
aerospace

Article

Remote Sensing Image Super-Resolution for the Visual System
of a Flight Simulator: Dataset and Baseline

Wenyi Ge 1, Zhitao Wang 2, Guigui Wang 1, Shihan Tan 1 and Jianwei Zhang 3,*

����������
�������

Citation: Ge, W.; Wang, Z.; Wang, G.;

Tan, S.; Zhang, J. Remote Sensing

Image Super-Resolution for the

Visual System of a Flight Simulator:

Dataset and Baseline. Aerospace 2021,

8, 76. https://doi.org/10.3390/

aerospace8030076

Academic Editor: Alexei

Sharpanskykh

Received: 25 February 2021

Accepted: 11 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science,
Sichuan University, Chengdu 610000, China; Gwen.Scu@gmail.com (W.G.); tianshanhangui@126.com (G.W.);
tanshihan_cq@163.com (S.T.)

2 Beijing Satellite Navigation Center (BSNC), Beijing 100094, China; wangzhitao.nav@gmail.com
3 College of Computer Science, Sichuan University, Chengdu 610000, China
* Correspondence: zhangjianwei@scu.edu.cn

Abstract: High-resolution remote sensing images are the key data source for the visual system of a
flight simulator for training a qualified pilot. However, due to hardware limitations, it is an expensive
task to collect spectral and spatial images at very high resolutions. In this work, we try to tackle this
issue with another perspective based on image super-resolution (SR) technology. First, we present a
new ultra-high-resolution remote sensing image dataset named Airport80, which is captured from
the airspace near various airports. Second, a deep learning baseline is proposed by applying the
generative and adversarial mechanism, which is able to reconstruct a high-resolution image during a
single image super-resolution. Experimental results for our benchmark demonstrate the effectiveness
of the proposed network and show it has reached satisfactory performances.

Keywords: flight simulator; remote sensing image; super-resolution; generative adversarial network

1. Introduction

As is well known, air traffic control (ATC) is the key to ensuring the operational safety
of air traffic, which highly depends on the collaboration between the air traffic controller
(ATCO) and the aircrew [1]. The ATCO makes real-time decisions to direct the flight to its
destination based on situational information from the ATC system, while the aircrew flies
the aircraft in strict accordance with the ATCO’s instruction, in an accurate and prompt
manner [2]. Due to safety issues, both the ATCO and aircrew are required to be licensed
by the concerned administration of their country. To obtain a valid license, they must
meet specific requirements for being licensed. In addition, their skills will need to be
re-examined at specified intervals. Thus, training equipment is indispensable for achieving
the training of the ATCO or aircrew, and comprises an ATC simulator for the ATCO and a
flight simulator for the aircrew.

Of these, the flight simulator has become a hot research topic due to its prominent
significance related to flight in the air. The simulator is very important for ensuring flight
safety, and is also able to greatly reduce equipment and maintenance costs [3,4]. The main
purpose of the flight simulator is to provide realistic, real-time, immersive scenarios to
complete the pilots’ training before they fly a real aircraft. The training scenarios consist
of various flight phases, including the airport ground, instrument landing, approach, and
cruise. Furthermore, they also depend on the location of the target flight, for example, the
scene for Chengdu airport is highly distinct from that of Beijing airport. To this end, the
flight simulator puts forward higher requirements for its visual system, for which the most
realistic are given a higher priority.

Currently, remote sensing images are widely applied to build the visual systems of
flight simulators because of their merits of wide and accurate scenes. The development
of remote sensing technology in recent years has led to a great increase in the number of
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satellite images. Remote sensing images have been broadly applied to various research
fields, including target/object detection, temperature measurement, biophysical prediction,
multi-specialist architecture, etc. However, due to hardware limitations of sensors and
high costs for collecting such images, it is difficult to gain very high-resolution images.
Therefore, more and more researchers are preferring to reconstruct high-resolution (HR)
images from low-resolution (LR) images, rather than devoting time to physical imaging
technology.

The single image super-resolution (SISR) task aims to reconstruct high-resolution
images from their low-resolution counterparts. The SISR task is a significant computer
vision and image processing issue that has been widely applied for all kinds of practical
applications. Normally, the SISR problem can be represented by the following forward
observation with a linear degradation process:

Y = HX̃ + η (1)

Y ∈ RN/s×N/s is an obtained LR image (N/s× N/s is the resolution of the LR image).
H ∈ RN/s×N/s denotes a downsampling operation (typically, a bicubic interpolation) that
is able to resize an HR input image X̃ ∈ RN×N by a scaling factor s. In general, η is defined
as an additive white Gaussian noise with a standard deviation σ. However, in real-world
natural scenes, η also accounts for all possible noise during the image collection process.
The noise may be the inherent sensor noise, stochastic noise, compression artifacts, etc.
As is well known, the downsampling operation H is a typical ill-conditioned or singular
problem, since the unknown noise (η) is usually imposed on the images. Therefore, there
are many possible solutions for this task.

In this work, we attempt to utilize super-resolution technology to reconstruct the LR
image into an HR one, which is further applied to build a more accurate and realistic visual
system for the flight simulator. Due to the lack of a public remote sensing image dataset
for the super-resolution task in this field, we first present a new dataset named Airport80,
which consists of 80 ultra-high-resolution remote sensing images. This benchmark was
captured from the airspace near the airports of many major cities in Asia, so it contains all
kinds of natural scenes.

In succession, learning from current state-of-the-art works, we propose a simple yet
powerful generative adversarial network (GAN) to achieve the remote sensing image
super-resolution task. The gaming between the generative and discriminative models
is expected to fit different image information caused by diverse scenes and reduces the
dependencies of training samples. In general, the GAN-based SR approach is mainly to
address the drawbacks of losing the high-frequency information and the fine details [5],
and is able to obtain a perceptually satisfying reconstruction result.

Basically, the proposed method is based on the super-resolution generative adversarial
network (SRGAN) [5] and we integrate some of the latest network design methods into
the model to make it better. Since the SISR task is finally completed by the generator, our
improvements mainly focus on the adjustment of the structure of the generator network.
We first remove batch normalization (BN) layers from the generator. It has been confirmed
that BN layers have no effect on performance in some PSNR-oriented tasks, like super-
resolution. Removing BN layers helps to improve training stability and save memory usage.
Second, for better ability to extract features, we replace the activation function from ReLU
with PReLU [6]. Last, enlightened by [7], we also introduce deformable convolutional
kernels into the generator, which can adjust the convolution sampling location by learning
and focus on the extraction of local related information. Experimental results demonstrate
that our approach can achieve comparable performances with state-of-the-art methods.

We summarize our primary contributions as follows.

• Due to the lack of a dataset for the super-resolution task in the research field of the
visual system of a flight simulator, we present a new dataset named Airport80, which
contains 80 ultra-high-resolution remote sensing images captured from the airspace
near airports.
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• We propose a neural network based on the GAN framework to serve as a baseline
model of this dataset, in which some of the latest network designs are integrated
into the model to improve the SISR performance. The proposed method is capable of
generating realistic textures during a single remote sensing image super-resolution.

• Experimental results for the proposed benchmark demonstrate the effectiveness of
the proposed method and show it has reached satisfactory performances. We hope
that this work can bring better quality data for the visual system of a flight simulator.

2. Related Work

After decades of research, super-resolution approaches can generally be categorized
into the following types: traditional methods and deep-learning-based methods. Basically,
the traditional methods focus on structuring a compact dictionary or manifold space to
connect patches between the low-resolution and high-resolution areas of an image. In
succession, the super-resolution task can be achieved by proposing a representation scheme
to conduct the super-resolution operations. A dictionary-based approach was proposed by
Freeman et al. [8], in which some key dictionaries were pre-defined to present the scene
pairs between the low-resolution and high-resolution patches. In this work, the nearest
neighbor (NN) algorithm is applied to search the most similar patch for the input in the
defined dictionary, and the corresponding high-resolution counterpart is thereby regarded
as the reconstructed patch (image area). Recently, a manifold embedding technique was
proposed by Change et al. [9] to replace the NN-based search strategy and showed desired
performance improvements. Following this idea, the sparse coding formulation was also
introduced by Yang et al. [10] to serve as an alternative solution of the NN algorithm, which
further improves the performance of the super-resolution task.

Thanks to the powerful ability of the neural network to capture nonlinear transforma-
tion, deep-learning-based approaches were introduced to solve the super-resolution task
and showed the performance priority over the traditional methods. A deep-learning-based
model [11] was first built to achieve the image SR task in an end-to-end manner and
achieved superior performance against previous works. Due to the shallow architecture,
the CNN-based deep learning model [12] was designed with more convolutional layers (up
to 20) to improve the final performance, in which the residual learning mechanism [13] was
applied to address the gradient problems during model training. A deeper architecture
(up to 52 convolutional layers), called the deep recursive residual network, was designed
by Tai et al. [14] to further enhance the accuracy of the SR task. In these methods, the
LR input is first upscaled to change its size to that of the HR image before feeding it into
the network to complete the image reconstruction. Obviously, this design requires more
computational resources (memory) and training time. To solve this issue, Shi et al. [15]
proposed a sub-pixel layer, with the goal of learning a set of upsampling transformations
to integrate the LR feature maps into the HR output in a more efficient way. This approach
not only replaces the bicubic operation of the SR pipeline with more complex upsampling
maps but also reduces the computational complexity for the overall SR operation. Recently,
a deeper and wider network architecture was proposed by Lim et al. [16] to reconstruct the
HR images from their LR inputs, in which the batch normalization layers [17] are removed
to improve the final performance. The dense connection mechanism [18] was also adopted
to complete the SR task, in which all the hierarchical features from convolutional layers are
considered to generate high-resolution patches.

Like other computer vision tasks, the perception mechanism was also introduced
to the SR research. The first work is the SRGAN model [5], which is able to reconstruct
perceptually more pleasant high-resolution images. In order to pay more attention to the
visual quality of generated images, the perceptual loss function [19] was lately introduced
into GAN-based SR approaches. In those models, an adversarial loss was also proposed
to formulate a combined loss function, which can produce photo-realistic high-resolution
images. To further improve the performance for the GAN-based SR models, the enhanced
super-resolution generative adversarial network (ESRGAN) [20] model was proposed,
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where the state-of-the-art perceptual SR images can be obtained up until now. More
recently, a benchmark protocol was presented by Lugmayr et al. [21] to recover real-world
image corruptions, in which real-world challenge series [22] are also introduced to describe
the influences of the bicubic downsampling operation and separate degradation learning
for super-resolution. Later, a downsample generative adversarial network (DSGAN) [23]
was proposed to capture the degradation transformation by fitting the transformation
distribution in an unsupervised manner, and the ESRGAN was also modified as ESRGAN-
frequency separation (FS) to further improve its accuracy in a real-world setting.

3. Methodology
3.1. Airport80 Dataset

As far as we know, there are few public remote sensing image datasets for super-
resolution tasks in the visual system of a flight simulator for the air transportation industry.
Therefore, we have created a new dataset named Airport80, containing 80 ultra-high-
resolution remote sensing images. This benchmark was captured from the airspace near
the airports of many major cities in Asia, so it contains all kinds of real-world structures.
We term it Airport80 to be consistent with the naming of other super-resolution datasets,
like Set5 [24], Set14 [25], and Urban100 [26]. Due to image content and copyright issues,
this dataset is meant for research purposes.

Resolution and Diversity: Each image was captured by a remote sensing satellite
with a spatial resolution of 0.6 meters. Therefore, all 80 images are ultra-high-resolution,
which means each of them has 4K pixels on at least one of the axes (horizontal or vertical),
and some of them even have 20,000 × 20,000 resolution. In addition, this dataset includes
a wealth of real-world scenes, such as urban settings, ports, deserts, hills, lakes, rivers,
and so on. We randomly selected 60 images for training and used the rest for testing.
Considering the ultra-high resolution issue, we cropped the remaining 20 images to 1440×
1440 resolution with fixed step size and obtained 250 sub-images as the final testing
set. Figure 1 shows some samples from our new dataset. We hope that this dataset can
supplement current super-resolution tasks for remote sensing images, which are further
applied to build the visual system of a flight simulator for training a qualified pilot.

Figure 1. Selected samples from Airport80 dataset.

Evaluation Metrics: Like other super-resolution benchmarks, two commonly used
metrics, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [27] were
considered to achieve a quantitative evaluation of the Airport80 dataset. PSNR is calculated
via the mean squared error and the maximum value (denoted as L) of the images. Given
the target image I and the reconstruction image Ĩ, the PSNR measurement can be obtained
by:
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PSNR(I, Ĩ) = 10 · log10(
L2

1
N ∑N

i=1(I(i)− Ĩ(i))2
) (2)

where L equals 255 in 8-bit images. In addition, SSIM is proposed for estimating the
structural similarity between two images. In general, the properties of an image, includ-
ing contrast, luminance, and structures, are independently evaluated to calculate a fair
comparison, as shown below:

SSIM(I, Ĩ) =
(2µIµ Ĩ + c1)(2σI Ĩ + c2)

(µ2
I + µ2

Ĩ + c1)(σ
2
I + σ2

Ĩ + c2)
(3)

where µ∗ represents the mean of each image, σ∗ represents the variance of each image,
and σI Ĩ represents the covariance of two images. c1, c2, c3 are constants used to maintain
stability.

3.2. Network Architecture
3.2.1. Baseline Model

The architecture of the proposed SR network is shown in Figure 2. Briefly, it is a typical
application of the GAN [28] family in super-resolution tasks. We made some improvements
to make it more suitable for the super-resolution task of remote sensing images in respect
of research into the visual system of a flight simulator. It contains two individual neural
networks: a generator G is designed to estimate a given LR image its HR counterpart, and
a discriminator D is designed to discriminate real HR images from generated samples and
ground-truth. The details of the two networks will be introduced in the following parts.

(a) Generator

(b) Discriminator

Figure 2. The architecture of the networks. Different color blocks represent different function
modules.

The discriminator uses modules of the form Convolution-BatchNorm-LeakyReLU.
In general, a total of 8 convolutional layers are stacked to formulate the discriminator, in
which an incremental number of 3× 3 kernels are designed, increasing by a factor of 2
from 64 to 512 like VGG [29]. The convolution operations with stride 2 are utilized to
downsampling the resolution of the feature map each time, while the number of kernels
will be doubled. Finally, the feature representations are converted into the probability
distribution, in which two fully connected layers and a sigmoid function are applied to
achieve the classification task.
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3.2.2. Incremental Details

Since the SISR task is finally completed by the generator, our improvements mainly
focus on the adjustment of the structure of the generator network. As depicted in Figure 2,
the generator is broadly composed of three parts: (1) a series of basic blocks is responsible
for extracting convolutional features for the low-resolution image, (2) a skip connection
operator is designed for concatenating high-level and low-level features, and (3) a fusion
block is used to fuse features and complete the final output. Compared with the original
SRGAN [5], we have modified the structure of the basic blocks and fusion blocks.

In the basic blocks, we first remove batch normalization (BN) layers. BN layers
have been proven to decrease performance in some PSNR-oriented tasks, like super-
resolution, image deblurring, and image dehazing. Referring to ESRGAN [20], BN layers
are more likely to create artifacts when the network goes deeper. These artifacts occasionally
appear among iterations and different settings, violating the need for stable performance
overtraining. Thus, removing BN layers will help to improve the stability of training and
save memory usage, As shown in Figure 3.

(a) SRGAN (b) Ours

Figure 3. The structures of different basic blocks. Different color blocks represent different layers.

In addition, for better ability to extract features, we changed the activation function
from ReLU to parameteric rectified linear unit (PReLU) [6]. It is expressed as:

f (x) =

{
ax, x ≤ 0
x, x > 0

(4)

The parameter a is initially set to 0.25, and it will be updated automatically while
training. Because there are only a few parameters added to the network, the computation
and risks of over-fitting will not increase too much. The curves of two activation functions
are shown in Figure 4.

(a) ReLU (b) PReLU

Figure 4. Curves of different activation functions. The red line represents the different parts of the
two activation functions.
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The inherent limitation with standard convolutional networks is that they are unable
to handle geometric transformations due to their fixed shape kernel. Although some
extension types like dilated convolution [30] are presented to alleviate this issue, it is still
challenging for the standard kernel to align the related locations or salient features in the
input image. To solve this issue, recent work [7] introduced the deformable convolutional
kernel [31] into the super-resolution task to improve the capability of modeling geometric
transformations by adding flexible and learnable offsets. Following this strategy, we
simply replaced the standard convolutional kernel with the deformable one, as depicted in
Figure 5. The standard convolution of each position p0 in the image is expressed as

y(p0) = ∑
pn∈R

w(pn)x(p0 + pn) (5)

where x means the feature maps or inputs, w means the sampled weights and R represents
the size of the receptive field. In the deformable kernel, R is augmented with offsets
{∆pn|n = 1, ..., N}

y(p0) = ∑
pn∈R

w(pn)x(p0 + pn + ∆pn) (6)

(a) SRGAN (b) Ours

Figure 5. The structures of different fusion blocks. Different color blocks represent different layers.

The offsets can be learned automatically during the training phase. The standard
convolution with a fixed receptive field will introduce irrelevant background noise. By
introducing the deformable convolutional kernel, we hope that the network can learn
convolution sampling locations autonomously and focus more on the extraction of local-
related information. Figure 6 shows the sampling locations of two convolutions.

(a) Standard convolution (b) Deformable convolution

Figure 6. Illustration of the sampling locations in standard and deformable convolutions. Blue points
in (b) represent the final sampling locations in deformable convolutions. Images come from [31].

3.3. Loss Function

The model is trained to simultaneously minimize perceptual loss Lpercep, adversarial
loss LRa

G , and context loss L1.
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Different from the pixel-wise losses, the perceptual loss [19] leverages multi-scale
features extracted by a pretrained classification network to estimate high-level perceptual
and semantic information differences between images. In our implementation, the loss
makes use of VGG-19 [29] pretrained on ImageNet [32] as the loss network φ and extracts
the features from the last layer of each of the first three stages. The perceptual loss is
defined as

Lpercep =
3

∑
j=1

1
CjHjWj

||φj(J
′
)− φj(J)||22 (7)

where φj(J
′
)φj(J), j = 1, 2, 3 denote the aforementioned three VGG-19 feature maps asso-

ciated with the dehazed image J
′

and the clear image J, and Cj, Hj, and Wj specify the
dimension of φj(J

′
)φj(J).

In addition, we modified the standard discriminator to the relativistic average discrimi-
nator (RaD) [33], denoted as DRa. The standard discriminator is defined as D(x) = σ(C(x)),
σ means sigmoid function and C(x) represents the non-transformed discriminator output.
Thus, the RaD can be formulated as DRa(xr, x f ) = σ(C(xr)−E[C(x f )]), and E[] means the
average of all generated samples in the mini-batch. The loss of the discriminator is then
defined as:

LRa
D = −Exr [log(DRa(xr, x f ))]−Ex f [log(1− DRa(x f , xr))] (8)

The adversarial loss for the generator is in a symmetrical form:

LRa
G = −Exr [1− log(DRa(xr, x f ))]−Ex f [log(DRa(x f , xr))] (9)

where x f = G(xi) and xi stands for the input LR image. At last, L1 loss is regarded as
the context loss formulated by L1 = Ext ||G(xi)− y||1 that evaluates the 1-norm distance
between reconstructed image G(xi) and the ground-truth y. Overall, the multi-task loss L
is a weighted sum of those losses:

L = λ1Lpercep + λ2LRa
G + λ3L1 (10)

where λ1, λ2, λ3 are predefined constants indicating the relative strength of each compo-
nent. To keep the balance of different losses, we set them to 1.0, 5× 10−3, and 1× 10−2,
respectively.

4. Experiments
4.1. Training Details

Like SRGAN [5] and ESRGAN [20], all of our experiments were performed with
a scaling factor of ×4 between HR and LR images. It is worth noting that only the
Airport80 dataset was used as the training data, and no images from the extra dataset were
involved in the training phase. We kept all the training parameters of the unofficial SRGAN
implementation provided by MMEditing (https://github.com/open-mmlab/mmediting/
(accessed on 25 February 2021)). We crop 128× 128 HR sub-images and set the batch size
to 16. Unlike the original SRGAN [5], we did not utilize a PSNR-oriented pretrained model
to initialize the generator. The model was optimized by Adam [34] with β1 = 0.9 and
β2 = 0.999. The learning rate was initially set to 1× 10−4 and halved at [50k, 100k, 200k,
300k] iterations. All experiments were carried out on a standard PC with Intel (Santa Clara,
USA) i7-6800k and two NVIDIA (Santa Clara, USA) TITAN RTX GPUs.

4.2. Ablation Study

In order to investigate the effectiveness of our improvements, we first trained some
PSNR-oriented models and conducted several ablation studies. As we mentioned above,
our network was built on SRGAN [5], thus the generator named SRResNet in SRGAN

https://github.com/open-mmlab/mmediting/
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was selected as our baseline model. The PSNR-oriented model was only trained with the
L1 loss, and the learning rate was initially set to 2× 10−4 and halved every 2× 105 of
iterations. The comparison results are listed in Table 1. Apparently, we can see that the
adaptations of our model achieve progress on the two metrics compared to the baseline
model. Compared with others, the performance improvement obtained by replacing the
activation function is not very obvious. However, this adjustment is easy to implement and
makes little change to the network, so we still added it to get a better performance. Finally,
we integrated all of improvements and obtained a further promotion of each evaluation
value, which demonstrates the proposed components are effective for the super-resolution
task.

Table 1. The impact of different network designs. Each model was evaluated on the Airport80
dataset.

BN Removal PReLU DeformConv PSNR SSIM

26.08 0.7054
√

26.75 (↑ 0.67) 0.7251 (↑ 0.0197)
√

26.34 (↑ 0.26) 0.7156 (↑ 0.0102)
√

26.68 (↑ 0.60) 0.7215 (↑ 0.0161)
√ √ √

27.01 (↑ 0.93) 0.7292 (↑ 0.0238)

4.3. Experimental Results

For fair comparison, we evaluated the proposed network on the Airport80 dataset for
quantitative comparisons with other methods, including nearest-neighbor interpolation,
bicubic interpolation, SRCNN [11], SRGAN [5], and SRResNet [5]. In addition, all the
implementations came from the MMEditing image and video editing toolbox. It is worth
noting that SRCNN and SRResNet belong to PSNR-oriented methods, while the SRGAN
and our method belong to the perceptual-driven approaches. Referring to [35], the PSNR
only deals with the differences between corresponding pixels instead of visual perception,
which usually leads to unsatisfactory performance in representing the reconstruction
quality in natural scenes, where we are usually more concerned with human perceptions.
Therefore, the PSNR and SSIM in Table 2 are provided for reference.

Table 2. Quantitative comparisons for Airport80 using different methods. ”Ours*” represents the
generator of our method, trained with the PSNR-oriented task.

Metric Nearest Bicubic SRCNN SRGAN SRResNet Ours* Ours

PSNR 23.47 25.12 25.74 23.22 26.08 27.01 24.59

SSIM 0.6109 0.6744 0.6896 0.6184 0.7054 0.7292 0.6375

It can be observed from Figure 7 that the proposed method outperforms the above
mentioned approaches in both detail and sharpness. Although Bicubic and SRCNN
obtain higher PSNR and SSIM, their reconstructions are generally fuzzy, and the human
perception is not very good. On the contrary, SRGAN and our method, which are based on
a perceptual-driven approach, achieve better edge and texture details. That also proves
that PSNR and SSIM are not effective metrics for perceptual quality. Compared with
SRGAN [5], our method controls the color consistency better, as shown in Figure 7, and
some unpleasant color patches appear in the resulting image of SRGAN. It is worth noting
that none of the above methods can handle fine textures, such as the farmland in the lower
right corner of the fourth sample.
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(a) Source (b) HR (c) Bicubic (d) SRCNN (e) SRGAN (f) Ours

Figure 7. Qualitative comparisons of Airport80 for different methods. In order to show the details
better, the original image of all the resulting images was cropped from the test dataset.

5. Conclusions

In this paper, we started from the perspective of computer vision and utilized super-
resolution technology to tackle the problem of high-resolution remote sensing image
acquisition for the visual system of a flight simulator. First, due to the lack of relevant
datasets in this field, we created a new dataset named Airport80, which contains 80
ultra-high-resolution remote sensing images and can be used for training and testing super-
resolution algorithms. Second, a baseline model based on GAN and integrating some
of the latest network designs was presented to generate realistic high-resolution images
from low-resolution ones. Finally, the experimental results for our dataset demonstrate the
effectiveness of the proposed method and show it has reached satisfactory performances.
We hope that the above work can make a supplement to the current remote sensing image
super-resolution field.

In the next step, we plan to combine some object detectors with our super-resolution
network and test its application in real scenes. For example, detecting vehicles, ships and
buildings in low-resolution remote sensing images
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