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Abstract: In this paper, a new dual-spin guided projectile that is equipped with ten lateral impulse
jets is proposed for trajectory correction. To guide the overall design of the projectile and the control
system, a linear motion model of the projectile that was subjected to a lateral impulse was obtained
based on a full nonlinear seven-degree-of-freedom (7-DOF) dynamic model. The trajectory correction
process of a lateral impulse was divided into two stages. To explain the principle of lateral impulse
trajectory correction, the analytical solutions of the linear model of these two stages were obtained.
Analytical and numerical solutions were compared to verify the accuracy of the linear model. It is
concluded that the analytical and numerical solutions are in good agreement.

Keywords: flight mechanics; dual-spin guided projectile; lateral impulse; angular motion; trajectory
correction; analytical solutions

1. Introduction

Over the past several decades, due to the extreme acceleration loads at launch and
the high spin rate during the entire trajectory, minimizing the terminal miss distance and
collateral damage of spin-stabilized projectiles has been a great challenge. Fortunately, with
the advance of low cost, small, rugged, microelectronic mechanical systems, a significant
reduction in the dispersion for direct fire projectiles that are equipped with a relatively
inexpensive flight control system is possible. For spin-stabilized projectiles, however, the
extremely high spin rate causes other technical problems [1]. Firstly, due to the high spin
rate it is hard to measure the attitude angles of spin-stabilized projectiles. Secondly, the
control mechanism that is used for spin-stabilized projectiles should have high power and
bandwidth. Finally, the flight dynamics of spin-stabilized projectiles are relatively complex.

A classical strategy to overcome the aforementioned problems is the dual-spin projec-
tile with four fixed canards that are mounted on the fuse. This dual-spin projectile (also
called a Precision Guidance Kit (PGK)) is composed of the forward part with a low spin
rate to reduce the canard actuator power and bandwidth, as well as the aft part with a high
spin rate to maintain the stability of the entire projectile. Many dual-spin projectile studies
have been published such as the linear theory [2–4], aerodynamic characteristics [5–7],
flight mechanics [8–12], and the control method [13–15]. Nevertheless, the introduction of
control surfaces complicates the dynamics of the projectile. Consequently, this brings new
challenges and increases the cost of the overall projectile design.

Compared to the control surface, the impulse jet that delivers a large, short-duration
impulse to the body represents a simpler and less costly control mechanism. Impulse
jets have been applied to modify the trajectory of spacecrafts [16,17] and subsequently
they have been applied to rockets [18–22] and missiles [23–25]. These objects are all low-
speed and are low-spin rate fin-stabilized projectiles whose movement characteristics are
relatively simple. For spin-stabilized projectiles, the action time of the impulse jets is not
short enough and the action force is not strong enough. Therefore, impulse jets are seldom
used as a control mechanism for spin-stabilized projectiles.
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In this paper, a new dual-spin projectile with impulse jets is proposed to correct the
trajectory of the conventional spin-stabilized projectile. The new projectile consists of
two parts that are connected by a bearing. A new rigid body seven-degree-of-freedom
(7-DOF) model including nonlinear aerodynamic forces and moments is explained in
Section 2. The exact numerical solution of this model can be obtained by the fourth-order
Runge–Kutta method for the initial conditions. However, when compared to a numerical
solution, an analytical solution can demonstrate the effect of the physical and aerodynamic
parameters on dynamics [26]. Therefore, analytical solutions can help to understand the
movement characteristics of the projectile more completely and to design the control system
more easily.

Based on the rigid body 6-DOF motion differential equations, the linear angular motion
equation was established for spin-stabilized projectiles in the complex plane in [26,27].
The analytical solution was also obtained. This analytical theory was extended to include
the effect of a lateral impulse for a fin-stabilized projectile in [18]. The action of a lateral
impulse was modeled as a generalized lateral translation and angular disturbances which
were incorporated into the linear angular motion equation directly. In [20], the action
of a lateral impulse was regarded as the initial conditions of the linear angular motion
equation. In addition, the ignition process of an impulse jet was simplified by neglecting
the aerodynamic forces and moments. The form of the linear angular motion equation
was not changed in [18,20] because the research objects were both 6-DOF. For a dual-spin
projectile, however, the linear angular motion equation needs to be deduced again. To keep
the nonlinearity of the equation as much as possible, the impulse force and moment are
modeled into the 7-DOF motion differential equations. Thus, the linear angular motion
equation can predict the whole movement characteristics of a 7-DOF projectile subjected a
lateral impulse.

The paper is organized as follows: A 7-DOF nonlinear dynamic model, including
nonlinear aerodynamic forces and moments, is explained in detail in Section 2. The linear
angular motion equations that are based on the model that is established in Section 2 are
derived in Section 3. Analytical solutions of the dual-spin projectile motion equations that
are subjected to a lateral impulse are obtained in Section 4. Lastly, the simulation results
on a 155 mm dual-spin projectile are presented in Section 5 to verify the accuracy of the
theoretical derivation that is provided in Sections 3 and 4.

2. Nonlinear Dynamics Model

The projectile dynamic model and the methodology that are used for the forces and
moments on the projectile are described in this section.

2.1. Concept Design and Reference Frames

The high spin rate of spin-stabilized projectiles brings great challenges to attitude
measurement and trajectory control. Inspired by PGK, a dual-spin structure was adopted.
The measurement and control components were arranged on a de-spin body (aft body),
while the projectile body (forward body) was characterized by a high spin rate to maintain
the stability of the entire projectile. Since the impulse jets were mounted behind the center
of mass of spin-stabilized projectiles, the boattail of a projectile was transformed into a
guided boattail connected to the projectile body avia a bearing. To reduce the spin rate of a
guided boattail, six inclined fins were mounted on it. All electronic devices and control
mechanisms were located inside the guide boattail. The overall structure of the dual-spin
projectile is shown in Figure 1.
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Figure 1. The overall structure of a dual-spin projectile.

After the projectile was launched, the spin rate of the guided boattail quickly decreased
due to the six inclined fins. An onboard Global Positioning System (GPS) measured
the position and velocity information of the projectile. Based on this information, the
projectile’s computer predicts the projectile’s impact point. When deviation between the
predicted impact point and the ideal impact point satisfies certain conditions, the projectile
computer gives an ignition order to the appropriate impulse jet to correct the trajectory of
the projectile.

The aforementioned structure was relatively simple and easy to implement; only
the boattail of a projectile needed to be redesigned. This means that the modification
of the aerodynamic characteristics of the projectile was minor and some of the original
aerodynamic parameters of the projectile can still be employed. On the other hand, due to
the relative simplicity of the control mechanism, only the GPS and a three-axis geomagnetic
sensor were used for navigation. To maximize the correction ability of the projectile
and achieve precision guidance, the movement characteristics of the projectile that was
subjected to a lateral impulse under different conditions have to be investigated in detail.

Two reference frames are introduced below to describe the projectile movement. One
is the ground reference frame ONxNyNzN (Figure 2a), and the other one is the no-roll
reference frame Oxyz which is fixed to the projectile (Figure 2b). The origin (ON) of the
ground reference frame was located at the launch point. ONxN is the axis launch direction
in the horizontal plane, and the ONyN axis is oriented in the upright direction. The ONzN
axis can be determined by the right-hand rule. The origin O of the no-roll reference frame
is the center of the projectile mass. The Ox axis aligns with the projectile axis and points to
the nose, thus defining a positive direction. The Oy axis is perpendicular to the Ox axis in
the horizontal plane. Like the ONzN axis, the Oz axis can be determined by the right-hand
rule. The reference frames are shown in Figure 2.

Linear (u, v, w) and angular (pf, pa, q, r) velocities are the system dynamic states which
are described in the no-roll reference frame. The linear (xe, ye, ze) and angular (φf, φa, θ, ψ)
positions are the system kinematic states which are described in the ground reference
frame [15]. The relationship between the total velocity and the projectile axis is described
by the angle of attack (AOA) α and the angle of sideslip (AOS) β. The relationships between
them can be expressed as:

|V| =
√

u2 + v2 + w2, α = arctan
(w

u

)
β = arcsin

(
− v

V

)
= arctan

(
−v√

u2 + w2

) (1)
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Figure 2. Two reference frames of a dual-spin projectile. (a) the ground reference frame, (b) the no-roll reference frame. 
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Figure 2. Two reference frames of a dual-spin projectile. (a) the ground reference frame, (b) the no-roll reference frame.

2.2. Nonlinear Dynamics Model

The 7-DOF nonlinear model for the dual-spin projectiles that were employed in this
paper was established in [2]. According to the introduction of the reference frames in
Section 2.1, the kinematic equations of the projectile can be expressed as: .

xe.
ye.
ze

 =

 cos θ cos ψ − sin ψ sin θ cos ψ
sin θ 0 − cos θ

cos θ sin ψ cos ψ sin θ sin ψ

 u
v
w

 (2)


.
φf.
φa.
θ
.
ψ

 =


1 0 0 tan θ
0 1 0 tan θ
0 0 1 0
0 0 0 1/cos θ




pf
pa
q
r

 (3)

The dynamic equations of the projectile can be expressed as: .
u
.
v
.

w

 =
1
m

 Fx
Fy
Fz

+

 rv− qw
−rw tan θ − ru
qu + rv tan θ

 (4)


.
pf.
pa.
q
.
r

 = I−1




Mxf
Mxa
My
Mz

−


0 0 −r q
0 0 −r q
r r 0 r tan θ
−q −q −r tan θ 0

I


pf
pa
q
r


 (5)

where Fx, Fy, and Fz are the projections of the external force of the projectile on Ox, Oy, and
Oz axes, respectively. Mxf (Mxa), My, and Mz are the projections of the external moment of
the projectile on Ox, Oy, and Oz axes, respectively. The symbol m represents the mass of
the projectile. Matrix I is the inertia matrix of the projectile relative to the Oxyz reference
frame. The matrix can be specifically expressed as:

I =


Ixf 0 0 0
0 Ixa 0 0
0 0 Iy 0
0 0 0 Iz

 (6)
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where Ixf and Ixa are the main axes of inertia of the projectile body and the boattail relative
to the Ox axis. Iy and Iz are the main axes of inertia of the entire projectile relative to the
Oy, and Oz axes, respectively.

2.3. Forces and Moments
2.3.1. Forces

The force that is acting on the projectile in Equation (4) is comprised of the aerody-
namic force, the weight force, and the impulse force Fi. A combination of the force in the
no-roll reference frame can be expressed as:

F =
1
2

ρV2S

CD

 − cos β cos α
− sin β

− cos β sin α

+ CL

 sin2 β + cos2 β sin2 α
− cos β sin β cos α
− cos2 β sin α cos α

+ mg

 − sin θ
0

cos θ

+ Fi (7)

where ρ is the air density, S is the reference area, CD is the drag force coefficient, CL is
the lift force coefficient, and g is the gravitational acceleration.

2.3.2. Moments

The moment that is acting on the projectile body and the boattail is described in
Equation (5) and is comprised of the aerodynamic moment, the friction moment Ms of the
bearing, and the impulse control moment Mi. A combination of the moment in the no-roll
reference frame can be expressed as:

M =
1
2

ρVSL


−VDCSDf pf

−VDCSDa pa + VCSε
VCP cos β sin α− DCM sin β− DCPDq
−VCP sin β− DCM cos β sin α− DCPDr

+ Ms + Mi (8)

where L is the reference length, D is the projectile diameter, ε is the oblique angle of
incline fins, CSDf and CSDa are the spin damping moment coefficients of the forward and
aft body, respectively, CS is the spin moment coefficient of incline fins, CP is the pitching
moment coefficient, CM is the Magnus moment coefficient, and CPD is the pitching damping
moment coefficient.

2.3.3. Forces and Moments of Impulse Jets

The force that is due to the impulse jet in the no-roll reference frame can be expressed as:

Fi =

 0
Fp cos(γ + φa)

Fp sin(γ + φa)

 (9)

where γ is the fixing angle of the impulse jet.
The moment that is due to the impulse jet in the no-roll reference frame can be

expressed as:

Mi =


0
0

Fpr sin(γ + φa)

−Fpr cos(γ + φa)

 (10)

where r is the distance from the impulse jet nozzle to the center of projectile mass.
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2.3.4. Friction Moment of Bearing

The friction moments of the bearing to the projectile body and the boattail are equal in
value but are opposite in direction [15]. The friction moment in the no-roll reference frame
can be expressed as:

Ms =
1
2

ρV2SD


CAsgn(pa − pf)(KS + KV|pa − pf|)
−CAsgn(pa − pf)(KS + KV|pa − pf|)

0
0

 (11)

where CA is the axial force coefficient, and KS and KV are the static and viscous friction
coefficients of bearings, respectively.

3. Linearized Angular Motion Model

The dynamic equations of the projectile that were established in Section 2 are highly
nonlinear. Numerical solutions can be obtained by the fourth-order Runge–Kutta for given
initial conditions. However, analytical solutions that show the explicit relationships be-
tween all parameters cannot easily be obtained. Without analytical solutions, the dynamic
characteristics of dual-spin projectiles cannot be adequately comprehended. In this section,
linear equations of the angular motion and the velocity direction of the projectile were
derived from the nonlinear motion equations that were based on certain assumptions.
Moreover, the solutions to these linear equations were also obtained. Analytical solutions
of linear equations can accurately and intuitively explain the projectile motion, especially
for the movement characteristics that are subjected to a lateral impulse.

3.1. Assumptions for Linearization

• The projectile is mass balanced, such that the centers of gravity of both the projectile
body and the boattail lie on the rotational axis of symmetry and Iy = Iz;

• The spin rates of the projectile body and the boattail are constant during the ignition;
• The change of projectile mass characteristics that are caused by the impulse jet ignition

is ignored;
• The aerodynamic angles of attack are small so that α ≈ w/V, β ≈ −v/V;
• The quantities V and u are large compared to q, r, v, and w, such that products of the

small quantities and their derivatives are negligible;
• The projectile is aerodynamically symmetrical;
• The thrust force of the impulse jet is constant and there is no ignition delay.

3.2. Projectile Motion Parameters Described in the Complex Field

Any point Oc along the direction of the velocity vector of the projectile is first chosen.
Then, a complex plane that is perpendicular to the velocity vector passing through the
point Oc is created. The intersection of the Ox axis and the complex plane is defined as
the point B. Vector OcB represents the total AOA in the complex plane (see Figure 3a). In
the same way, the intersection of the changing velocity vector and the complex plane is
defined as the point E. Vector OcE represents the velocity deflection angle in the complex
plane (see Figure 3b). When the total AOA of the projectile changes, the trajectory of the
point B in the complex plane reflects this change. Analogously, the trajectory of the point E
in the complex plane can reflect the change in the velocity direction.
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The total AOA ∆ and the velocity deflection angle Ψ are relatively small in magnitude.
As such, they can be expressed as:{

∆ = 1
V (w + iv) ≈ α− iβ

Ψ = ψa + iψd
(12)

These two quantities can be expressed in polar coordinates as:{
∆ = |∆|eiφ

Ψ = |Ψ|eiϕ (13)

3.3. Derivation of the Linear Angular Motion Equation

The parameter
.
x indicates the derivative of the example variable x with respect to

time, while x′ stands for the derivative of the variable x with respect to ballistic arc length.
The relationship between the aforementioned parameters is given as:

.
x =

dx
dt

=
dx
ds
· ds

dt
= x′ ·V (14)

where t is time and s is the ballistic arc length.
By employing the method that is described in Equation (14), the independent variable

t is replaced with s in the second and third lines of Equation (4). Then, these values are
divided by V2. The parameters rw tan θ and rv tan θ are negligible relative to ru and qu.
Therefore, these two equations can be written as:

1
V

v′ =
Fy

mV2 −
ru
V2

1
V

w′ =
Fz

mV2 +
qu
V2

(15)

The first line in Equation (15) is multiplied by a negative imaginary unit and added to
the second line. Thus, the following expression is obtained:

1
V
(
w′ − iv′

)
=

1
mV2

(
Fz − iFy

)
+

u
V

( q
V

+ i
r
V

)
(16)

The first line in Equation (12) is differentiated with respect to the arc length:

d∆

ds
= − 1

V2 (w− iv)
dV
ds

+
1
V
(
w′ − iv′

)
(17)
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Equations (16) and (17) are combined to obtain:

d∆

ds
= −∆

V
dV
ds

+
1

mV2

(
Fz − iFy

)
+

u
V

( q
V

+ i
r
V

)
(18)

Under the assumption that u/V ≈ 1 and by defining
1
V
(r− iq) = Φ, Equation (18)

can be rewritten as:

∆′ +
V′

V
∆− iΦ =

1
mV2

(
Fz − iFy

)
(19)

By employing Equation (14), the independent variable t is replaced with s in the third
and fourth lines of Equation (5) and divided by V2. The parameters r2 tan θ and rq tan θ are
negligible relative to pr and pq. Hence, these two equations can be expressed as:

1
V

q′ =
My

V2 Iy
− Ixf pf + Ixa pa

VIy

r
V

1
V

r′ = Mz
V2 Iz

+
pf Ixf + Ixa pa

VIz

q
V

(20)

The first line in Equation (20) is multiplied by a negative imaginary unit and added to
the second line:

1
V
(
r′ − iq′

)
=

1
V2 Iy

(
Mz − iMy

)
+

Ixf pf + Ixa pa

VIz

( q
V
+i

r
V

)
(21)

The parameter Φ is differentiated with respect to the arc length:

Φ
′
= −V′

V2 (r− iq) +
(r′ − iq′)

V
(22)

By substituting Equation (22) into Equation (21), and defining P as P =
Ixf pf + Ixa pa

VIz
,

the following expression is obtained:

Φ
′
= −V′

V
Φ +

1
V2 Iy

(
Mz − iMy

)
+ iPΦ (23)

Then, Equation (19) can be rewritten as:

iΦ = ∆
′
+

V′

V
∆− 1

mV2

(
Fz − iFy

)
(24)

Equation (19) can be differentiated with respect to the arc length:

∆′′ +
V′

V
∆′ +

(
V ′′

V
− V′2

V2

)
∆− iΦ

′
=

1
mV2

(
F′z − iF′y

)
− 2V′

mV3

(
Fz − iFy

)
(25)

Equations (23) and (24) are substituted into Equation (25), while higher-order terms
are assumed as negligible:

∆′′ +

(
2V′

V
− iP

)
∆′ +

(
V ′′

V
− iP

V′

V

)
∆ =

F′z − iF′y
mV2 − i

P
(

Fz − iFy
)

mV2 +
i
(

Mz − iMy
)

V2 Iy
(26)

According to Equations (7) and (8), some aerodynamic forces and moments can be
rewritten in the complex form:{

Fz − iFy = −mkdV2∆−mklV2∆ + mg cos θ − iFpei(φa+γ)

Mz − iMy = −IykpV2(i∆)− IykpdV2Φ− IykmV∆− Fprei(φa+γ)
(27)
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where 
kd =

ρS
2m

CD, kl =
ρS
2m

CL

kp =
ρSL
2Iy

CP, kpd =
ρSLD

2Iy
CPD, km =

ρSLD
2Iy

CM

(28)

In the direction along the velocity vector, drag force and gravity are dominant compo-
nents. Hence: .

V = −kxV2 − g sin θ (29)

According to Equation (14), Equation (19) can be rewritten as:

V′

V
= −kx −

g sin θ

V2 (30)

Equations (27)–(30) are substituted into Equation (26) to obtain:

∆′′ + (H − iP)∆′ − (M + iPT)∆ = G̃ + Ĩ (31)

where 

H = kpd + kl − kd − 2
g sin θ

V2 , M = kp

T = kl − km
pf

VP
, G̃ = −

..
θ

V2 −
(

kpd − iP
) .

θ

V

KI =
[mr

A
−
(

kpd − iP
)
− i

pa

v

] Fp

mv2 ei(φa0+γ)

Ĩ = KIeipas/V

(32)

where φa0 is the rolling angle of the boattail at the start of the ignition.
In Equation (31), G̃ stands for the gravity action in a complex number field, while Ĩ

stands for the impulse action.

3.4. Analysis Solutions of the Linear Angular Motion Equation

Equation (31) is a second-order non-homogeneous linear differential equation. Its
general solution consists of two parts; one part is a special solution of the non-homogeneous
linear equation itself and the other part is the general solution of the homogeneous linear
equation corresponding to the equation. The general solution of Equation (31) can be
expressed as:

∆ = KF0eλFs+i(ωFs+φF0) + KS0eλSs+i(ωSs+φS0) + ∆∗ (33)

The first two terms of Equation (33) represent the general solutions of the homoge-
neous linear equation corresponding to Equation (31), while the third term is a special
solution. According to Equation (33), the general solution of the homogeneous linear
equation corresponding to Equation (31) is the superposition of two circular motions (re-
spectively defined as fast circular motion and slow circular motion). Parameters KF0 and
KS0 are the initial amplitudes of the fast and slow circular motions, φF0, and φS0 are the
initial phase angles of fast and slow circular motions, λF and λS are the damping indices of
fast and slow circular motions, and ωF and ωS are the angular frequencies of fast and slow
circular motions, respectively. These values are defined in [26] as:

ωF =
1
2

(
P +

√
P2 − 4M

)
(34)

ωS =
1
2

(
P−

√
P2 − 4M

)
(35)
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λF = −1
2

(
H − P(2T − H)√

P2 − 4M

)
(36)

λS = −1
2

(
H +

P(2T − H)√
P2 − 4M

)
(37)

The angular movement of the projectile that is subjected to a lateral impulse can
be divided into two stages. The first stage is the forced movement of the projectile that
is subjected to a direct impulse force. The second stage is the free movement of the
projectile immediately after the first stage under the action of the aerodynamic force and
gravity. Analytical solutions of angular motion equations of these two stages are separately
solved below.

4. Angular Motion of the Projectile Subjected to a Lateral Impulse
4.1. Angular Motion at the First Stage

Due to the superposition of the second-order non-homogeneous linear differential
equations, the influence of gravity can be neglected when only the action of the impulse is
studied. Hence, Equation (31) can be simplified as:

∆′′ + (H − iP)∆′ − (M + iPT)∆ = Ĩ = KIeipas/V (38)

Since the ignition time of the impulse jet is extremely short, the spin rate of the
boattail can be assumed as constant during the ignition. In this situation, the right side of
Equation (38) is an exponential forcing function. Therefore, the special solution is also an
exponential function:

∆∗ = KI0ei(ωaxs+γ+φa0) = KIei(ωaxs) (39)

where ωax = φ′a = pa/V.
By substituting Equation (39) into Equation (38), the following expression is obtained:

KI =
I

Pωax −ω2
ax −M + i(ωax H − PT)

(40)

An assumption is made that the projectile is flying steadily before the impulse jet is
ignited. In other words, when s = 0, ∆ = 0 and ∆′ = 0. For these initial conditions, the
following expression can be written:{

KF + KS + KI = 0

KF(λF + iωF) + KS(λS + iωS) + iωaxKI = 0
(41)

where: {
KF = KF0eiφF0

KS = KS0eiφS0
(42)

Thus, the solution of Equation (41) is obtained as:
KF = KI

(λS + iωS)− iωax

(λF + iωF)− (λS + iωS)

KS = −KI
(λF + iωF)− iωax

(λF + iωF)− (λS + iωS)

(43)

At this point, the angular motion at the first stage can be obtained:

∆ = KFeλFs+iωFs + KSeλSs+iωSs + KIeiωaxs (44)
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Equation (44) is differentiated with respect to the arc length. Then, the angular velocity
of the angle of attack is acquired:

∆′ = KF(λF + iωF)eλFs+iωFs + KS(λS + iωS)eλSs+iωSs + iKIωaxeiωaxs (45)

4.2. Angular Motion at the Second Stage

After the ignition is over, Equation (38) can be rewritten as:

∆′′ + (H − iP)∆′ − (M + iPT)∆ = 0 (46)

Equation (46) is a homogeneous linear equation corresponding to Equation (31), and
its general solution form is provided by Equation (33) as:

∆ = KF0eλFs+i(ωFs+φF0) + KS0eλSs+i(ωSs+φS0) (47)

Coefficients KF0 and KS0 in Equation (47) are determined based on the initial conditions.
According to [26], the damping components in Equation (47) have a minor effect on the
initial conditions. By deriving Equation (47) with respect to the arc length and assuming
the negligible effect of the damping components in it, the following expression is obtained:

∆′ = (λF + iωF)KFeiωFs + (λS + iωS)KSeiωSs (48)

By combining Equations (47) and (48), the relationship between the initial angle of
attack and the initial angular velocity of the angle of the attack, coefficients KF0, KS0 can
be obtained: 

KF =
∆′0 − (λS + iωS)∆0

(λF − λS) + i(ωF −ωS)

KS =
−∆′0 + (λF + iωF)∆0

(λF − λS) + i(ωF −ωS)

(49)

By substituting the initial conditions that are caused by the lateral impulse (see
Equations (44) and (45)) into Equation (49), an analytical solution of the angular motion of
the projectile at the second stage can be acquired:

∆ = KFeλFs+iωFs + KSeλSs+iωSs (50)

4.3. Deflection Angle of the Velocity at the First Stage

A complex deflection angle that is given in Section 3.2 is used for describing the
deflection of the projectile velocity. The relationship between the complex deflection angle
and the lift force is provided in [27]. The action of the lateral impulse should also be
included. Thus, the following expression is obtained:

.
Ψ = klV∆ +

Fp

mV
ei(ωaxs+γ+φa0) (51)

By substituting Equation (44) at the first stage into Equation (51), the following
expression is acquired:

.
Ψ = klV

(
KFeλFs+iωFs + KSeλSs+iωSs + KIeiωaxs

)
+

Fp

mV
ei(ωaxs+γ+φa0) (52)

A variable of integration in Equation (52) is replaced from the arc length to Vt and the
expression is integrated with time to obtain:

Ψ =
klKF

(
eλFVt+iωFVt − 1

)
λF + iωF

+
klKS

(
eλSVt+iωSVt − 1

)
λS + iωS

+

[
klKI
iωax

+
Fpei(γ+φa0)

imωaxV2

](
eiωaxVt − 1

)
(53)
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4.4. Deflection Angle of the Velocity at the Second Stage

When the ignition of the impulse jet is over, Equation (51) can be rewritten as:

.
Ψ = klV∆ (54)

By substituting Equation (50) at the second stage into Equation (54), the following
equation is obtained:

.
Ψ = klV

(
KFeλFs+iωFs + KSeλSs+iωSs

)
(55)

Furthermore, a variable of integration is replaced from arc length to vt and the expres-
sion is integrated with time to obtain:

Ψ = kl

[
KF
(
eλFVt+iωFVt − 1

)
λF + iωF

+
KS
(
eλSVt+iωSVt − 1

)
λS + iωS

]
(56)

According to Equation (56), the complex deflection angle periodically swings with
decreasing amplitude along the average deflection angle under the action of the damping
terms. Finally, it stabilizes around the average deflection angle. By neglecting the periodic
terms in Equation (56), the average deflection angle can be expressed as:

Ψ = −kl

(
KF

λF + iωF
+

KS

λS + iωS

)
(57)

5. Results and Discussion

Accurate numerical results of the trajectory with and without a lateral impulse can be
obtained by numerically integrating the fully nonlinear equations. A comparison between
these two situations was made on a 155-mm dual-spin projectile.

5.1. Numerical Simulation Results

The configuration of the projectile used for this investigation is shown in Figure 1,
while the physical properties are summarized in Table 1. Parameters defining an impulse
jet are listed in Table 2. For all cases, the numerical solutions were generated using a
fixed step fourth-order Range–Kutta algorithm. The initial velocity of the projectile was
670 m/s, and the firing angle was 21 degrees. Two trajectories were obtained. One was a
normal trajectory without any impulse jets being ignited, and the other one was a correcting
trajectory with a single impulse jet being ignited. The average action angle of the ignited
impulse jet was 90 degrees. Trajectories of the projectile are shown in Figure 4.

Table 1. Parameters of the dual-spin projectile (Mach 1.02).

Parameter Value Parameter Value

Mass of projectile body 39.24 kg Iy = Iz 1.61 kg·m2

Mass of boattail 7.80 kg Drag force coefficient 0.3295
Diameter of projectile 0.155 m Lift force coefficient 1.9589

Length of projectile body 0.790 m Pitching moment coefficient 0.7752
Length of boattail 0.112 m Magnus moment coefficient −0.0491

Ixf 0.14 kg·m2 Pitching damping moment coefficient 1.5251
Ixa 0.02 kg·m2 Oblique angle of incline fins −3 deg

Table 2. Parameters of the impulse jet.

Parameter Value Parameter Value

γ 0 deg φa0 0.3295
Thrust force 1400 N Working time 20 ms

r 0.2065 m pa 9.6851 rad/s
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Figure 4. Two entire trajectories: one is a normal trajectory without control, and the other one is a correction trajectory 
with a single impulse jet being ignited. (a) altitude vs. range, (b) crossrange vs. range. 

The difference of the impact points in the down-range was negligible, while the 
difference in the crossrange was 15 m. 

The spin rate of forward and aft bodies is shown in Figure 5. The spin rate of the aft 
body decreased rapidly after firing and met the measurement and control requirements 
at approximately 10 s. Impulse action did not affect the spin rate. Thus, only a single case 
is shown in this figure. 

Figure 4. Two entire trajectories: one is a normal trajectory without control, and the other one is a correction trajectory with
a single impulse jet being ignited. (a) altitude vs. range, (b) crossrange vs. range.

The difference of the impact points in the down-range was negligible, while the
difference in the crossrange was 15 m.

The spin rate of forward and aft bodies is shown in Figure 5. The spin rate of the aft
body decreased rapidly after firing and met the measurement and control requirements at
approximately 10 s. Impulse action did not affect the spin rate. Thus, only a single case is
shown in this figure.
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was neglected in the analytical solution. Velocity deflection angle at this stage was 
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5.2. Numerical and Analytical Solutions at the First Stage

The angular motion of the projectile at the first stage is shown in Figure 6. The results
obtained by the two methods are in good agreement. Since the actual initial total AOA of
the projectile was not zero, a difference between the numerical and analytical solutions
in angular motion was caused by the initial conditions. The difference increases with the
increasing of the β angle. That is because when the β angle is large enough, the aerodynamic
action works. The initial total AOA in the numerical solution was caused by gravity. This
phenomenon is called dynamic equilibrium angle [27]. The black arrows on the curves
indicate the angular motion direction. When the impulse jet was ignited at 84.4562 degrees,
the projectile axis moved in the opposite direction of the impulse force from the origin, thus



Aerospace 2021, 8, 309 14 of 17

forming positive α and β angles. According to Equation (44), the angular motion in the
first stage should be a three circular motion. Moreover, the angular frequency of the fast
circular motion was much higher than the frequency of other motions. Thus, the projectile
axis moved in the direction where the value of α is negative and rapidly decreased.
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Figure 6. Angular motion at the first stage.

The change in the velocity deflection angle at the first stage is shown in Figure 7. The
two values of ψd that were obtained by the two methods were approximately equal to each
other. A minor difference between them was caused by the gravity between the two values
of ψa. The value of ψa in the analytical solution became zero at the end of the first stage
because the impulse action counteracted in this direction. The value of ψa in the numerical
solution decreased at the whole first stage because of the gravity which was neglected in
the analytical solution. Velocity deflection angle at this stage was formed by the combined
action of impulse and aerodynamic forces. Since the total AOA was relatively small when
coupled with a small aerodynamic lift force, the impulse force was dominant at this stage.
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The relationship between β  and dψ  that was obtained by the numerical method 
is depicted in Figure 9. When β  was greater than zero, dψ  increased. When β  was 
less than zero, dψ  decreased. This observation explains how the aerodynamic angle of 
attack affects the velocity direction. 

Figure 7. Velocity deflection angle at the first stage.

5.3. Numerical and Analytical Solutions at the Second Stage

The angular motion of the projectile at the second stage is shown in Figure 8. Based
on Equation (50), the angular motion of the projectile should be a bicircular motion with
two decreasing amplitudes at this stage. The angular frequencies and damping indices that
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were calculated by the two methods are approximately the same. However, their respective
convergence centers were different. The convergence center of the analytical solution was
(−0.102◦, 0), while the convergence center of the numerical solution was (0.306◦, 0). Due to
gravitational effects which were neglected in the analytical solution, the AOS was non-zero
value that increased with time. When the impulse action was over, the AOS converged
to the dynamic equilibrium angle. As such, the angular motion curve of the numerical
solution is to the right of that of the analytical solution.
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The relationship between β  and dψ  that was obtained by the numerical method 
is depicted in Figure 9. When β  was greater than zero, dψ  increased. When β  was 
less than zero, dψ  decreased. This observation explains how the aerodynamic angle of 
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The relationship between β and ψd that was obtained by the numerical method is
depicted in Figure 9. When β was greater than zero, ψd increased. When β was less than
zero, ψd decreased. This observation explains how the aerodynamic angle of attack affects
the velocity direction.
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Three types of ψd at the second stage are shown in Figure 10. Since the AOS caused by
gravity was positive and increased over time, the numerical solution ψd increased. As such,
the difference between the two methods increased. The analytical solution ψd converged
to a negative analytical average value, which was obtained according to Equation (57).
Although the initial β that was caused mainly by the impulse force was positive, it rapidly
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became negative due to the bicircular motion. Since the convergence center of β was
negative, the average value of ψd was also negative.
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The value of ψd that was obtained by the numerical method for the two stages was
−0.1555 degrees, while the one obtained by the analytical method was −0.1591 degrees.
This indicates that both analytical and numerical solutions are in good agreement. It can
be concluded that analytical equations can be used for the control system to predict the
velocity direction of the projectile.

The value of ψd at the first stage was −0.0961 degrees and −0.0594 degrees at the
second stage. That meant that the impulse action and the aerodynamic action both changed
the velocity in the same direction, and the impulse effect was 1.6 times greater than the
aerodynamic effect. If the impulse jets were mounted in front of the center of mass of
spin-stabilized projectiles, the initial value of β at the second stage would be negative.
However, the convergence center of β was positive, thus ensuring a positive average value
of ψd. The impulse action and the aerodynamic action change the velocity in opposite
directions. The correction ability of an impulse jet is thus weakened.

6. Conclusions

In this paper, a derivation procedure for a new 155-mm lateral impulse correction
dual-spin projectile is presented. A fully nonlinear 7-DOF dynamic model with linear
angular motion equations and velocity deflection angle equations is provided. Movement
characteristics of the projectile that was subjected to a lateral impulse are addressed by
both numerical and analytical methods. The physical law of a lateral impulse correcting
projectile trajectory is explained in detail. Furthermore, the equation for the velocity
deflection angle is obtained, which can be used for the control system.

In future work, the relationship between the impact point and the velocity deflection
angle will be investigated. Lastly, the design of the control system that is based on the
impact point prediction will be addressed.
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