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Abstract: The fatiguing work of air traffic controllers inevitably threatens air traffic safety. Determin-
ing whether eyes are in an open or closed state is currently the main method for detecting fatigue in
air traffic controllers. Here, an eye state recognition model based on deep-fusion neural networks is
proposed for determination of the fatigue state of controllers. This method uses transfer learning
strategies to pre-train deep neural networks and deep convolutional neural networks and performs
network fusion at the decision-making layer. The fused network demonstrated an improved ability
to classify the target domain dataset. First, a deep-cascaded neural network algorithm was used to
realize face detection and eye positioning. Second, according to the eye selection mechanism, the
pictures of the eyes to be tested were cropped and passed into the deep-fusion neural network to
determine the eye state. Finally, the PERCLOS indicator was combined to detect the fatigue state
of the controller. On the ZJU, CEW and ATCE datasets, the accuracy, F1 score and AUC values of
different networks were compared, and, on the ZJU and CEW datasets, the recognition accuracy
and AUC values among different methods were evaluated based on a comparative experiment.
The experimental results show that the deep-fusion neural network model demonstrated better
performance than the other assessed network models. When applied to the controller eye dataset,
the recognition accuracy was 98.44%, and the recognition accuracy for the test video was 97.30%.

Keywords: air traffic control; fatigue detection; MTCNN; transfer learning; DFNN; eye selection; air
traffic safety; artificial intelligence

1. Introduction and Background

With the rapid development of the civil aviation industry, there has been an increase
in the number of routes and aircraft sorties, the complexity of the sector, and the air traffic
controller workload, and thus on-job fatigue is becoming a major issue affecting the safety
of civil aviation. In 2011, the FAA recommended double duty at night because of incidents
of controllers sleeping on duty. In 2014, China Eastern Airlines Flight MU2528 was forced
to turn around during its approach to Wuhan because the controller was asleep on duty.

In 2016, due to fatigue, the tower controller of Shanghai Hongqiao Airport gave con-
flicting control instructions, which led to the aircraft taking off and crossing the runway
using the runway at the same time, resulting in an A-class runway invasion incident.
Fatigue seriously affects the safety of the civil aviation industry. Increasingly, more re-
searchers are committed to solving the problem of fatigue, currently from both subjective
and objective perspectives.

The subjective aspect is the use of fatigue scales; the objective aspect includes the
detection of physical and psychological parameters and their use, of which the most suitable
parameter for controller fatigue detection is the detection method based on eye condition.

In 2019, Jin et al. [1] proposed using the support vector machine model to fuse multiple
physiological parameters and eye movement indicators to construct a controller fatigue
detection model. The accuracy of identifying the normal group and the sleep-deprived
group was 94.2%. Zhao et al. [2] proposed an EM-convolution neural network to detect the
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state of the eyes and mouth from ROI images. The algorithm performance was better than
that of algorithms based on VGG16, InceptionV3, AlexNet and others, with an accuracy
and sensitivity of 93.623% and 93.643%, respectively.

Feng et al. [3] proposed adding a central loss function to softmax loss to optimize
the problem of large intraclass spacing in deep convolutional networks and improve the
accuracy of facial fatigue state recognition. Zheng [4] proposed a method that combines
the MTCNN algorithm with an improved discriminative scale space tracking algorithm
for face detection and key point positioning, and it uses the MobileNet V2 algorithm to
determine the state of the eyes and mouth.

For comprehensively judging whether a driver is fatigued through fatigue indica-
tors such as PERCLOS value, blink frequency, closed eye time, and yawn frequency.
Mahmoud et al. [5] used the YOLO algorithm to count the number of people in a specific
area and built a face detection system based on deep learning. The YOLO algorithm directly
implements an end-to-end training process and has a higher advantage in detection rate,
and the recall and accuracy rates also showed great improvement.

Xiao et al. [6] proposed a method to detect the fatigue state of a driver by using the
spatiotemporal characteristics of the driver’s eyes. In the end, the built model was used to
detect the driving state, and an accuracy of 96.12% was achieved. Hu et al. [7] optimized
the single shot multibox detector method to improve the robustness under light changes
and similar background interference. However, in dealing with the task of data scarcity, the
current network often produced data dependence problems. In order to solve the problem
of fewer datasets, a transfer learning strategy was proposed.

The concept of deep transfer learning was also proposed, and network-based transfer
learning can be widely used in different fields. Xie et al. [8] used the network model
trained on ImageNet to fine-tune and migrate on the DeepFashion dataset. Transfer
learning effectively improves the classification accuracy and timeliness of the model. In the
field of medical imaging, where data are scarce, transfer learning is an effective method.
Atabansi et al. [9] used the high-resolution image features of the large dataset to train a
relatively small dataset model, which enhanced the generalization ability and verified the
transfer learning strategy, and a higher accuracy rate was obtained.

Khan et al. [10] used the public PCG dataset to pre-train a simple and lightweight
CNN model for the detection of cardiovascular diseases and obtained a high detection
accuracy rate. At present, the methods for eye feature extraction and state determination
are mainly machine-learning and deep-learning methods.

Traditional machine learning methods all use shallow structures. These structures
contain, at most, one or two layers of nonlinear transformations, including logistic regres-
sion, random forest, SVM, maximum entropy, Gaussian mixture models etc. The shallow
structure can solve simple problems, or the effect is obvious for more restricted ideal
problems; however, due to the manual extraction of feature information, selecting effective
texture features often requires a lot of time and rich experience.

With the rapid development of deep learning, a large number of models based on
supervised training [11] and unsupervised training [12] have been proposed, such as Deep
Convolutional Neural Networks (DCNN) [12], Deep Neural Networks (DNN) [13,14],
Deep Belief Networks (DBN) [15], Long Short-Term Memory (LSTM) [16], non-linear
unit activation function (Rectified linear unit, ReLU) [14], and the Dropout strategy [14],
among others.

In the field of image detection and recognition, compared with traditional methods,
deep learning methods have the advantage of omitting the steps for artificial feature
extraction. At present, DNN and DCNN models are widely used in this field.

The following points summarize the main contributions of this work:
(1) A single network model needs to be optimized for detection accuracy. Therefore,

combining the DNN model extraction vector features and DCNN model extraction texture
features, a deep-fusion neural network (DFNN) model was built, which can extract image
features more accurately.
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(2) In order to solve the problem of insufficient controller fatigue data and the data
dependence of the deep learning network model, the transfer learning strategy is used
to pre-train the DNN and DCNN network, and the trained parameters are transferred
to the DFNN model. The DFNN model has higher accuracy and reliability in detect-
ing small-sized images of eyes compared with the trained VGG [17], ResNet [18] and
Inception [18,19] models.

(3) Aiming at the special low-light working environment of the controller, the con-
troller needs to constantly scan the radar screen, issue control instructions and deploy flight
conflicts. Combined with the real-time requirements for the fatigue detection task of the
controller, an eye selection mechanism (ES) is proposed, which can select a single eye for
fatigue detection to increase the detection rate.

In this paper, by building an ES-DFNN controller fatigue detection model based
on transfer learning, the memory of the model is reduced, and the detection accuracy
and real-time performance are further improved. The structure of this paper is as follows:
Section 2 outlines the fatigue detection process and the key technologies of fatigue detection.
Section 3 focuses on the eye fatigue state detection model. The dataset and experimental
results are described in detail in Section 4. Finally, the main research results are analyzed
and summarized in Section 5.

2. Preliminary Background

The fatigue testing process is shown in Figure 1.
First, the video image is used to detect the face of the controller through MTCNN

and, at the same time, the coordinates of the left and right eyes are obtained. Secondly, the
left-eye or right-eye image to be detected is obtained through the eye selection mechanism.
Thirdly, DCNN and DNN models are pre-trained by transfer learning on the FER2013 [20]
and LFW [21] datasets, respectively. The two trained models are fused to build a DFNN
model. Fourthly, the eye state dataset is used to fine-tune the DFNN model. Finally,
determination of whether the controller is fatigued occurs through PERCLOS.

Figure 1. Fatigue detection flow chart.

2.1. Face Detection and Feature Point Positioning

Face detection and feature point positioning are the key parts of fatigue recognition. In
the actual complex control environment, because the approach and area controllers need to
pay attention to the aircraft dynamics on the radar screen in real time, the light is dimmed
to ensure that the controller can see the radar screen in the control room clearly. At present,
the traditional face detection method based on Adaboost classifier [22] is susceptible to
interference from a complex background and dim lighting conditions, resulting in unstable
detection results, and it is easy to falsely detect similar face areas as human faces; thus, the
false detection rate is high.

The method based on template matching cannot be adaptively changed due to the
size and shape of the template, and it is easily affected by changes in the controller’s
posture and the occlusion of objects in practical applications. Thus, the requirements for
face detection and face key point positioning can no longer be met. MTCNN can combine
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face detection and face key point positioning at the same time, and the positioned face key
points can be used to realize face correction [23].

The MTCNN algorithm consists of three stages, as shown in Figure 2.
The first stage is the P-Net convolutional neural network, where the candidate win-

dows and boundary regression vector are obtained. The candidate forms are calibrated
according to the bounding box, and the nonmaximum value suppression algorithm is used
to remove overlapping windows.

The second stage is the R-Net convolutional neural network, which trains the pic-
tures containing candidate forms determined by P-Net in the R-Net network and uses
the fully connected neural network for classification. Bounding box vectors are used
to fine-tune candidate windows and nonmaximum suppression algorithms to remove
overlapping windows.

The third stage is the O-Net convolutional neural network, whose network and
function are similar to R-Net, and, while removing the overlapping candidate windows,
the positions of five key points of the face are calibrated.

Figure 2. MTCNN network structure diagram.

Face detection and key point positioning are shown in Formula (1).

( f ace, L− eye, R− eye) = MTCNN(image) (1)

Among them, f ace is the coordinates of the bounding box of the detected face; L− eye
and R− eye represent the point coordinates of the left eye and right eye respectively; image
is the video image to be detected.

2.2. Transfer Learning

Transfer learning defines the concepts of domain and task [24]. The domain
D = {χ, P(X)} includes two parts: the feature space χ and the edge probability dis-
tribution P(X) (X = {x1, x2, . . . , xn} ∈ χ); the task T = {y, f (x)} includes two parts: the
label space y and the target prediction function f (x). The source domain is defined as Ds,
the source task is Ts, the target domain is Dt, and the target domain task is Tt. Transfer
learning is to transfer the relevant information based on Ds and Ts to Tt based on Dt in
the case of Ds 6= Dt or Ts 6= Tt, aiming to extract and transfer the potentially transferable
knowledge in Ds and Ts to improve the efficiency of the prediction function. The schematic
diagram of transfer learning is shown in Figure 3.

At present, there are two problems in constructing a controller fatigue detection model
with high accuracy and reliability. On the one hand, there are less data on eye fatigue of
controllers, and data collection is more complex, expensive, and affects normal control
tasks. It is difficult to construct a large-scale, high-quality labeled controller fatigue dataset;
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on the other hand, the existing deep learning methods are severely data dependent, and
large-scale data are needed to understand the potential information under the data.

The feature extraction layer in the deep network model can extract the advanced char-
acteristics of the training data, and the decision-making layer can identify the information
needed to help make the final decision.

Figure 3. Schematic diagram of transfer learning.

Transfer learning allows flexibility with regard to the two basic assumptions in tra-
ditional classification tasks: (1) the training samples and the new test samples meet the
condition of independent and identical distribution; (2) there must be large-scale and
high-quality training samples [25]. The theory of transfer learning provides a method to
solve this problem.

First, this paper pre-trains the DNN and DCNN network models by using the FER2013
and LFW datasets that are related to the target domain data or pixels similar to each other to
obtain the initial parameters of the deep model. Second, the pre-trained DNN and DCNN
model parameters are transferred to the fused DFNN model, and the feature extraction
layer of the DFNN model is frozen, and part of the fully connected layer and output layer
are opened. Finally, the DFNN model is fine-tuned using the controller’s eye image to
obtain an eye state classification network model.

2.3. Eye Selection Mechanism

In the actual control environment, the controller needs to scan the radar screen back
and forth uninterruptedly. Therefore, the head posture of the controller is diversified.
When one eye is blocked due to head deflection, it is difficult to correctly detect the state
of both eyes at the same time. When this happens, one eye can remain undetected, which
can greatly interfere with the detection result. When the head is greatly tilted or deflected,
the left and right eye areas are selected to detect the unobstructed eyes. When the left and
right eyes are not covered, monocular with high confidence is also detected.

The eye selection mechanism is shown in Figure 4, where fw and fh represent the
width and height, respectively, of the face regression box detected by MTCNN, and d
represents the vertical distance from the midpoint of the abscissa of the left and right eyes
to the right boundary of the face regression box. The formula is as follows:

E =

{
EL if d < fw/2,
ER if d ≥ fw/2.

(2)

In the Formula (2), when d is less than fw/2, the left eye is selected as the eye to be
tested; otherwise, the right eye is tested.
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Figure 4. Schematic diagram of the eye selection mechanism.

3. Methodology

At present, the algorithms for recognizing the open and closed state of eyes are divided
into two types: manual feature extraction and automatic feature extraction. Among them,
manual feature extraction mainly includes the template matching detection method, texture
feature detection method, and shape feature detection method [26,27]. These methods rely
on the extraction of texture features, and the selection of texture features requires a great
deal of experimentation and sufficient experience.

The automatic extraction of features is used in deep learning methods, such as deep
neural networks [28,29], deep convolutional neural networks [30] and recurrent neural net-
works [31], omitting manual extraction of features and automatically extracting advanced
features of the dataset. Accuracy and reliability are also better than in manual feature
extraction methods.

In deep learning methods, DNN is mainly used for natural language processing
and visual target detection and recognition, such as speech recognition [32], wind speed
prediction [33] and image classification. However, as the depth of the network increases,
the number of parameters exponentially increases. When processing target detection
and segmentation tasks, the gradient becomes increasingly sparse and converges to a
local minimum.

The deeper the network, the higher the calculation performance requirements. DCNN
is mainly used in speech recognition, document analysis [34], language detection, im-
age recognition [35] and other fields, through convolution operations and pooling the
dimensionality reduction and fully connected layer process images, which can effectively
extract features. A single network model is easily affected by gradient dissipation and local
optimization, resulting in poor accuracy and reliability.

The DFNN model can meet real-time requirements with its shallow depth and small
memory. The DCNN model used for fusion mainly extracts pictures the texture feature, and
the DNN model extracts vector features by converting the picture into a one-dimensional
vector. The fused DFNN model can extract eye features more finely, which can meet the
accuracy requirements. The advantages and disadvantages of the existing methods are
shown in Table 1.

3.1. DCNN Model

A deep convolutional neural network is a network model composed of several layers
of “neurons” [12]. Each neuron in the current layer applies a linear filter to the output of the
previous layer of neurons and superimposes a bias on the output of the filter. A nonlinear
activation function is applied to the result, which allows us to obtain a feature map.
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Table 1. The advantage and disadvantage of methods.

Method Advantage Disadvantage

Template matching detection The method is simple. The method requires a large number of different human
eye templates for matching, which requires a large
amount of calculations, has poor real-time performance
and is susceptible to facial expressions.

Texture feature detection The method includes statistical
calculations in a region with
multiple pixels, often with rotation
invariance, and it has strong
resistance to noise.

The method is seriously affected by resolution and may
be affected by illumination and reflection, and the
texture reflected from the 2-D image is not necessarily
the real texture of the surface of the 3-D object.

Shape feature detection The algorithm is simple to
implement, does not require offline
training, and has a fast calculation
speed and high detection rate.

The method is not sensitive to face and expression
changes at multiple angles, and it is easy to misjudge
nonface skin color areas (hands, neck, etc.) and skin-like
areas in the background.

DNN The method has a simple network
structure.

The method is prone to sparse gradients and requires
high computational performance.

DCNN The method has higher detection
accuracy.

The method is not effective in discriminating samples
with extreme head posture and is susceptible to
background interference.

DFNN This method has a faster detection
rate, high detection accuracy and
good robustness.

This method will produce false detections for extreme
head posture samples.

(1) The convolutional layer is the core of the entire neural network, which uses two
methods of “local perception” and “weight sharing” to perform dimensionality reduction
and feature extraction. Compared with the neural network with different filters applied
to all neurons, the number of parameters for the convolution shared filter structure is
drastically reduced, reducing its ability to overfit. The formula is as follows:

Zl+1(i, j) = [Zl ⊗W l+1](i, j) + b (i, j) ∈ {0, 1, . . . , Ll+1} (3)

Ll+1 =
Ll + 2p− f

s0
+ 1 (4)

In Formula (3), Zl and Zl+1 are the input and output of the l + 1 layer, Zl+1(i, j) is the
pixel of the l + 1 layer feature map, W is the convolution kernel, and b is the bias term. In
Formula (4), s0, p and f are the convolution step size, the number of filling layers and the
size of the convolution kernel, respectively. L is the number of network layers, and the
convolution step size refers to the step size of the convolution kernel at each time.

(2) The pooling layer is also called the downsampling layer, which performs feature
selection and filtering on the feature map. The pooling layer uses max-pooling with a size
of 2× 2.

(3) The fully connected layer performs a nonlinear combination of the features ex-
tracted by the convolutional layer and the pooling layer to achieve classification.

Al = f (WT Al−1 + b) (5)

In Formula (5), Al−1 and Al are the input and output of the l layer, f is the activation
function, and W and b are the weight and bias, respectively.

The DCNN model consists of six convolutional layers, three pooling layers and one
fully connected layer, as shown in Figure 5. The size of the convolution kernel of the
first convolutional layer is 32× 3× 3, and the size of the convolution kernel of the other
convolutional layers is 128× 3× 3. In all convolutional layers, the boundary mode of the
convolution operation is the same, that is, the dimensions of the input and output feature
maps in the convolution operation are the same. The pooling layer uses the max-pooling
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strategy to reduce the dimensionality of the feature map, and the dimensionality reduction
ratio of all pooling layers is 2× 2.

In order to prevent the model from overfitting due to the small dataset, set BatchNor-
malization after the convolutional layer, add Dropout regularization after the pooling layer,
and set the Dropout regularization parameter to 0.25. The number of units in the fully
connected layer is 512. Finally, a softmax classifier is added to the top layer as the output
of the model. The activation functions of all layers in the model are ReLU functions.

Figure 5. DCNN structure diagram.

The DCNN model mainly performs convolution calculation, pooling dimensionality
reduction and fully connected flattening into a one-dimensional vector on the controller’s
eye image obtained by the eye screening mechanism. The texture feature extraction is
performed on the image of the controller’s eyes to determine the state of the controller’s
eyes as open or closed.

3.2. DNN Model

The full name of DNN is deep neural network [28]. Its model structure is shown in
Figure 6. It consists of one input layer, three hidden layers and one output layer. The
number of input layer units is 24× 24 = 576; the numbers of neurons in the hidden layer
are 256, 512 and 256; the output layer is a softmax classifier, and the number is 2. First, the
DNN model preprocesses the eye image and converts the extracted eye image size into
pixels. Second, it converts the two-dimensional image into a one-dimensional vector by
fully connecting the input image of the controller’s eye.

The input vector is normalized, and the vector features of the eye image are extracted
through the hidden layer through the weight parameter and the nonlinear unit activation
function. Finally, the softmax judges the state of the eyes as open or closed. All activation
functions in the model are ReLU functions, and the Dropout value of each layer is set to 0.5.

Figure 6. DNN structure diagram.

3.3. DFNN Model

The built DNN model and DCNN model are fused in the proposed DFNN model.
The DCNN model mainly extracts the texture features of the eye image through convo-
lution operation, pooling dimensionality reduction and the fully connected layer, while
DNN mainly extracts the eye through the fully connected layer and the vector features
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of the picture. The DFNN model can more finely extract the features useful for eye state
classification. The DFNN structure diagram is shown in Figure 7.

Figure 7. DFNN structure diagram.

First, the eye image is input to the DCNN model, and the eye image is converted into
a one-dimensional vector and input to the DNN model. Then the result weighted average
method is used to fuse the output results of the fully connected layers of the two models,
where the weight of the DCNN model is 0.6 and the weight of the DNN model is 0.4, the
fusion flow chart is shown in Figure 8. Finally, the softmax classifier is used to classify the
fused features.

Figure 8. Fusion flow chart.

3.4. Control Fatigue Judgment Index

When the controller has scanned the radar screen for a long time, adjusting the flight
interval and issuing control instructions, fatigue characteristics will begin to appear, such as
slow blinking, long-term continuous closed eyes etc. Therefore, the controller’s fatigue level
can be judged by obtaining the controller’s eye status information. PERCLOS represents
the ratio of the number of closed eye frames to the total number of frames in that period
of time [36],

PERCLOS =
m
M
× 100% (6)

In Formula (6), m represents the number of closed-eye frames, and M represents the
total number of eye-detected frames during this period. When PERCLOS is greater than
the threshold, the controller is determined to be in a fatigue state. In the specific test, there
are three measurement methods: EM, P70 and P80, as shown in Table 2.
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Table 2. PERCLOS judgment standard.

Judgement Standard Percentage of Average Eyes Closed Threshold

EM More than 50% PERCLOS > 0.5
P70 More than 70% PERCLOS > 0.7
P80 More than 80% PERCLOS > 0.8

4. Experimental
4.1. Experimental Environment

The verification experiment was conducted on a Windows operating system, equipped
with an Intel Xeon Silver 4110 CPU and two NVIDIA GTX1080Ti 11 G independent graphics
display cards. The storage hardware specifications were 128 GB 2666 MHz ECC memory,
480 G SSB and a 4 TB SATA hard disk. Keras and Tensorflow were used to build the neural
network model.

4.2. Experimental Datasets

Considering the real-world scenario of the controller’s work, it may be affected by
individual differences and various environmental changes, including lighting, masking,
and blurring. To study the performance, accuracy and loss rate of the DFNN model under
the above conditions, ZJU, CEW and ATCE datasets were collected, where 70% of the
datasets were selected as the training dataset, and 30% of the datasets were used as the
test dataset.

(1) The ZJU dataset [37] is an open source dataset published by Zhejiang University.
In the 20-person flashing video database, there are a total of 80 video clips, and each
person has four clips: (a) frontal viewing fragments without glasses, (b) viewing fragments
wearing thin-rim glasses, (c) frontal viewing fragments wearing black-rimmed glasses and
(d) upwards viewing fragments without glasses. Images are manually selected during each
blinking process, including open, half-open, closed and half-closed eye images. In addition,
images of the left and right eyes are collected separately. These images may be blurred,
low resolution or obscured by glasses. Some samples of this dataset are shown in Figure 9.
The first two lines are closed-eye images, and the last two lines are open-eye images.

Figure 9. The ZJU dataset.

(2) The CEW dataset [38] was released by Nanjing University of Aeronautics and
Astronautics, including 2423 images, of which 1192 closed-eye images were collected from
the internet, and 1231 open-eye images were from the Labeled Faces in the Wild database.
The eye images in this dataset are shown in Figure 10.
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Figure 10. The CEW dataset.

(3) ATCE dataset. First, the real-time facial images of controllers in the Civil Aviation
Flight University of China were collected when they were carrying out radar simulator
control tasks. Then, the collected facial images are recognized and extracted by the MTCNN
model to obtain the ATCE dataset. The dataset has a total of 4326 images, of which 2516
images are of open eyes and 1810 of closed eyes, and some of the images are shown
in Figure 11.

Figure 11. The ATCE dataset.

4.3. Experimental Analysis

The eye state recognition model in this paper is experimentally analyzed on three
different datasets of ZJU, CEW and ATCE. First, the accuracy, loss rate, F1 score and
area under the receiver operating characteristic curve (AUC) values are compared for
the VGG16, InceptionV3, ResNet50 and DFNN network models on the three datasets
mentioned above. Second, on the ZJU and CEW datasets, the recognition accuracy
and AUC value of this method are compared with those of the methods proposed by
other researchers.

4.3.1. Test Results of Different Networks on the ZJU Dataset

Comparing the VGG16 model, InceptionV3 model, ResNet50 model and the DFNN
model presented in this paper on the ImageNet competition classification task, the compar-
ison results of accuracy and loss rate are shown in Figure 12, the recall rate, recognition
accuracy, F1 score, loss rate, AUC, model size, running time and training time are shown
in Table 3.

In Figure 12 left, the DFNN model training dataset and test dataset have the highest
accuracy, the training dataset accuracy rate is 96.97%, and the test dataset accuracy rate is
96.30%. ResNet50 has the lowest accuracy rate, 89.58% for the training dataset and 84.79%
for the test dataset. The accuracy rate of the training dataset and test dataset of the VGG16
model is 92.36%. The accuracy rate of the training dataset of the InceptionV3 model is
93.45%, and the accuracy rate of the test dataset is 92.79%.

The recognition accuracy of the DFNN model is 4.61% higher than that of the VGG16
model, 4.18% higher than the InceptionV3 model, and 7.39% higher than the ResNet50
model. In Figure 12 right, the loss rate of the training dataset of the DFNN model is 8%,
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and the loss rate of the test dataset is 9%. The effect of the ResNet50 model is the worst, the
loss rate of the training dataset is 26.78%, the loss rate of the test dataset is 34.70%, the loss
rate of the training dataset and the test dataset of the VGG16 model is 18%, and the loss
rate of the InceptionV3 model is 18%.

The loss rate of the training dataset is 17.19%, and the loss rate of the test dataset is
15.72%. The loss rate of the DFNN model is 8.97% lower than that of the VGG16 model,
8.16% lower than that of InceptionV3, and 17.75% lower than that of ResNet50. From the
above experiments, it can be seen that the accuracy rate of the 30th generation of the DFNN
model on the training set and the test set is stable at approximately 96%, and it starts to
converge in the 20th generation, and the loss rate approaches 9%. The DFNN model is
superior to the other three models in the task of eye small-size image classification.

Figure 12. Comparison results of DFNN and the other three models on the ZJU dataset.

F1 score is the harmonic average of recall and precision. In Table 3, the F1 score of
the DFNN model is 96.97%, while the F1 score of the ResNet50 and InceptionV3 models
is about 92%. The DFNN model is better than the other three models. The DFNN model
has a model size of 53 MB. The runtime is 326.96 s. The training time was 57 ms/step.
Regarding all three aspects, the DFNN model is superior to the three network models. It
can better meet the needs of control tasks and meet the requirements of safety, accuracy
and real-time operations.

Table 3. VGG16, ResNet50, InceptionV3, and DFNN evaluation indicators on the ZJU dataset.

Index VGG16 ResNet50 InceptionV3 DFNN

Recall(%) 92.56 89.58 92.79 96.97
Precision(%) 92.40 89.22 92.64 96.96
F1 score(%) 92.36 89.23 92.66 96.97
AUC(%) 96.92 93.73 97.18 99.03
Network size 344 MB 1.11 GB 372 MB 53 MB
Run time 691.47 s 954.17 s 935.33 s 326.96 s
Training time 131 ms/step 154 ms/step 163 ms/step 57 ms/step

4.3.2. Test Results of Different Networks on the CEW Dataset

The comparison of the accuracy and loss rate curves of DFNN and the other three
models on the CEW dataset for eye image training and testing is shown in Figure 13. It can
be seen from the figure that the DFNN model begins to converge in about 10 generations.
The accuracy rate of the model training set and test set is close to 97%, while the loss rate
of the model training and testing is around 6%. The VGG16 model and the InceptionV3
model converge earlier than the DFNN model. However, the recognition accuracy of the
DFNN model is about 3% higher than the two types. The ResNet50 model lags behind
DFNN in terms of the convergence speed, model accuracy and loss rate.
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Figure 13. Comparison results of DFNN and the other three models on the CEW dataset.

In Table 4, the F1 score of the DFNN model is 97.36%, the F1 score of the VGG16 model
is 95.38%, and the F1 score of the ResNet50 model is 89.09%. Among the four models, the
F1 score of DFNN model is about 2% to 7% higher than those of the other three models.
The DFNN model has a model size of 53 MB, a running time of 182.69 s and a training time
of 65 ms/step and is superior to the other three network models in these three aspects. On
the CEW dataset, the DFNN model has a model size of 53 MB, a running time of 182.69 s
and a training time of 65ms/step, which is still better than the other three network models.

Table 4. VGG16, ResNet50, InceptionV3, and DFNN evaluation indicators on the CEW dataset.

Index VGG16 ResNet50 InceptionV3 DFNN

Recall(%) 95.38 89.11 93.98 97.36
Precision(%) 95.40 89.21 94.07 97.37
F1 score(%) 95.38 89.09 93.97 97.36
AUC(%) 99.20 95.58 98.55 99.71
Network size 344 MB 1.11 GB 372 MB 53 MB
Run time 375.75 s 510.07 s 946.91 s 182.69 s
Training time 127 ms/step 162 ms/step 158 ms/step 65 ms/step

4.3.3. Test Results of Different Networks on the ATCE Dataset

Figure 14 shows the comparison of the accuracy and loss rate curves of DFNN and
the other three models on the ATCE dataset for eye image training and testing. It can be
seen from the figure that, in the task of distinguishing eye states, the DFNN model starts to
converge after the number of iterations reaches 30. The accuracy of training and testing
reaches 98.4%, and the loss rate is 4.57%. In Figure 14 left, the accuracy rate of the training
dataset and test dataset of the VGG16 model is about 97%, the accuracy rate of the training
dataset and test dataset of the InceptionV3 model is about 97%, and the accuracy rate of
the training dataset of the ResNet50 model is about 91.40%.

The accuracy of the test dataset is about 87.21%. In Figure 14 right, the effect of the
ResNet50 model is the worst. The loss rate of the training dataset is about 22.55%, the loss
rate of the test dataset is about 28.71%, and the loss rate of the training dataset and test
dataset of the VGG16 model is near 7%. The loss rate of the training dataset and test dataset
of the InceptionV3 model is about 6%. The loss rate of the DFNN model is 2.43% lower than
that of the VGG16 model, 1.43% lower than InceptionV3 and 17.98% lower than ResNet50.

In Table 5, the F1 score of the DFNN model is 98.43%, the F1 score of the VGG16
model is 97.51%, the F1 score of the ResNet50 model is 91.45%, and the F1 score of the
InceptionV3 model is 97.69%. The F1 score of the DFNN model is 0.92% higher than that
of the VGG16 model, 6.98% higher than the ResNet50 model and 0.74% higher than the
InceptionV3 model. On the CEW dataset, the DFNN model has a model size of 53 MB, a
running time of 188.62 s, and a training time of 59 ms/step, which is better than the other
three network models.



Aerospace 2021, 8, 383 14 of 18

Figure 14. Comparison results of DFNN and the other three models on the ATCE dataset.

Table 5. VGG16, ResNet50, InceptionV3, and DFNN evaluation indicators on the ATCE dataset.

Index VGG16 ResNet50 InceptionV3 DFNN

Recall(%) 97.50 91.40 97.69 98.43
Precision(%) 97.54 91.87 97.70 98.44
F1 score(%) 97.51 91.45 97.69 98.43
AUC(%) 99.65 96.73 99.71 99.85
Network size 344 MB 1.11 GB 372 MB 53 MB
Run time 323.32 s 510.26 s 446.05 s 188.62 s
Training time 116 ms/step 154 ms/step 159 ms/step 59 ms/step

According to the comparative experimental results of the DFNN model and the other
three models, it can be seen that the recognition accuracy of the DFNN model is better
than that of the other three large-scale network models. Since the input of the DFNN
network model is 24× 24, the number of convolutional layers and model parameters are
less than the other three models. In terms of training performance, the DFNN model is
more suitable for the classification task of the controller’s eye image, which has smaller
pixels and fewer features.

By longitudinally comparing the recognition accuracy and recall of the DFNN model
on the three datasets, the DFNN model has a higher accuracy rate on the ATCE dataset
and can detect the fatigue state of the controller more accurately and quickly.

4.3.4. Comparison of the Results of Different Methods on the ZJU Dataset

The DNN, DCNN and DFNN models are compared with the eye state recognition
models proposed by Wu, Dong, Eddine, Liu and Song on the ZJU dataset. The comparison
results are shown in Table 6. According to the experimental results, it can be seen that the
average precision and AUC values of the multi-feature fusion recognition method based
on MultiHPOG, LTP and Gobor are higher than other geometric feature methods. The
precision and AUC values of the DNN and DCNN models are lower than the method
proposed by Song. The precision and AUC values of the DFNN model based on the fusion
of DNN and DCNN are higher than other methods.

4.3.5. Comparison of the Results of Different Methods on the CEW Dataset

The DNN, DCNN and DFNN models are compared with the eye state recognition
methods proposed by Song and Dong on the CEW dataset. The comparison results are
shown in Table 7. According to the experimental results, it can be seen that the precision of
the projection-based recognition method is clearly poor. The average precision and AUC
of the recognition method based on MultiHPOG, LTP and Gabor multi-feature fusion are
significantly improved, while the precision and AUC of the DFNN based on the fusion of
DNN and DCNN models are better than other methods.
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Table 6. Comparison results with other methods on the ZJU dataset.

Research Method Precision(%) AUC(%)

Wu [39] LBP + SVM 90.37 -
Dong [27] HOG + Random Forrest 94.70 98.37
Eddine [40] Multi-TPLBP + MLP 95.18 97.83
Liu [41] Gabor + LBP + HOG + SVM 95.42 98.02
Song [42] MultiHPOG + LTP + Gobor + SVM 96.83 99.27

Ours
DNN 94.12 96.75
DCNN 95.38 98.46
DFNN 96.96 99.03

Table 7. Comparison results with the other methods on the CEW dataset.

Research Method Precision(%) AUC(%)

Dong [27] Projection 70.10 -
HOG + Random Forrest 94.57 98.17

Song [42] MultiHPOG-LTP + Gabor + SVM 94.72 95.19

Ours
DNN 95.21 97.93
DCNN 96.13 98.76
DFNN 97.37 99.71

4.3.6. Comparison of Real-time Fatigue Test Results

The method in this paper is compared with the methods proposed by others. The
experimental results are shown in Table 8. Among them, the method proposed by Liu uses
an ASL eye tracker to extract eye feature parameters, and the method of an SVM classifier
to determine fatigue with poor recognition accuracy. This paper proposes MTCNN to
achieve eye localization, ES-DFNN to extract eye features and, finally, the PERCLOS80
index to detect fatigue. The recognition accuracy and speed are superior to the other two
methods and can meet the real-time requirements.

Table 8. Fatigue testing performance comparison with the other methods.

Research Method Precision(%) Rate/ms·Frame−1

Liu [43] ASL + SVM 83.92 -
Xiao [6] CNNs + LSTM 96.12 132.34

Ours
MTCNN + ES-DFNN + EM 91.02 91.31
MTCNN + ES-DFNN + P70 92.41 91.42
MTCNN + ES-DFNN + P80 97.30 91.24

5. Conclusions

Eye condition detection is the primary method for fatigue detection in air traffic
controllers. In order to improve the accuracy and detection rate of fatigue detection,
a ES-DFNN model based on the classification task of small pixel images of the eyes
was proposed to realize the method for fatigue detection in a controller. The following
conclusions are drawn:

(1) In order to improve the robustness of the fatigue detection model, the MTCNN
detection algorithm can be used to detect nonfrontal face images in real time.

(2) An eye-screening mechanism was proposed. By detecting the deflection or tilt
angle of the head and comparing the left and right eye detection confidence, the eye
pictures to be tested were selected to replace traditional binocular detection. The detection
rate was improved and meets the requirements for the real-time detection of fatigue status.

(3) In order to improve the detection efficiency and accuracy, the DFNN model fused
with DCNN and DNN was used to learn and extract eye fatigue features. Applying the
DFNN model on the ZJU dataset resulted in the accuracy being increased by 7%. The increase
for the CEW dataset ranged from 3% to 7%. On the ATCE dataset, the test accuracy of the
DFNN model was improved by 2% compared with the ZJU dataset and the CEW dataset.
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When this model recognizes extreme head postures, nondetection may occur. In future
work, we will enrich the eye dataset under extreme head postures, optimize face detection
methods and increase the diversity of detection to make it more consistent with the actual
control situation.
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Abbreviations

ZJU Zhejiang University
CEW Closed Eyes in the Wild
ATCE Air Traffic Controller Dataset
VGG Visual Geometry Group
ResNet Residual Block
YOLO You Only Look Once
AUC Area Under Curve
MTCNN Multi-Task Convolutional Neural Network
DFNN Deep-Fusion Neural Network
EM Eye and Mouth
ROI Region Of Interest
CNN Convolution Neural Network
SVM Support Vector Machines
DCNN Deep Convolutional Neural Network
DBN Deep Belief Network
LSTM Long Short-Term Memory
DNN Deep Neural Network
ReLU Nonlinear Unit Activation Function
ES Eye Selection Mechanism
LFW Labeled Faces in the Wild
PERCLOS Percentage of Eyelid Closure Over the Pupil
LBP Linear Back Projection
HOG Histogram of Oriented Gradients
TPLBP Three-Patch Local Binary Pattern
MLP Multilayer Perceptron
LTP Local Ternary Patterns
MultiHPOG Multi-Scale Histograms of Principal Oriented Gradients
ASL Applied Science Laboratories
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