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Abstract: Aiming to solve the optimal control problem for the pursuit-evasion game with a space non-
cooperative target under the condition of incomplete information, a new method degenerating the
game into a strong tracking problem is proposed, where the unknown target maneuver is processed
as colored noise. First, the relative motion is modeled in the rotating local vertical local horizontal
(LVLH) frame originated at a virtual Chief based on the Hill-Clohessy-Wiltshire relative dynamics,
while the measurement models for three different sensor schemes (i.e., single LOS (line-of-sight)
sensor, LOS range sensor and double LOS sensor) are established and an extended Kalman Filter
(EKF) is used to obtain the relative state of target. Next, under the assumption that the unknown
maneuver of the target is colored noise, the game control law of chaser is derived based on the
linear quadratic differential game theory. Furthermore, the optimal control law considering the
thrust limitation is obtained. After that, the observability of the relative orbit state is analyzed,
where the relative orbit is weakly observable in a short period of time in the case of only LOS angle
measurements, fully observable in the cases of LOS range and double LOS measurement schemes.
Finally, numerical simulations are conducted to verify the proposed method. The results show that
by using the single LOS scheme, the chaser would firstly approach the target but then would lose
the game because of the existence of the target’s unknown maneuver. Conversely, the chaser can
successfully win the game in the cases of LOS range and double LOS sensor schemes.

Keywords: space non-cooperative target; differential games; game control; incomplete information
games; observability analysis

1. Introduction

With the progress of human space exploration, the number of space debris and inac-
tive satellites has been increasing sharply, which has become a significant threat to active
spacecraft and satellites; thus, cleaning up these space debris has become an important
issue. Furthermore, along with the development of space rendezvous and docking technol-
ogy [1,2], non-cooperative target observation [3] and approaching technics [4], the safety of
space assets is threatened more than ever by military vehicles. Therefore, protecting the
safety of space assets in face of these threats is critical for cleaning space. Many studies
have been done to find a way out, e.g., space situational awareness, on-orbit servicing and
so on [5–12]. Developing on-orbit servicing vehicles with corresponding GNC (guidance,
navigation and control) systems used to handle the space debris, inactive satellites and
military vehicles threating to the space asset is the most effective method for safety. In
this manuscript, the topic of pursuit-evasion game control, as a further problem of space
rendezvous for space non-cooperative target, will be studied.

ISAACS [13] has the earliest study for differential games, and gave the optimal
necessary conditions for pursuit-evasion games. In 1971, Friedman [14] established the
theory of differential game value and saddle point existence using the discrete approximate
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sequence, which laid a solid mathematical foundation in the differential game. Starr
and Ho [15] studied the nonzero-sum N-person differential game of three different types.
Roxin and Tsokos [16] gave the mathematical definition of stochastic differential game,
Nichols [17] pointed out the relationship between the stochastic differential game and
cybernetics and Ciletti [18–21] studied the differential game containing information delay,
and established the open loop and closed loop control of the information delay differential
game. In the 1980s, Stackelberg’s [22] master-slave differential game become the new
hotspot among many scholars in the 1990s. Since 2000, differential game research has
mainly concentrated on the zero-sum with state constraints and the differential game,
many differential game and incomplete information differential pairs.

Aumann and Maschler [23] and Harsanyi [24] studied static incomplete informa-
tion differential countermeasures, where Harsanyi converted the game with incomplete
information into a complete but imperfect game, and used the methods for processing
full information. Kreps and Wilson [25] studied the dynamic incomplete information
differential countermeasures, introducing the perfect Bayesian balance, sequential bal-
ance, etc. to introduce discrete dynamic games. The basis and conditions for making
decisions for non-cooperative targets are unable to understand that the relevant relative
state information of the other party may not be obtained in the incomplete information
game. For the first problem mentioned above, Woodbury and Hurtado proposed adaptive
control policies [26] that obtain the weight of the target function of the other party by
order, which is not applicable to the unknown target function form; for the latter prob-
lem mentioned above, they proposed a method of adding an additional spacecraft for
observation to obtain location information of the target [27]. Cavalieri further studied
the incomplete information game in uncertain relative kinetics situation by joining the
problem of the incomplete information game [28] with further studies of the incomplete
information game in uncertain relative kinetics [29], that is, joining an estimate on the
basis of the behavioral learning algorithm. Woodbury used similar methods [30]. Since
the learning algorithm requires strong on-board calculation capabilities, Liu et al. built a
fuzzy reasoning model to characterize continuous space, and proposed a branch depth
strengthening learning architecture with multiple sets of parallel neural networks and
shared decision modules [31]. Linville used the linear regression model [32] for incomplete
information game to improve the practicality of the depth learning algorithm. DONG
et al. proposed a multi-mode adaptive solution to the incomplete information game [33].
Similarly, Li studied the incomplete information game by estimating and modifying the
guess of target’s control strategy constantly [34].

As an important case of incomplete information, bearings-only measurements have
been widely studied. Oshman and Davidson proposed a method which is based on
maximizing the determinant of the Fisher information matrix (FIM) to design the optimal
observation trajectory for observer [35]. Battistini and Shima proposed a new guidance
strategy that exploits the information from the error covariance matrix of the homing
loop integrated Kalman filter in the framework of a pursuit-evasion game for missile [36].
Fonod and Shima studied cooperative estimation/guidance for a team of missiles by using
bearings-only measurements [37]. Battistini presented a method for characterizing the
capture region of a pursuit-evasion game in terms of the confidence on the estimation of
the ZEM [38].

In summary, the pursuit-evasion game problem in the complicated space environment
is quite challenging, especially in the case of incomplete feedback information. The main
contribution of this research is to develop the space pursuit-evasion game control algorithm
in the context of incomplete feedback information, i.e., angles-only measurements and
known target maneuvers. Unlike previous researches estimating the unknown maneu-
vers by over-burden calculated artificial intelligent approach, the proposed algorithm in
this paper treats it as colored noise, while a double line-of-sight scheme is developed to
overcome the problems of the colored noise and observability resulting from angles-only
measurements. It can potentially provide a feasible solution to the space game problem.
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The rest of the paper is organized as follows. The relative motion dynamics for the
game participants are presented in Section 2. The measurements models for three obser-
vation schemes are established in Section 3, followed by the observability analysis for the
states in Section 4. The basic theory of the differential game control of pursuit-evasion is
reviewed in Section 5. The space pursuit-evasion game control algorithm based on incom-
plete information is designed in Section 6. Numerical simulations with performance index
and simulation parameters are set in Section 7. Conclusions are presented in Section 8.

2. Relative Dynamics Model

Two participants in a two-player spacecraft pursuit-evasion (PE) game are called
Pursuer and Evader, respectively. Typically, the objective of the Pursuer is to inter-
cept/rendezvous with the Evader and the objective of the Evader is to avoid or delay
the interception/rendezvous. To descript the pursuit-evasion game between Pursuer and
Evader, a rotating local vertical local horizontal (LVLH) reference frame is adopted. The
origin of the LVLH frame is collocated with a virtual Chief, as shown in Figure 1, where the
axes are aligned with the inertial position vector (x axis or radial), the normal to orbit plane
(z axis or cross track) and the along-track direction (y axis completes the orthogonal set).
Let the relative orbit state be x = [rT , vT ]

T , where the superscript T stands for the operator
of transposition. Vectors without a superscript are assumed to be coordinated in LVLH
frames.
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Figure 1. Illustration of the virtual Chief orbital coordinate system.

Then, under the assumptions of near-circular orbit, the two-body problem and that
the range between the virtual Chief and the participants in the game is relatively small
compared to the radial distance to the center of the Earth, the relative motion of the
participants with respect to the virtual Chief can be governed by the well-known Hill-
Clohessy-Wiltshire (HCW) equation [39]:{ .

xp = Axp + Bup.
xe = Axe + Bue

(1)

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

 (2)

B =

[
03×3
I3×3

]
(3)

where the subscripts of p and e stand for Pursuer and Evader, respectively, n is the orbital
rate of the virtual chief and u is the control acceleration, which is loaded on the participants
along the three axes of LVLH frame.
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Then, let the relative state of Evader relative to Pursuer be x = xe − xp in the defined
LVLH frame, which can be obtained from Equation (1) as follows:

.
x = Ax + Bpup + Beue (4)

where Bp = −B, Be = B.

3. Measurement Models

The relative motion geometry between the Evader and Pursuer in the LVLH frame
is shown in Figure 2, where the measurements observed by the Pursuer are generally
assumed to be the line-of-sight (LOS) angles and relative range. Three observation schemes,
i.e., single LOS sensor, LOS range sensor and double LOS sensors, are discussed in the
following sections.
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3.1. Single LOS Sensor Measurement

When the LOS angles are measured from only one passive camera available for the
Pursuer, the observation can be modeled as follows:

Z =

[
α
β

]
=

[
arctan( y

x )
arctan( z√

x2+y2
)

]
(5)

where α and β are the azimuth and pitch angle, respectively.

3.2. LOS Range Sensor Measurement

With the active sensor such as radar/lidar on board, both of the LOS angles and range
can be measured. Then, the observation model can be governed as follows:

Z =

 α
β
ρ

 =

 arctan( y
x )

arctan( z√
x2+y2

)√
x2 + y2 + z2

 (6)

where ρ refers to the distance between the Pursuer and Evader.

3.3. Double LOS Sensor Measurement

When two or more passive optical sensors (e.g., two cameras) can be used to measure
the LOS, as shown in Figure 3, the observation model can be given as follows:
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Z =


α1
β1
α2
β2
R

 =



arctan( y1
x1
)

arctan( z1√
x2

1+y2
1
)

arctan( y2
x2
)

arctan( z2√
x2

2+y2
2
)

x1 − x2
y1 − y2
z1 − z2


(7)

where the subscripts 1 and 2 are the label of sensors, [x1 y1 z1]
T and [x2 y2 z2]

T stand
for the relative position from the Evader to the cameras, respectively, and the vector R
represents the baseline between two cameras, which is supposed to be known and can be
calculated from the locations of the cameras.
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Accordingly, when the observation model shown in Equation (7) is used, the system
state X for the estimation can be switched to a 12-dimension vector as follows:

X =
[

xe1 xe2
]T (8)

where xe1 and xe2 refer to the state of the Evader as related to the cameras of the Pursuer.

4. Observability Analysis

Conceptually, the system is observable if the relative state can be uniquely determined
from the measurements in time history. By contrast, the system is unobservable if more than
one set of states share the same measurements in time history. The goal of this section is to
mathematically analyze the observability of the system for the three utilized measurement
modes based on the method presented in Ref. [2].

4.1. Observability Analysis in the Case of Single LOS Sensor Measurement

The observation equations can be conducted through a transformation in the form
of “Analogous Linearization” [40]. Taking the tangent of the LOS angles α and β in
Equation (5) and simplifying yields:[

x sin(α)− y cos(α)
y sin(β)− z sin(α) cos(β)

]
= 0 (9)

By reorganizing Equation (9), a homogeneous linear equation is obtained:

hA(Z)x = 0 (10)
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where:

hA(Z) =
[

sin(α) − cos(α) 0
0 sin(β) − sin(α) cos(β)

|02×3

]
(11)

Obviously, the rank of hA(Z) is 2. Then, the 6-dimension state x cannot be uniquely
solved. Theoretically, at least three sets of measurements are required for solving x uniquely.
Then, if there are three sets of measurements, the following linear equations can be obtained:

hA(Z0)x0 = 0
hA(Z1)x1 = 0
hA(Z2)x2 = 0

(12)

where x0 is the initial relative state. The state xk on epoch tk can be obtained from state
transition equation, which is derived from the solution of the HCW equation, as follows:

xk = φxk−1 + Guk−1 + ωk−1 (13)

where φ is the state transition matrix, G is the control driven matrix, and ωk−1 is noise
which originates from the maneuver of Evader and error of the HCW equation.

Substituting Equation (13) into Equation (12) and reforming the equation produces
gives the following: hA(Z0)

hA(Z1)φ
hA(Z2)φ

2

x0 = −

 0
hA(Z1)(Gu0 + ω0)

hA(Z2)(φ(Gu0 + ω0) + Gu1 + ω1)

 (14)

Equation (14) is a non-homogeneous linear equation if the maneuver of Pursuer is
non-zero, where the control vector of Pursuer u is non-linear function of state vector x.
Then, the initial relative state vector can be solved when ωk−1 is known, so the system is
observable if the maneuver of the Evader is known. However, the colored noise ωk−1 (the
Evader’s maneuver) is unknown, so even if the system is observable, the solution would
be polluted, which decreases the accuracy of the solution.

4.2. Observability Analysis with the LOS Range Measurement

When the distance measurement is added to the observation, the relative position of
the Evader can be calculated by the following equation:

r = ρ

 cos(α) cos(β)
cos(α) sin(β)

sin(α)

 (15)

Thus, the converted observation is:

hr(Zk) = rk = Cxk (16)

where:
C =

[
I 0

]
3×6 (17)

hr(Z) = ρ

 cos(α) cos(β)
cos(α) sin(β)

sin(α)

 (18)

Similarly, the rank of hr(Z) is 3 and the dimension of state x is 6, so at least two sets
of measurements are required for solution of state x. Then, based on Equation (13) and
Equation (16), the following equation can be obtained:[

C
Cφ

]
x0 =

[
hr(Z0)

hr(Z1)− C(Gu0 + ω0)

]
(19)
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Equation (19) is a non-homogeneous linear equation, and the system is observable if
the maneuver of the Evader is known. Different from the single LOS sensor measurement
case, Equation (19) has the component

[
hr

T(Z0) hr
T(Z1)

]T , which means that the filter
is more stable in the case of joint measurement with LOS and range sensors.

4.3. Observability Analysis with Double LOS Measurements

When the binocular camera is used, the observation model of Equation (7) can be
used. Similar to the observability analysis of a single camera measurement, the following
equation can be obtained: hA(α1, β1) 02×6

02×6 hA(α2, β2)
I3×3 03×3 −I3×3 03×3

X =

[
04×1

R

]
(20)

Equation (20) can be written in the following form:

HDA(Z)X =

[
04×1

R

]
(21)

where the rank of HDA(Z) is 6; thus, X cannot be determined uniquely from Equation (21).
The state transfer equation of X can be obtained by Equation (13) in the following form:

Xk = ΦXk−1 + Yk−1 (22)

where:

Φ =

[
φ 0
0 φ

]
(23)

Yk−1 =

[
Guk−1
Guk−1

]
+ (Φ− I)


R1

03×1
R2

03×1

 (24)

Based on Equations (21) and (22), the following equation can be obtained when two
sets of measurements are available:

[
HDA(Z0)

HDA(Z1)Φ

]
X0 =


04×1

R
04×1

R

− [ 07×1
HDA(Z1)Y0

]
(25)

Under the measurement of double LOS sensors, the filter has strong convergent
performance with the measurement component made up of R, R1, and R2, and the system
still has observability with limited colored noise. Compared to the above two measurement
methods, Table 1 is obtained.

Table 1. Comparison of the above three measurement methods.

Observability Single LOS LOS Range Double LOS

white noise � � �
colored noise � �

5. Review of Differential Game Control Theory

In Pursuit-Evasion games, as the basis for the decision-making of the Pursuer and
Evader, the cost function often takes the following form:

Ji = φi(x(t f ), t f ) +
∫ t f

t0

Li(x, up, ue, t)dt (26)
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where the subscript i stands for the participant p or Evader e. Both parties involved in the
game would like to make self-interested control decisions, so the following well-known
inequality [41] holds:

Je(u∗p, ue) ≥ Je(u∗p, u∗e ) (27)

Jp(u∗p, u∗e ) ≤ Jp(up, u∗e ) (28)

where u∗p and u∗e denote the optimal control of the Pursuer and Evader, respectively.
When Jp + Je = 0, the equation shown above is a so-called zero-sum differential game

problem. The linear quadratic differential game is widely studied; its cost function is

composed of terminal error 1
2 xT(t f )Sx(t f ), integration of process error 1

2

∫ t f
t0

xT(t)Qx(t)dt

and fuel consumption 1
2

∫ t f
t0

u(t)Ru(t)dt, and it is studied in this paper in the form of the
following equations:

Jp =
1
2

xT(t f )Sx(t f ) +
1
2

∫ t f

t0

(xT(t)Qx(t) + uT
p (t)Rpup(t)−uT

e (t)Reue(t))dt (29)

Je = −Jp (30)

where S and Q are symmetric positive semi-definite matrices and Rp and Re are symmetric
positive definite matrices.

Based on Equations (27)–(30), the optimal control strategies for both game parties can
be obtained in the form of inequality as follows:

Jp(u∗p, ue) ≤ Jp(u∗p, u∗e ) ≤ Jp(up, u∗e ) (31)

The Hamiltonian function can be defined as follows;

H =
1
2
(xT(t)Qx(t) + uT

p (t)Rpup(t)− uT
e (t)Reue(t)) + λT(Ax + Bpup + Beue) (32)

Then, the following equation can be obtained from Equation (31):

H(u∗p, u∗e ) = min
up

max
ue

H(up, ue) (33)

Thus, the optimal control law of both parties in the game can be obtained by the
following equation:

∂H
∂up

= Rpup + BT
p λ = 0 (34)

∂H
∂ue

= −Reue + BT
e λ = 0 (35)

Therefore, the optimal control law of both parties involved in the game can be ob-
tained as:

u∗p = −R−1
p BT

p λ (36)

u∗e = R−1
e BT

e λ (37)

where λ = Px, P can be obtained from the following Riccati equation:

.
P + PA + ATP− PBpR−1

p BT
p P + PBeR−1

e BT
e P + Q = 0, P(t f ) = S (38)

When t f = ∞, the cost function, that is, Equation (26), will only have integral terms,
as shown below:

Jp =
1
2

∫ ∞

t0

(xT(t)Qx(t) + uT
p (t)Rpup(t)−uT

e (t)Reue(t))dt (39)
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The optimal control laws u∗p and u∗e are given, respectively, as follows:

u∗p = −R−1
p BT

p Px (40)

u∗e = −R−1
e BT

e Px (41)

where matrix P can be solved from the following Riccati algebraic equation:

PA + ATP− PBpR−1
p BT

p P + PBeR−1
e BT

e P + Q = 0 (42)

6. Control of Incomplete Information Pursuit-Evasion Games

In the previous section, the optimal control law based on linear quadratic differential
game with complete information is established, which is, in essence, used to solve the
saddle-point control problem based on the Nash equilibrium hypothesis [42]. The optimal
control law discussed above has good applicability to non-cooperative targets without
maneuverability and cooperative targets. However, the pursuit-evasion game strategy
of space non-cooperative targets is unknown and uncertain in reality. Thus, the optimal
control law discussed above will be invalid if the game is in the incomplete information
condition. Therefore, based on the complete information game control law, solving the
problem of redesigning the game control law in the incomplete information condition is
discussed in the following section.

6.1. Degradation of Pursuit-Evasion Games

The control strategy of space non-cooperative targets is unknown because of:

(1) The cost function of the non-cooperative target is not known, and its cost function is
not necessarily the same as the form discussed above.

(2) The weight matrix of the cost function is not known, that is, even if the non-cooperative
target adopts the cost function as the form discussed above, its weight matrix is not
necessarily known.

Therefore, the maneuver of the target is not discussed in this paper, and it is treated
as colored noise to derive the game control law. After the above method is processed,
the incomplete information pursuit-evasion game will degenerate into an optimal control
problem. Thus, the dynamic model Equation (4) will degenerate into:

.
x = Ax + Bpup + ωe (43)

where ωe denotes the colored noise resulting from the maneuver of the Evader. The cost
function in Equation (29) can be obtained as follows:

Jp =

{
1
2 xT(t f )Sx(t f ) +

1
2

∫ t f
t0

(xT(t)Qx(t) + uT
p (t)Rpup(t))dt t f 6= ∞

1
2

∫ ∞
t0

(xT(t)Qx(t) + uT
p (t)Rpup(t))dt t f = ∞

(44)

The Hamiltonian function is given as:

H =
1
2
(xT(t)Qx(t) + uT

p (t)Rpup(t)) + λT(Ax + Bpup) (45)

The optimal control of the Pursuer is as follows:

u∗p = −R−1
p BT

p Px (46)

P can be obtained from the following equations:

.
P + PA + ATP− PBpR−1

p BT
p P + Q = 0, P(t f ) = S, t f 6= ∞ (47)

PA + ATP− PBpR−1
p BT

p P + Q = 0, t f = ∞ (48)
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Obtaining the optimal control law of the Pursuer requires acknowledging the relative
state vector of the Evader with respect to the Pursuer, as Equation (46) shows. When
treating the Evader’s maneuver as colored noise, it is impossible to obtain accurate relative
state vector from the relative dynamic model, and the state of the Evader needs to be
extracted from the observation information. Thus, an extended Kalman filter is used to
obtain the estimated value of the relative state x.

6.2. Control Restrictions

In the actual situation, the maneuverability of the satellite is limited, which means
the thruster output is limited. Therefore, the aforementioned derivation and design of the
control law cannot be directly used in engineering, where Pontryagin’s principle [43] can
be used in the following form to solve the problem:

u∗p = argmin
up

H (49)

Normally, the weight matrix Rp in the cost function taken as KRI, KR is a number
and I is an identity matrix. Therefore, the Hamiltonian function can be obtained from
Equation (45) in the limit control case:

H =
1
2
(xT(t)Qx(t) + KRU2

p) + λT(Ax + BpUpep) (50)

where Up and ep are the amplitude and unit direction vector of up, respectively, thus:

up = Upep (51)

From Equation (49), the following equation can be obtained:

H(x(t), Up, λ, ep) ≥ H(x(t), Up, λ, ep0) (52)

where ep0 = − BT
p λ

‖λTBp‖
, thus:

H(x(t), Up, λ, ep0) =
1
2

KRU2
p − ‖λTBp‖Up +

1
2

xT(t)Qx(t)+) + λTAx (53)

From Equation (34), we can get:

∂H
∂Up

= KRUp − ‖λTBp‖ = 0 (54)

When ‖λ
TBp‖
KR

≤ Upmax, Upmax denotes the limitation of control. From Equation (54),
we can get:

U∗p =
‖λTBp‖

KR
(55)

u∗p = U∗pep0 = −
BT

p λ

KR
= −R−1

p BT
p λ (56)

When ‖λTBp‖
KR

> Upmax, Equation (54) cannot be used directly, but the following
equation can be obtained from Pontryagin’s principle:

U∗p = Upmax (57)

u∗p = U∗pep0 = −
BT

p λ

‖λTBp‖
Upmax = −

R−1
p BT

p λ

‖R−1
p BT

p λ‖
Upmax (58)
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7. Numerical Simulations

The simulation frame of the space pursuit-evasion game for a near-circular orbit target
was established in a MATLAB (version 2020b) environment. The entire architecture of the
method proposed in this paper is shown in Figure 4.
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The key parameters for the simulation are shown in Tables 2 and 3.

Table 2. Virtual Chief orbit parameters settings.

Parameters Value

Semi-Major Axis 16,000 km
Eccentricity 0.02

Right Ascension of the Ascending Node 0 rad
Inclination 0.1 rad

Argument of periapsis 0 rad
True anomaly 0.06 rad

Table 3. Other parameters settings.

Parameters Value

Pursuer’s initial relative state xp0 [0 km 0 km 0 km 0 m/s 0 m/s 0 m/s]T

Evader’s initial relative state xe0
[0.6 km 0.4 km 0.7 km 0.1 m/s

0.1 m/s 0.1 m/s]T

Initial relative position x0 xe0 − xp0

Initial relative position estimate
^
x0 1.2x0

Initial status error covariance matrix (
_
x 0 − x0)(

_
x 0 − x0)

T

Camera measurement error σa 10−4rad
Angle measurement error covariance matrix I2×2 × σ2

a
Distance measurement error σρ 1 m

Equivalent position measurement error with angle and
distance measurement σaρ

1.2 m

Angle and distance measurement error covariance matrix I3×3 × σ2
aρ

Model error covariance matrix without maneuver limit I6×6 × 10−4

Model error covariance matrix with maneuver limit I6×6

Because HCW is adopted in this paper, the orbit of the virtual Chief must be a nearly
circular orbit. In other words, the eccentricity of the virtual Chief should be very small.

The Evader adopts the game control law using complete information, which theoret-
ically represent the optimal control in the game. In other words, in extreme conditions
where the Evader fully knows the Pursuer’s maneuver strategy, and performs the optimal
escape control, while the Pursuer can still track and approach the Evader using incomplete
information in the game, then, we can say that the pursuit mission can be completed in
other, easier conditions.
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7.1. Single LOS Measurement Case

First, the optimal control law obtained by the Evader using complete information is
analyzed, where the Pursuer’s maneuvering weight matrix is Rp = I3×3 × 109, and the
Evader’s maneuvering weight matrices are Re = 1.6 Rp, 2Rp, 5Rp, 10Rp or ∞Rp respec-
tively to verify the effectiveness of the algorithm with different forms of maneuverability
of the Evader, shown in Figure 5.
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Figure 5. Distance between the Evader and Pursuer when the Pursuer uses a single LOS measurement and the Evader uses
different maneuver weights.

When Re = ∞Rp (the Evader does not maneuver), as the observability analysis
indicated, the Pursuer can approach the Evader. However, when the Pursuer is sufficiently
close to the Evader, the Pursuer’s maneuver is not obvious, which leads to non-observability
of the system, so the Pursuer moves away from the Evader, as shown in Figure 5.

When the Evader maneuvers, which represent color noise in the filter, the Pursuer can
get close to the Evader, but the error cannot be eliminated, as shown in Figure 5. Thus,
the Pursuer moves away from the Evader. Therefore, making the Evader’s maneuver
as colored noise is not suitable for an incomplete information game with a single LOS
measurement.

7.2. LOS Range Measurement Case

When angle and distance measurements are used for observation, the equivalent
position measurement can be obtained through numerical calculation. The mean value and
standard deviation of the measurement error are shown in Figure 6. Figure 6 also shows
the Pursuer’s measurement precision for a 1 km range using the accuracy from Table 3.
The equivalent position measurement error is 1.2 m (maximum).

In this paper, we only discuss the case with a limited maneuvering capabilities of the
Pursuer and Evader because of the maximum thrust limit. First, the Pursuer and Evader
use the same maneuver limit, as Upmax = Uemax = 1 m/s2. The Pursuer maneuvering
weight matrix is Rp = I3×3 × 105 , while the Evader uses different maneuvering weight
matrices, i.e., Re = 2 Rp, 2.5Rp, 3.74287Rp, 3.74288Rp, 5Rp or ∞Rp, as shown in Figure 7.

Re = 3.74288Rp is the boundary beyond which the Pursuer can approach the Evader
when the LOS range measurement is used. Figure 8 shows the case where Uemax = 0.8 m/s2,
and the Evader takes different maneuvering weight matrices Re = 1.6 Rp, 2Rp or 2.5Rp,
respectively.
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Figure 6. The mean value and standard deviation of the Evader’s position measurement error with
LOS range measurement when the distance between the Pursuer and the Evader is 1 km.
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Figure 7. Distance between the Evader and Pursuer when the Evader and Pursuer use the same maneuver limit while the
Evader uses different maneuver weights.
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Figure 8. Distance between the Evader and Pursuer and maneuver of the Evader and Pursuer when the Evader and Pursuer
use different maneuver limits while the Evader uses different maneuver weights.
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When the maneuver limit between the Pursuer and Evader is different, the Pursuer
can gradually get close to the Evader if the limit of the Evader is smaller than the Pursuer,
e.g., Re = 1.6Rp. The control strategy of the Evader is not considered when designing the
control of the Pursuer, so the Pursuer cannot catch the Evader when Re = 1.6Rp. Therefore,
the Pursuer can no longer get close to the Evader when the maneuvering amplitude of the
Pursuer is lower than the limit, so a relatively stable distance between the Pursuer and the
Evader exists in the game process.

7.3. Double LOS Measurement Case

Similar to the discussion in the previous section. First, the Pursuer and Evader use
the same maneuver limit, i.e., Upmax = Uemax = 1 m/s2. The Pursuer maneuvering weight
matrix is Rp = I3×3 × 105 , while the Evader uses different maneuvering weight matrices,
i.e., Re = 2 Rp, 2.5Rp, 3.825Rp, 3.826Rp, 5Rp or ∞Rp, as shown in Figure 9.
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Figure 9. Distance between the Evader and Pursuer when the Evader and Pursuer use the same maneuver limit while the
Evader uses different maneuver weights.

Re = 3.826Rp is the boundary beyond which the Pursuer can approach the Evader
when the double LOS measurement is used. Figure 10 shows the case where the Pursuer
and Evader use different maneuver weights, i.e., Upmax = 1 m/s2, Uemax = 0.8m/s2.

Similar to the previous section, the Pursuer cannot catch the Evader when Re is small,
because the control strategy of the Evader is not considered when designing the control of
the Pursuer, such as Re = 1.6Rp and 2Rp. However, when Re is big enough, i.e., Re = 2.5Rp,
the Pursuer can catch the Evader.
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Figure 10. Distance between the Evader and Pursuer and the acceleration in the double LOS measurement case where
ue 6= 0.
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8. Conclusions

To solve the incomplete information game problem with a space non-cooperative
target, this paper studied the optimal control algorithm based on the differential game
theory where the unknown maneuver of the Evader is processed as colored noise. EKF was
used to obtain the Evader’s relative state, and thus, observability analysis with different
measurement methods is performed and its influence on the proposed algorithm is also
shown in the fourth section. Numerical simulations were conducted to verify the proposed
algorithm using different measurement models. The following conclusions are obtained:

(1) The measurement method has a great influence on the algorithm proposed in this
paper. When single angle measurement is used, the Pursuer can approach the Evader
using observation information at the beginning, but the chasing process cannot be
maintained because of weak observability. However, the Pursuer can approach the
Evader when LOS range or double LOS sensor measurements are used by the Pursuer.

(2) There is still some position/displacement/distance estimation error, although ob-
servability is improved by adding the distance measurement or when the double
LOS sensor measurement is used, as shown in Figure 11. Thus, the Pursuer cannot
catch the Evader when Rp <Re < 3.74288Rp in the LOS range measurement case, or
Rp <Re < 3.826Rp in the double LOS measurement case. The critical value of Re with
which the Pursuer can catch the Evader will be smaller if Uemax < Upmax.

(3) The essence of the method proposed in this paper is that the Pursuer seeks the
optimal control approaching the Evader under the assumption that the Evader’s
maneuverability is lower than that of the Pursuer.
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