values of weight parameters are also given in Table 5.

Table 5. The values and ranges of weight parameters of pursuer and evader.

Players qi qfi wPi wEi

Pursuer 2 4 2 0
Evader [−5, −1] [−5, −1] [1, 5] [1, 5]

The return value in the DDPG training process is obtained and given in Figure 10.
After more than 5000 episodes of random exploration, the return value of the agent and
the probability of successful rendezvous gradually increased. Finally, after 30,000 episodes,
the pursuit success percentage (PSP) per 100 episodes reached above 95%, as shown in
Figure 11.
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A well-trained agent was applied to solve the pursuit trajectory in the CGS for case A.
Without loss of generality, the evasion strategy parameters qE, wE-E, and qfE are 1, 2 and 1,
respectively. The relative distance and velocity between the pursuer and evader during
the CGS are given in Figure 12. The evader performed five impulse maneuvers to evade
the pursuer. However, the pursuer with DDPG always updated the pursuit strategy and
implemented corresponding maneuvers in time to maintain the tendency of approaching
the evader. The trajectory of the pursuer in the orbital coordinate system of the evader is
given in Figure 13.
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4.3. Monte Carlo Analysis

In order to verify the robustness of the DDPG-based pursuit approach to the initial
states of the pursuer and the evader and to the evasion strategies for the CGS, four sets of
Monte Carlo simulations were performed. The JF value ranges of the four sets are [0, 0.25],
[0.25, 0.5], [0.5, 0.75] and [0.75, 1], respectively. Each set contained 100 samples and the
evasion strategy of the evader for each sample was obtained by randomly generating
parameters qE, wE-E, and qfE. The number of successful pursuits for each set is given
in Figure 14. When JF is less than 0.5, all pursuers successfully rendezvous with the
corresponding evaders. The successful pursuit rate decreased with the increase of JF,
because a large JF indicates poor pursuit capability. The total successful pursuit rate was
99.5% and the successful pursuit rate also achieved 91% even for the worst set with JF
of [0.75, 1]. This indicates that the proposed method has good robust performance for
incomplete-information impulsive pursuit-evasion missions.
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5. Conclusions

A novel two-stage pursuit strategy is proposed to find the pursuit trajectory for
the incomplete-information impulsive pursuit-evasion missions with the J2-perturbed
dynamics using reinforcement learning. The major contributions of this method include
the following aspects. The spacecraft PE game problem is modeled into two stages, i.e.,
FRS and CGS, for the first time. For the FRS, a new objective function defining the terminal
pursuit capability of FRS is proposed to optimize the pursuit trajectory for FRS with GA.
For the CGS, a closed-loop pursuit approach using the DDPG algorithm is developed
to solve the robust pursuit trajectory based on the real-time feedback information of the
evader. The consideration of the J2 perturbation significantly improves the feasibility
and reliability of the solutions for realistic missions. In addition, the well-trained agent
with DDPG directly outputs the impulsive maneuver information based on the real-time
conditions of the dynamical environment, which is very efficient because it does not require
complicated calculation operations of solving the nonlinear equations and integration. The
application to the sun-synchronous orbital PE game scenario demonstrates the feasibility
and validity of the proposed method. The Monte Carlo tests show that the proposed
method is very robust to the initial states of the pursuer and the evader and to the evasion
strategies. The successful pursuit ratio achieves 91% even for the worst test scenarios.
Therefore, it is concluded that the proposed two-stage pursuit strategy is an efficient
and promising method to obtain robust pursuit trajectories for the realistic incomplete-
information impulsive pursuit-evasion missions.
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