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Abstract: Space situational awareness (SSA) plays an important role in maintaining space advantages.
Task planning is one of the key technologies in SSA to allocate multiple tasks to multiple satellites,
so that a satellite may be allocated to supervise multiple space objects, and a space object may be
supervised by multiple satellites. This paper proposes a hierarchical and distributed task-planning
framework for SSA systems with focus on fast and effective task planning customized for SSA. In the
framework, a global task-planner layer performs satellite and object clustering, so that satellites are
clustered into multiple unique clusters on the basis of their positions, while objects are clustered
into multiple possibly intersecting clusters, hence allowing for a single object to be supervised by
multiple satellites. In each satellite cluster, a local task planner performs distributed task planning
using the contract-net protocol (CNP) on the basis of the position and velocity of satellites and
objects. In addition, a customized discrete particle swarm optimization (DPSO) algorithm was
developed to search for the optimal task-planning result in the CNP. Simulation results showed that
the proposed framework can effectively achieve task planning among multiple satellites and space
objects. The efficiency and scalability of the proposed framework are demonstrated through static
and dynamic orbital simulations.

Keywords: space situational awareness; task planning; contract-net protocol; multiagent system

1. Introduction

Space situational awareness (SSA) describes the knowledge and understanding of
the situation in near-Earth space, including energy, particles, and natural and artificial
objects [1,2]. SSA is required to detect, track, or supervise space objects and environ-
ments [3]. SSA can be achieved either from the ground or space, and the latter is usually
realized by space platforms, e.g., multiple small satellites [4]. Compared with a single large
satellite, multiple-satellite systems (MSS) have increasing popularity due to their better
robustness and flexibility. In particular, heterogeneous satellite systems can undertake
different tasks within a large area of space and over a long period of time.

As the main purpose of SSA is to detect and supervise multiple spacecraft, stations,
and millions of space debris objects, one of the key technologies for MSS is task planning,
i.e., how to allocate multiple tasks to multiple satellites to achieve the best overall execution
performance [5]. As MSS with onboard planning capabilities can be classified into intelli-
gent multiagent systems (MAS), results from task planning for MAS, including unmanned
aerial vehicles, multirobot systems, and flexible manufacturing, can be employed.

Typically, MSS can be classified into two types by way of connection among satellites,
namely, centralized and distributed. Centralized MSS are controlled by a central station or
a single satellite that makes decisions and plans for the entire system. Such an architecture
is easy to realize, but suffers from poor real-time computation capabilities and adaptivity
to urgent situations [6,7]. The centralized architecture formulates the task-planning prob-
lem into an optimization problem where the cost function is overall system performance.
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Swarm optimization algorithms [8,9], mixed-integer optimization [10], and heuristic algo-
rithms [11] can be applied to solve such an optimization problem. In contrast, distributed
MSS achieves certain configuration and task planning through intersatellite communication
and coordination. Such a structure can allocate computations, communications, and control
actions through distributed coordination algorithms [4]. The distributed architecture has
better scalability, and can achieve parallel planning and fast replanning. In addition, the
distributed architecture is more robust to agent failure, hence being more flexible in dy-
namic environments. Several distributed task-planning methods for MAS were proposed,
including behavior- and affect-based [12,13], market-based [14–16], vacancy-chain [17],
and swarm-intelligence [4,7,18] methods.

The contract-net protocol (CNP) is one of the most popular market-based task-
planning methods, and it is widely applied to solve communication and control problems
for MAS [16,19–21]. The CNP is known for its planning efficiency with explicit commu-
nications among agents, hence being suitable for MSS. In the CNP, a contract is signed
through a process of mutual selection based on two-way information transfer. The contract
net consists of a number of nodes, each of which represents an agent, and can be classified
into two roles, manager and contractor. The former formulates the bidding task, publishes
and collects tenders, evaluates which contractor wins the bidding, and lastly signs the
contract. The latter focuses on bidding on the basis of its own working status and ability.
Traditionally, the CNP requires heavy communication among agents to achieve dynamic
task planning. In recent years, researchers developed a variety of remedies and enhance-
ments to reduce the tender space in order to reduce communication and computation
burden [16,22–24]. For example, a clustering method was proposed to reduce the number
of bids, thereby reducing the computational burden [23]. In [24], machine-learning meth-
ods were employed to quickly initialize a feasible solution of a task-assignment problem
of image-sensing satellites. Despite these improvements, how to develop effective and
customized methods for SSA task-planning problems is still an open question.

Task-planning problems for SSA and for widely studied Earth observation applica-
tions, e.g., remote imaging and sensing, are different. In Earth observation applications,
tasks are usually defined as observing a fixed ground station or a certain ground area within
a time window [11,16,24], while SSA applications deal with dynamic objects in near-Earth
space. These objects move with high velocity along orbits, such as space debris, or along
a complex trajectory, such as a parabola for rockets. Task planning for Earth observation
applications usually follows a single-to-multiple allocation pattern, i.e., a single satellite
is allocated multiple tasks, while for SSA applications, a multiple-to-multiple allocation
pattern is required. In this context, a satellite may need to supervise multiple objects, and
an object may be supervised by multiple satellites.

To address these issues, in this paper, we propose a hierarchical and distributed
task-planning framework with two layers. On the top layer, a global planner decomposes
satellites and objects into multiple clusters using hard and soft clustering, respectively.
This way of clustering leads to unique satellite clusters, but intersected object clusters, i.e.,
an object may belong to multiple object clusters. Such clustering is compatible with the
multiple-to-multiple allocation pattern. Preprocessing planning is conducted using the
CNP to allocate object clusters to satellite ones. On the bottom layer, local planners in each
satellite cluster employ the CNP to allocate tasks. In the preprocessing and local levels, the
criterion for evaluating tenders was designed as a combination of distance and relative
velocity among satellites, thus taking into account fast-moving objects in SSA applications.
In addition, a customized discrete particle swarm optimization (DPSO) algorithm was
developed to search for the optimal task-planning result in the CNP. Tasks are allocated on
the basis of their priorities, hence allowing for the execution of high-priority tasks even if
the algorithm prematurely stops. By constraining the number of particles for searching
the optimal solution, constraints on the maximal number of tasks that each satellite can
execute are implicitly considered without increasing the computational burden.
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To achieve fast task replanning in the case of urgent tasks, an urgent task planner
is introduced to deal with urgent tasks in an event-triggered manner. Once urgent tasks
come, the urgent planner quickly allocates them to clusters that are already determined by
the global planner on the basis of the proximity between objects and satellites. Then, two
methods are proposed to replan local tasks within each cluster. The first is to replan tasks
using the CNP from scratch to warrant planning optimality at the cost of higher computa-
tional cost. The second method exploits task priorities to replan part of tasks to increase
planning efficiency. To verify the proposed framework, a simulation using the MATLAB
CubeSat Simulation Library was conducted. Results showed that the proposed planning
framework is capable of generating multiple-to-multiple task-planning patterns, and is
significantly more computational efficient when compared to centralized CNP methods.
Moreover, the consideration of both relative distance and velocity during planning reduces
the overall distance among satellites and objects in consecutive sampling instants.

2. Problem Description

Assuming that there are in total n satellites and m objects to be planned with m� n
in typical SSA applications, for a satellite s, two parameters are defined as

s(p, v) = g(a, e, θ, Ω, ω, υ), (1)

where p and velocity v are 3D position and velocity vectors in the Earth-centered-Earth-
fixed (ECEF) reference frame that can be obtained by a function g using 6 Keplerian orbital
elements given a specific time epoch [25]. The Keplerian orbital elements are: semimajor
axis a, eccentricity e, inclination θ, right ascension of ascending node Ω, argument of
periapsis ω, and true anomaly υ. Similarly, 3 parameters are defined for object t as

t(p, v, P) = g(a, e, θ, Ω, ω, υ), (2)

where the first two are the same as those of the satellite, and the last parameter P is the
priority of the task for observing the corresponding object. Throughout the paper, we
assumed the following for the working satellite.

Assumption 1. Every working satellite is able to execute at least one task at any time.

Assumption 2. If a satellite malfunctions or loses connection, it is eliminated from the MSS and
no longer participates in the task-planning and -execution process.

Task planning is a problem to decide a match among satellites and objects. Cost
function

L =
n

∑
i=1

m

∑
j=1

αijh(si, tj) (3)

is defined as the sum of a planning criterion h for all satellites and objects. Defining
αij = 1 the match between satellite i and object j, and αij = 0 for cases without match, the
task-planning problem is to minimize L over αij.

In this paper, resource, communication, and distance constraints were not considered
when minimizing (3). The inclusion of these constraints certainly increases the complexity
of the problem, which is usually solved by computationally demanding algorithms such
as mixed-integer [10] and swarm intelligence optimization [18]. While we focused on
providing the multiple-to-multiple pattern among satellites and objects, the design of
criterion h can implicitly fulfil part of these constraints. For example, the proximity of
satellites can be part of h, and the task-planning results would exclude matches that are too
far away.
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3. Task-Planning Framework

In this section, the proposed hierarchical and distributed task-planning framework of
MSS for SSA applications is presented. Figure 1 shows that the framework consists of two
layers, where a global planner on the top layer is responsible for periodically decomposing
satellites and objects into clusters. Then, a preprocessing-planning step is conducted to
perform cluster-to-cluster task planning. Lastly, in each satellite cluster, a local planner
periodically allocates objects to satellites using the CNP. In addition, an urgent planner
who has complete knowledge of all satellite clusters is introduced. When an urgent task
appears, the urgent planner decides to which satellite cluster the urgent task belongs and
then activates task replanning within the corresponding local cluster. Below, the global,
local, and urgent task planner is described in detail.

Global 
planner

Urgent 
planner

Local planners

Satellite

satellite 
clusters

Urgent 
tasks

Satellite/object 
clusters

Tasks

Figure 1. Hierarchical mission-planning framework of distributed satellite systems for space situa-
tional awareness (SSA).

3.1. Global Task Planner

The global planner, either a satellite in the MSS or a ground station, is aware of
of all other satellites and objects. To avoid the heavy computation and communication
required by CNP in large-scale systems, the global planner first decomposes satellites
into ns unique clusters using canonical k-means++ hard-clustering algorithm [26]. The
algorithm computes a centroid for each cluster and minimizes the sum of point-to-centroid
distances summed over all ns clusters. Parameter ns is tuned on the basis of the total
number of satellites and their distribution in near-Earth space.

To achieve multiple-to-multiple planning pattern, the objects are decomposed into nt
clusters using the Gaussian mixture model (GMM) soft-clustering method [27,28]. Unlike
k-means++ clustering, the GMM method estimates cluster membership posterior probabili-
ties, and then assigns each object to the cluster corresponding to the maximum posterior
probability. Since the output of GMM is probability, an object may belong to multiple
clusters and leads to multiple-to-multiple planning results. In this work, object proximity
was used to build the GMM for such soft clustering. Number of clusters nt is a tuning
parameter that can be examined a posteriori for optimality.

After satellite and object clustering, the global planner works as the manager to
allocate nt object clusters to ns satellite ones with a period of Tglobal . In detail, the global
planner works through the following steps:

1. Tender publication. The global planner broadcasts centroids of all object clusters as

< AIDg, tj >, (4)
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where AIDg is the global manager.
2. Bidding. According to Assumption 1, one satellite from each satellite cluster bids

for at least one tender on the basis of its own status and constraints once the task
cluster is received. In general, the manager satellite in a cluster is selected depending
on satellite ability, such as energy and computation power. Hence, the role of the
manager and contractor is not fixed, and can be dynamically switched back and forth.
In this paper, we assume satellites are homogeneous and select the one closest to
cluster centroid as the cluster manager. The bidding can have three results: reject,
not responding, and bidding. If a satellite decides to bid for a certain task cluster, the
bidding can be expressed as

< bidderj, Bi,j >, (5)

where bidderj is the bidding satellite cluster, and Bi,j is the cost for the i-th satellite
cluster bidding for the j-th object cluster, defined as

Bi,j =


∞, reject,
∞, not responding,
0, bidding.

(6)

3. Task cluster allocation. When the manager receives bidding or the bidding deadline
is over, nt task clusters are allocated to ns satellite clusters by minimizing the cost
function (3) as

α∗cluster = arg min
ns

∑
i=1

nt

∑
j=1

αij(hc(s̄i, t̄j) + Bij), (7)

where hc is the cluster tender-evaluation criterion, s̄i, t̄j are average parameter values,
such as centroids and mean velocities for the i-th satellite cluster and the j-th object
cluster. In this paper, optimal match α∗cluster was obtained by developing a discrete
particle swarm optimization (DPSO) algorithm [29] with task priority P embedded.
Algorithmic details are given in Section 4. Lastly, we have

{t̄1}, {t̄2} . . . , {t̄l1} → s̄1,

{t̄l1+1}, {t̄l1+2} . . . , {t̄l1+l2} → s̄2,

· · · ,

(8)

where one satellite cluster is allocated with multiple object clusters, and the number
of satellites and objects in each cluster is different based on clustering results.

3.2. Local Task Planner

The local task planner is a satellite belonging to a satellite cluster. The local planner
allocates tasks from multiple object clusters in (8) to satellites in the satellite cluster in a
period of Tlocal � Tglobal to quickly adapt to external disturbances and urgent tasks. The
local planner employs CNP and DPSO algorithm as follows:

1. Tender publication. Similar to the global planner, the local planner publishes tenders
to local satellites in the same cluster as

< AIDl , tj > (9)

where AIDl is the local manager.
2. Bidding. This step is exactly same as Step 2 in the global planner, except that only

local satellites bid for the tenders.
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3. Task allocation. When the local manager receives bidding or the bidding deadline is
over, nt,l local tasks are allocated to ns,l satellites as

α∗local = arg min
ns,l

∑
i=1

nt,l

∑
j=1

αij(hl(si, tj) + Bij), (10)

where hl is the local tender-evaluation criterion, designed as

hl = a||si(p)− tj(p)||22 + b||si(v)− tj(v)||22. (11)

Unlike cluster planning criterion (12), the local tender-evaluation criterion is a weighted
combination of relative position and velocity among satellites and objects. The ratio-
nale is that a cluster centroid is a representation of multiple satellites or objects that
covers a large space area; hence, the moving of satellites and objects has fewer effects
on how a cluster is planned. However, on the local level, the moving of satellites and
objects must be taken into account due to their high velocity in a limited space area.

4. Contract signed. Similarly to the global planner, the local planner employs the
iterative DPSO algorithm to obtain (10). The contract is signed, and the task-planning
problem is completed.

3.3. Urgent Task Planner

The urgent task planner operates in an event-triggered manner to achieve fast urgent
task planning. As shown in Figure 1, the urgent planner receives satellite and object cluster
information (8) from the global planner, and assigns urgent tasks to object clusters with
minimal distance between urgent objects and cluster centroids. After receiving the urgent
tasks, the local planner in this cluster activates a task-replanning procedure to allocate
these urgent tasks to local satellites.

In this work, we propose two local task-replanning methods as follows. The first
method is to replan local tasks by performing the CNP from scratch following Steps 1–4 of
the local planner. This method guarantees that the local replanning procedure is optimal in
terms of the cost function (10) when urgent tasks are detected.

The second method is to replan local tasks on the basis of their priorities P. The idea
is to further decompose the local satellite cluster into two parts: one shigh consisting of
satellites of which the lowest priority task has a higher or equal priority than that of the
urgent task, and the other slow consisting of the remaining satellites in the cluster. The main
steps of this method are as follows.

1. Extract priorities P of the urgent tasks.
2. Decompose satellite cluster into shigh and slow parts.
3. Plan urgent tasks to satellites in the slow part following Steps 1–4 of the local planner.

Remark 1. The two task-replanning methods can be applied in different scenarios. If one concerns
the optimality of local planning, and computational power is sufficient for complete replanning, the
first method is desired. On the other hand, if extremely fast task replanning is required for urgent
tasks, the second method is more suitable. In addition, the second method guarantees that tasks of
highest priorities are executed without replanning for safety or timeliness reasons.

Remark 2. The proposed hierarchical framework periodically updates task-planning results in
accordance with global update period Tglobal and local update period Tlocal . As a result, a satellite
supervises an object only in a period of time during which the two are close enough for feasible
supervision. When satellite and object move apart until the distance between them is longer than
the sensor range is, the satellite starts supervising newly planned objects within the sensor range,
and the object is supervised by other satellites. The selection of Tglobal and Tlocal depends on various
factors such as sensor range, and satellite and object velocity.
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Example 1. To better present how the proposed task-planning method works, an example is shown
in Table 1 with 5 satellites and 12 objects, with positions randomly generated from Keplerian orbital
elements. Clustering results using the k-means++ and GMM soft-clustering algorithm for 3 satellite
clusters and 8 object clusters based on their proximity are shown in Table 2. Satellite Cluster 2
contains 3 satellites, and the 2 other satellite clusters have only one satellite. Object Clusters 2
and 6 have 2 objects, and Object 9 belongs to both Object Cluster 5 and 7, complying with the
multiple-to-multiple planning pattern. Given the clustering results, Step 3 of the global planner
was performed, and results are shown in Table 3. Tender-evaluation cost function hc in (7) for the
global planner was designed as the distance between a satellite cluster centroid and an object cluster
centroid as

hc = ||s̄i(p)− t̄j(p)||22. (12)

On the local level, we chose a = 1, b = 500 for local tender-evaluation criterion (11) to
balance the magnitude of satellite position and velocity: the position vector is usually in the range of
106−−107 m, while velocity is around 103 m/s. The local planning results of all clusters are shown
in Table 4 and animated in Figure 2. In this example, since the number of satellites and objects was
small, the clustering result is unique even though the GMM soft-clustering method was employed.
The planning results using a baseline CNP without the proposed hierarchical structure, and satellite
and object clustering are shown in Figure 3. The two planning methods generated slightly different
results, but in principle, objects were allocated to nearby satellites. As is shown in Section 5, the two
methods have advantages and disadvantages in terms of computational efficiency and planning cost.

Suppose that Urgent Task 13 requires supervising an object at position
(−10,206, 197, 2716) km. By computing the distances between the urgent object and the cen-
troids of the three clusters given in Table 4, the urgent object can be assigned to Cluster 3. A
task-replanning procedure following the steps of the local planner leads to an update of the task-
planning result of Cluster 3 shown in Table 5 and Figure 4. The urgent object is allocated to the
closest, Satellite 4. Complete replanning for all satellites and objects is avoided.

Suppose that an urgent task Object 13 has a priority P13 = medium, and satellites in Cluster
3 have tasks with priorities P1 = high, P4 = high, and P5 = low. Using the second task-replanning
method, Cluster 3 is decomposed into two parts, shigh = {1, 4} and slow = {5}. Urgent Task 13 is,
therefore, allocated to Satellite 5 immediately without local replanning from scratch for 3 satellites
and 5 tasks.
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Table 1. Position coordinates of randomly generated 5 satellites and 12 objects in Earth-centered-
Earth-fixed (ECEF) reference frame.

No. x [km] y [km] z [km]

Satellites:
1 −7883 2176 7598
2 2269 6213 9469
3 7091 −2794 −4344
4 −12,203 −1237 738
5 −8294 8632 6378

Objects:
1 −11,304 −640 −220
2 −7350 5563 10,105
3 −13,852 −373 2120
4 4049 7363 −10,494
5 60 −9711 −8224
6 10,512 −1976 7099
7 −9299 8989 4098
8 5793 4092 −5105
9 2254 10,094 791
10 616 8124 1947
11 13,052 −573 2002
12 3138 −10,907 −1095

Table 2. Satellite- and object-clustering results using k-means++ and Gaussian mixture model (GMM)
soft-clustering method, respectively.

Satellite cluster no. 1 2 3
Satellite no. 2 3 [1,4,5]

Object cluster no. 1 2 3 4 5 6 7 8
Object no. 12 [1,3] 4 [2,7] 5 [9,10] 8 [6,11]

Table 3. Satellite- and object-cluster planning results.

Satellite cluster no. 1 2 3
Object cluster no. [3,6,8] [1,5,7] [2,4]

Table 4. Final task-planning results of the example.

Cluster 1 Cluster 2 Cluster 3

Satellite no. 2 3 1 4 5
Object no. [4,6,9,10,11] [5,8,12] 3 1 [2,7]

Table 5. Updated task-planning results of example in case of urgent task using first task-replanning
method.

Cluster 1 Cluster 2 Cluster 3

Satellite no. 2 3 1 4 5
Object no. [4,6,9,10,11] [5,8,12] 3 [1,13] [2,7]
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Figure 3. Task-planning visualization for example using baseline flat contract-net protocol (CNP)
without hierarchical architecture. Filled circles, satellites; ‘+’, objects.

Figure 4. Updated task-planning visualization for results presented in Table 5. Filled circles, satellites;
‘+’, objects. Yellow, blue, and red represent Clusters 1–3, respectively. Urgent task represented as
green ’+’ that is allocated to Satellite 4.

4. Tender-Evaluation DPSO Algorithm

In this section, a tender-evaluation method based on a customized DPSO is described
that was developed for task-planning problems in SSA applications. Comparing with the
canonical DPSO algorithm, as in [30], the customized DPSO algorithm was designed by
considering two additional requirements:

1. tasks of high priorities are allocated first; and
2. there is an upper bound on the maximal number of tasks with which each satellite

can be allocated.

The first requirement ensures that tasks of high priorities can be allocated first if the
algorithm prematurely stops due to limited computational resources or external distur-
bances. The second requirement is a constraint on satellite abilities to execute tasks that
are not explicitly included in optimization Problems (7) and (11) to avoid computationally
expensive constrained mixed-integer optimization.

In the developed algorithm, the position of each particle represents a solution to the
task-planning problem. The mechanism of DPSO is that particles form a particle group
and search for their optimal positions. In implementation, objects are first clustered into
multiple batches, each of which contains objects with the same priority P. The DPSO
algorithm allocates objects in a batch to satellites and repeats this procedure to all batches.
Suppose that the satellites and a batch of objects are encoded by natural numbers from 1 to

Figure 3. Task-planning animation for example using baseline flat contract-net protocol (CNP)
without hierarchical architecture. Filled circles, satellites; ‘+’, objects.
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and search for their optimal positions. In implementation, objects are first clustered into
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algorithm allocates objects in a batch to satellites and repeats this procedure to all batches.
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Figure 4. Updated task-planning animation for results presented in Table 5. Filled circles, satellites;
‘+’, objects. Blue, red, and yellow represent Clusters 1–3, respectively. Urgent task represented as
magenta ’+’ that is allocated to Satellite 4.

4. Tender-Evaluation DPSO Algorithm

In this section, a tender-evaluation method based on a customized DPSO is described
that was developed for task-planning problems in SSA applications. Comparing with the
canonical DPSO algorithm, as in [30], the customized DPSO algorithm was designed by
considering two additional requirements:

1. tasks of high priorities are allocated first; and
2. there is an upper bound on the maximal number of tasks with which each satellite

can be allocated.

The first requirement ensures that tasks of high priorities can be allocated first if the
algorithm prematurely stops due to limited computational resources or external distur-
bances. The second requirement is a constraint on satellite abilities to execute tasks that
are not explicitly included in optimization Problems (7) and (10) to avoid computationally
expensive constrained mixed-integer optimization.

In the developed algorithm, the position of each particle represents a solution to the
task-planning problem. The mechanism of DPSO is that particles form a particle group
and search for their optimal positions. In implementation, objects are first clustered into
multiple batches, each of which contains objects with the same priority P. The DPSO
algorithm allocates objects in a batch to satellites and repeats this procedure to all batches.
Suppose that the satellites and a batch of objects are encoded by natural numbers from 1 to
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n and 1 to mb, respectively, where mb is the number of objects in a batch. Particle position
is a vector of length lp in which the j-th element has a value of i, meaning that the j-th
object is assigned to the i-th satellite. In addition, constraint vector α = [α1, α2, α3, . . . , αn] is
defined to indicate the maximal number of tasks that each satellite can execute, i.e., αi = k
means that at most k objects can be allocated to the i-th satellite. When lp > m, elements
that are encoded by numbers greater than m in the particle position vector do not play a
role in computing the tender-evaluation cost.

An example of particle vector encoding is given in Figure 5. Assuming that the number
of tasks in the batch is 5 and the number of satellites is 3, we also assume that the maximal
number of tasks for the 3 satellites are

α = [3, 2, 1]. (13)

In the beginning, particle position is randomly initialized with length lp = 6 as
Xi = [2, 3, 1, 1, 2, 1], which means that Object 1 is assigned to Satellite 2, Object 2 assigned
to Satellite 3, etc. In this work, the particle position vector is always initialized in a way in
which Constraint (13) is fulfilled. Operations in later iterations only affect the index of the
elements in the position vector, but not their values, thereby obeying Constraint (13) at all
iterations.

1 2 3 4 5

2 3 1 1 2 1

1 2 3

A batch of 
tasks with the 
same priority

Particle

Satellites

Figure 5. Particle encoding in discrete particle swarm optimization (DPSO) algorithm for multiple-
satellite and -object task-planning problems.

After initialization, the position of each particle in the particle group is iteratively
updated by an updating law to reduce the cost of the corresponding optimization problem.
In [30], a DPSO updating law suitable for multisatellite task-planning problems was
proposed that considers three factors: (i) the current position of the particle, (ii) the optimal
historical record of the particle position, and (iii) the historical optimal record of the position
of the particle group. The updating law can be written as

Xi(k + 1) = Xi(k))⊗ (c1 ∗ Xi(k))⊕ (c2 ∗ Pi(k))⊕ (c3 ∗ Pg(k)), (14)

where Xi(k) is the position of the i-th particle at the k-th iteration, Pi(k) is the optimal
historical record of the i-th particle position, and Pg(k) is the historical optimal record of
the position of the particle group. c1, c2, and c3 are the inferior operation thresholds [30]
corresponding to the three factors, respectively.

The updating law can be interpreted as follows. First, an “inertial” operation of the
particle, i.e., the position of the particle, is updated by adjusting the internal structure of
the particle. This operation is expressed as “⊗”, generating two random integer numbers c
and d within [1, lp] and then exchanging the c-th element and d-th element in the particle
vector. The second and the third operations are the “self-recognition” and “social cognition”
of particles, respectively. A particle adjusts its position according to its optimal record Pi
and the particle group optimal record Pg. The operation is represented as “⊕”. In this
operation, a random integer e within [1, lp] is generated so that the e-th element of the
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vector is exchanged with the element that has the same value as that of the e-th element of
its historically optimal position vector Pi or Pg. There may be multiple elements with the
same value in the particle position vector. However, the maximal number of these elements
is constrained by α from the initialization, and the element for exchange can be randomly
selected. Readers can refer to [30] for more algorithmic details. Rigorous mathematical
demonstrations of the complexity and scalability of the algorithm are still an open question
and usually tested using specific benchmark problems [31,32].

5. Simulation

In this section, we first present a static task-planning result, i.e., task planning at a
certain time instant. Then, we show dynamic planning where the global and local planners
update their planning results in the period of Tglobal and Tlocal , as described in Section 3. The
simulation platform was MATLAB 2019b, running on a PC with i5-9600KF CPU and 32 GB
memory. The MATLAB CubeSat Simulation Library was used to generate the random
positions and velocities of satellites and objects around the near-space of Earth.

5.1. Static Planning

We first show the performance of the proposed task-planning framework for tens of
satellites and hundreds of objects in a static scenario, where task planning is performed
at a single time instant. In this simulation, 20 satellites and 200 objects were randomly
generated in the near-space of Earth with different Keplerian orbital elements. As shown
in Figure 6, the proposed distributed task-planning framework decomposed the satellites
into 5 clusters and the objects into 12 clusters. The number of satellites and objects in each
cluster is shown in Table 6. Results clearly show that satellite clusters were determined by
their proximity. In this simulation, 34 objects were allocated to multiple satellites and are
labeled by black circles.
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Figure 6. Task-planning result for 20 satellites and 200 objects with 5 and 12 clusters, respectively.
Filled circles, satellites; crosses, objects; black circles, objects allocated to multiple satellites.
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Table 6. Number of objects allocated to each satellite cluster. There were 34 objects allocated to
multiple satellites. The total number of objects is 200.

Cluster No. 1 2 3 4 5 Total

No. of Satellites 6 4 4 3 3 20
No. of Objects 29 87 54 44 20 234

The computational cost, dominated by GMM clustering and solving optimization
Problems (7) and (10) using the DPSO algorithm, was compared against a baseline flat CNP
method that allocates all tasks to all satellites at once, and does not consist of a hierarchical
structure of global and local planners. Figure 7 shows a comparison for 20 satellites with
3 clusters. Objects were decomposed into 8 clusters. The result demonstrated that the
proposed framework had better scalability than that of the baseline flat CNP, especially
when considering that space objects such as debris number in the tens of thousands, or even
more. The proposed framework has higher computational time when the number of objects
is small because the clustering process has little or even negative effect on computational
time when the scale of a problem is rather small.
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Figure 7. Computational time comparison between the baseline flat CNP and the proposed hierarchical
task planning framework for a single task planning. There are 20 satellites with 5 clusters. The objects
are decomposed into 12 clusters.

information every 144 seconds and compute the corresponding planning cost for all tasks at each time
instant. The planning update period is set to be Tglobal = 2Tlocal = 288 seconds. Figure ?? shows the
relative planning cost C of the two methods as

C = cost f lat/costhierarchical

w.r.t different period ratio
r = Tf lat/Tlocal

. The relative planning cost w.r.t to the number of objects is shown in Figure ??. It can be observed287

that the planning cost gap between the proposed method and the flat CNP decreases as the proposed288

method updates its planning result faster than the baseline CNP. The planning cost gap also decreases289

as the number of objects grows, demonstrating the scalability of the proposed algorithm. It can be290

concluded that the dynamic the proposed method approaches to the baseline CNP when it updates291

faster for large scale problems, showing potentials for practical deployment.292

6. Conclusion293

This paper has proposed a hierarchical and distributed task planning framework customized for294

multiple satellite SSA systems. A global planner is responsible for decomposing multiple satellites and295

tasks into clusters, where local planners allocates tasks to local satellites distributedly using the CNP.296

The framework has introduced an urgent task planner for fast task re-planning in case of urgent tasks.297

A customized DPSO algorithm has been developed to find the optimal planning result effectively and298

efficiently. Simulation results in both static and dynamic scenarios demonstrate that the proposed299

framework is effective and efficient in large-scale task planning and re-planning problems.300

Figure 7. Computational time comparison between baseline flat CNP and proposed hierarchical
task-planning framework for a single task planning. There were 20 satellites with 5 clusters. Objects
were decomposed into 12 clusters.

In the static case, the task planning cost of the proposed hierarchical framework
and the baseline flat CNP, represented by the cost function (3), is compared in Figure 8.
The proposed framework has slightly higher planning cost than that of the baseline CNP.
The task planning cost grows with the number of tasks and the gap between the proposed
framework and the baseline one also increases. However, such increased planning cost can
be accepted considering the significant computational time gain shown in Figure 7.

To further understand how the number of clusters affect computational time and
task-planning cost, we put these two factors of the proposed framework in Figure 9. A clear
trade-off can be observed between computational time and task-planning cost.



Aerospace 2021, 8, 73 13 of 16Version March 10, 2021 submitted to Aerospace 14 of ??

20 40 60 80 100 120 140 160 180 200

No. of objects

0

5

10

15

20

25

N
o
rm

a
liz

e
d
 t
a
s
k
 p

la
n
n
in

g
 c

o
s
t

Hierarchical

Flat

Figure 8. Normalized task planning cost of the baseline flat CNP and the proposed task planning
framework in the static case. There are 20 satellites with 5 clusters. The objects are decomposed into 12
clusters.
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5.2. Dynamic Planning

In the dynamic-planning scenario, the global and local planners update their planning
results in periods of Tglobal and Tlocal , respectively. The baseline flat CNP also updated its
planning in a period of Tf lat. In this scenario, we performed a 2 h orbital simulation, col-
lected the position and velocity information every 144 s, and computed the corresponding
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5.2. Dynamic Planning

In the dynamic-planning scenario, the global and local planners update their planning
results in periods of Tglobal and Tlocal , respectively. The baseline flat CNP also updated
its planning in a period of Tf lat. In this scenario, we performed a 2 h orbital simulation,
collected the position and velocity information every 144 s, and computed the correspond-
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ing planning cost for all tasks at each time instant. The planning update period was set
to be Tglobal = 2Tlocal = 288 s. Figure 10 shows the relative planning cost C of the two
methods as

C = costhierarchical/cost f lat

with regard to different period ratios

r = Tf lat/Tlocal .
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Figure 9. Computational time and the normalized task planning cost w.r.t the number of satellite
clusters in the static case. The total number of satellites and objects is 20 and 200, respectively.
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Figure 10. Task planning cost ratio C w.r.t. different period ratio r in the dynamic planning scenario.
There are 20 satellites with 5 clusters. The 200 objects are decomposed into 12 clusters.

Figure 10. Task-planning cost ratio C with regard to different period ratios r in dynamic-planning
scenario. There were 20 satellites with 5 clusters. The 200 objects were decomposed into 12 clusters.

Relative planning cost with regard to the number of objects is shown in Figure 11.
The planning-cost gap between the proposed method and the flat CNP decreased as the pro-
posed method updated its planning result faster than the baseline CNP did. The planning-
cost gap also decreased as the number of objects grew2, demonstrating the scalability of the
proposed algorithm. Therefore, the proposed method approached the baseline CNP when
it updated faster for large-scale problems, showing potential for practical deployment.
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Figure 11. Task-planning cost ratio C regarding number of objects in dynamic-planning scenario
with r = 5. There were 20 satellites with 5 clusters. Objects were decomposed into 12 clusters.

6. Conclusions

This paper proposed a hierarchical and distributed task-planning framework cus-
tomized for multiple-satellite SSA systems. A global planner decomposes multiple satellites
and tasks into clusters where local planners allocate tasks to local satellites using the CNP.
The framework introduced an urgent task planner for fast task replanning in the case of
urgent tasks. A customized DPSO algorithm was developed to effectively and efficiently
find optimal planning results. Simulation results in static and dynamic scenarios demon-
strated that the proposed framework is effective and efficient in large-scale task-planning
and -replanning problems.
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