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Abstract: An integrated guidance and control (IGC) scheme considering the field-of-view (FOV)
constraint is proposed in this paper for hypersonic skid-to-turn (STT) missiles with a strapdown
seeker intercepting a high-speed maneuvering target, which is based on the backstepping control
(BC), barrier Lyapunov function (BLF), sliding mode control (SMC), dynamic surface control (DSC),
and reduced-order extended state observer (ESO). First, a fifth-order strict feedback IGC model
considering the rudder delay dynamics is derived, which also considers the drag effect on the axial
velocity. Second, the missile guidance control system based on the BC consists of seeker, guidance,
angle-of-attack, attitude, and rudder subsystems. The seeker subsystem was designed based on
the BLF, and the other four subsystems were designed based on the SMC. The system-lumped
disturbances, including unknown target maneuvers, unmodeled parts, perturbations caused by
aerodynamic parameter variations, and external disturbances, were estimated and compensated
for using the reduced-order ESO. The DSC prevented the “differential explosion” caused by virtual
control commands introduced by the BC. Subsequently, the stability of the closed-loop system
was strictly proven using the Lyapunov theory, and the boundedness of the FOV angle was strictly
derived. Finally, the simulation results demonstrated the effectiveness and robustness of the proposed
IGC scheme.

Keywords: integrated guidance and control; hypersonic homing missiles; barrier Lyapunov function;
backstepping control; reduced-order ESO

1. Introduction

Emergency maneuver avoidance is common for general maneuvering targets when
missile interception is encountered. There are new requirements for missile speed and
maneuverability, as the target has increased speed and maneuverability. It is challenging to
design a missile guidance control system (GCS) for hypersonic missiles that can precisely
intercept high-speed and highly maneuvering targets [1]. In particular, it is highly likely to
result in a large field-of-view (FOV) angle owing to the target maneuvering during pursuit.
Both gimbaled and strapdown seekers have a limited FOV range [2]. The gimbaled seeker
is fixed to an inertial pedestal with a stabilization loop to isolate body movements and a
tracking loop to maintain the seeker axis along the missile–target line [3]. It has a wide
FOV range, and can directly measure the line-of-sight (LOS) angular rate required by the
guidance law. The disadvantages are its complex structure and high cost. In contrast,
the strapdown seeker is fixed directly to the missile body and has attracted considerable
attention over the years because of its compact structure, high reliability, low cost, and
unlimited tracking rate [4]. Unlike the gimbaled seeker, the strapdown seeker is coupled
with attitude data of the body, so only the body LOS (BLOS) is measurable, and it often
needs to be decoupled when designing the GCS [5]. However, the FOV range of strapdown
seekers is smaller. During the pursuit of a maneuvering target, the missile must constantly
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adjust its body attitude to generate a large overload and achieve precision strikes. This can
easily cause an extreme FOV angle during the homing phase and thus a loss of the target,
resulting in mission failure.

The design of a GCS that considers the FOV constraint has received considerable
attention, and most of the research focuses on the design of guidance laws. In [6], a
guidance law that considers FOV constraints was proposed for maneuvering targets. The
FOV angle is equivalent to the missile look angle (the angle between the missile velocity
and the missile–target LOS), based on the assumption that the angle of attack is sufficiently
small. This guidance law ensures that the missile look angle is within a certain range
by constructing a sliding mode surface and introducing a sigmoid function. Kim and
Lee [7] proposed a guidance law based on optimal control to achieve the narrow FOV
constraint for homing missiles. In [8], the FOV constraint is equivalently transformed into
a time-varying asymmetric constraint on the missile–target relative velocity perpendicular
to the LOS, and the guidance law was designed based on the dynamic surface control
(DSC) and time-varying asymmetric barrier Lyapunov function (BLF), which achieves not
only the FOV constraint but also the impact angle constraint. In [9], a double-constrained
guidance law with seeker FOV and impact angle constraints was proposed. This law is
realized by introducing a hyperbolic tangent function to design the virtual guidance law
and one-to-one nonlinear mapping. Zhou and Hu [10] used a quadratic Lyapunov function
and an integral Lyapunov function to implement the guidance law with dual constraints of
the seeker FOV angle and impact angle constraint for variable speed conditions. In [11],
the guidance law with FOV and impact time constraints was implemented by defining
two time-varying sliding mode surfaces. Han and Hu [12] achieved the seeker FOV angle
constraint together with the impact time and angle constraints. In [13], a cooperative
guidance law was proposed to ensure the attack of multiple missiles on a stationary target
with a guaranteed FOV constraint. In [14], an optimal guidance law based on optimal
control theory was proposed for the homing phase. It comprises an acceleration command
to guarantee the maximum look angle in the initial phase, an acceleration command to
guarantee the look angle constraint in the homing phase, and an acceleration command to
achieve the impact angle constraint.

In summary, the above guidance laws considering the FOV constraint assume that
the angle of attack is sufficiently small, in which case the look angle of missiles can be
equivalent to the BLOS, and the FOV constraint and precise interception can be achieved
by constraining the look angle of missiles. However, this assumption is tantamount to
ignoring the attitude dynamics of the missiles. In the actual interception, to achieve precise
interception it is necessary to adjust the speed direction constantly, and the missile speed
variation is a result of the combined effect of the missile lift and gravity, whereas the
missile lift is mainly dependent on the angle of attack. When a missile has to perform large
angle-of-attack maneuvers in an intercept scenario, the assumption does not hold. The FOV
constraint is likely to be violated in an interception, or it will fail to intercept. Therefore,
such an assumption is too ideal to be realized in the flight control of missiles.

Another disadvantage of the aforementioned guidance laws, which are designed
for the missile guidance loop, is that the dynamic characteristics of the autopilot are
ignored. The guidance loop and control loop are designed separately (SGC) in a traditional
manner for the GCS of missiles and then matched together. This method is based on the
assumption of spectral separation, and its main drawback is that it ignores the coupling
effect between the two subsystems [15]. The SGC method is effective for low-velocity
missiles. However, for the terminal guidance phase of a hypersonic missile to intercept a
high-speed maneuvering target, the design of the GCS is challenging because of its fast
time-varying and strongly nonlinear system states [16]. In this case, the assumption of
spectrum separation was no longer valid. If the SGC method is used to design the GCS, the
interception performance may degrade, and the GCS may be unstable when intercepting
a high-speed maneuvering target. In contrast, the integrated guidance and control (IGC)
method can directly generate control commands based on missile system states and missile–
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target relative motion states. This method fully considers the coupling effects of guidance
and control subsystems. This is a very effective way to solve the problem of the degraded
GCS performance generated by the SGC method [17]. In addition, the IGC method can
shorten the development cycle, improve the economy and reliability, and improve the
stability of the GCS [18].

Because the IGC method treats the guidance and control loops as a whole, the GCS
itself is a high-order nonlinear system. There are also mismatched uncertainties caused by
target maneuvers, time-varying parameter perturbations, and external disturbances, which
will create many difficulties for the controller design when considering design constraints,
such as the impact angle constraint or FOV constraint [19]. In recent years, many studies
have explored the IGC method considering the FOV constraint and have achieved some
results. In [20], an IGC method considering the FOV constraint was proposed for missiles
with a strapdown seeker, using the BLOS angle as a system state and establishing a
functional relationship with the LOS angle. The integral BLF was used to ensure that the
BLOS angle was within the given constraint range. In [21], an IGC model was simplified
by introducing an axial overload, and an IGC method considering the FOV constraint was
proposed based on the DSC and integral BLF. Based on this, a new IGC scheme considering
the FOV constraint was proposed in the literature [22] for striking a stationary or moving
target based on the output-to-input saturation transformation (OIST) technique, which can
be applied to the entire homing phase without the assumption of a small angle of attack.
In [23], a three-dimensional low-order IGC model considering the FOV constraint was
established, and a three-dimensional IGC scheme based on an integral BLF was proposed.

In summary, the subjects of the mentioned IGC schemes considering the FOV con-
straint are all subsonic or supersonic missiles with a strapdown seeker, which mainly
uses the BLF to ensure that the BLOS angle does not exceed its maximum FOV angle.
They are all based on the assumption that the control command is the rudder angle; that
is, the delayed dynamic characteristics of the rudder are ignored. However, the flight
speed of hypersonic interceptor missiles exceeds Mach 5. The system states are rapidly
time-varying in the terminal phase. In particular, as it is the only actuator of the missile
in the terminal guidance phase, the delayed dynamic characteristics of the rudder will
seriously affect the missile body’s response speed. Therefore, thought should be given
to increasing the designed controller’s performance. In this paper, a new IGC scheme
considering the FOV constraint is proposed based on backstepping control (BC), DSC, and
BLF for intercepting a high-speed maneuvering target using a hypersonic skid-to-turn
(STT) missile with a strapdown seeker. Unlike the guiding law design, the assumption
of a small angle of attack was avoided. In contrast to other works [20–23], the striking
of a hypersonic missile intercepting a high-speed maneuvering target was studied, and
the important part was to simplify the rudder as a first-order delay model. The rudder
angle was then taken as the system state of the IGC model. Inspired by the literature [20],
we solved the strapdown seeker FOV constraint using the BLF. Furthermore, the lumped
system disturbances, including aerodynamic parameter perturbations, unmodeled parts of
the system, external disturbances, and target maneuverability, were accurately estimated
using the reduced-order extended state observer (ESO). The main contributions of this
study that distinguish it from previous works are as follows:

1. In contrast to the literature [17,24], based on the BLOS, LOS angular rate, angle of at-
tack, pitch angle rate, and rudder angle, a strict-feedback nonlinear IGC pursuit model
under the variable-speed condition is established, which considers the aerodynamic
drag and omits the assumption of a small angle of attack.

2. Based on the BC, BLF, and DSC, a new IGC controller is proposed to achieve precise
hitting of a supersonic maneuvering target by a hypersonic missile, where the BLF is
introduced to ensure that the FOV constraint is realized. The lumped disturbances
in each loop of the system model were estimated using the reduced-order ESO and
compensated in the controller to enhance robustness.
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3. The stability of the closed-loop system was strictly proven using the Lyapunov theory,
and the boundedness of the FOV angle was theoretically proven. The simulation
results further verified the effectiveness and robustness of the proposed IGC scheme.

The remainder of this paper is organized as follows. The derivation of the IGC model
is presented in Section 2. Section 3 introduces the proposed IGC scheme for strapdown
missiles. A closed-loop system stability analysis is presented in Section 4. The simulation
results and analysis are presented in Section 5. Finally, Section 6 summarizes the conclusions
of this study.

2. Problem Formulation

In this section, the missile dynamics and geometric equations, first-order dynamics
model of the rudder, and missile–target engagement kinematics are first elaborated, and
the missile IGC model is subsequently derived.

2.1. IGC Model Derivation

The missile–target engagement geometry for the strapdown missile in the pitch plane
is shown as Figure 1, where M and T represent the missile and target, respectively. R is
the relative distance along the LOS. VM and VT denote the velocities of the missile and
target, respectively, and their flight path angles are θM and θT . (xM, yM) and (xT , yT)
denote the positions of the missile and target in the inertial coordinate system, respectively.
The missile axial acceleration and normal acceleration are represented as aX

M and aY
M,

respectively. Similarly, the target axial acceleration and normal acceleration are denoted as
aX

T and aY
T , respectively. xB represents the missile body axis, qB the BLOS angle, qL the LOS

angle, ϑ the missile pitch angle, and α the angle of attack.
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Figure 1. Two-dimensional missile–target engagement geometry for the strapdown missile.

The missile–target engagement dynamics are formulated as follows:

.
R = VT cos(θT − qL)−VM cos(θM − qL) (1)

R
.
qL = VT sin(θT − qL)−VM sin(θM − qL) (2)

Differentiating Equation (2) combining with Equation (1) yields

R
..
qL +

.
R

.
qL = −

.
R

.
qL − aY

M cos(θM − qL)− aX
M sin(θM − qL) + dT (3)

where aY
M = VM

.
θM, aX

M =
.

VM, dT = aY
T cos(θT − qL) + aX

T sin(θM − qL) is the uncertain

term caused by the unknown target acceleration, aY
T = VT

.
θT , and aX

T =
.

VT .
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The planar nonlinear missile dynamics and geometric equation are as follows:

α = ϑ− θM (4)
.
ϑ = ωz (5)

aY
M = VM

.
θM =

T sin α + Y
m

− g cos θM (6)

aX
M =

.
VM =

T cos α− D
m

− g sin θM (7)

Jz
.

ωz = M0(α, ωz, δz) (8)

The lift force and pitch moment are described as{
Y = QS(cα

yα + cδz
y δz)

D = cx0QS + cα2
x QSα2 (9)


M0 = Mαα + Mωz ωz + Mδz δz

Mα = QSlmα
z

Mωz =
QSl2mωz

z
VM

Mδz = QSlmδz
z

(10)

From the geometry in Figure 1, it can be deduced that

qB = qL − ϑ (11)

Defining d1 = −ωz, differentiating Equation (11), and combining with Equation (5)
yields

.
qB =

.
qL + d1 (12)

According to Equations (6), (7) and (9), and neglecting the small terms, the missile
axial and normal accelerations can be approximated as aX

M =
.

VM = T cos α
m − cx0QS+cα2

x QSα
m − g sin θM + daX

M

aY
M = VM

.
θM = T sin α

m +
QScα

y
m α− g cos θM + daY

M

(13)

where daX
M

and daY
M

denote approximation errors.

Assumption 1. The engine thrust is 0 in the terminal guidance phase, i.e., T = 0.

Substituting Equation (13) into Equation (3) yields

R
..
qL +

.
R

.
qL = −

.
R

.
qL − cos(θM − qL)[

QScα
y

m α− g cos θM + daY
M
]

+ sin(θM − qL)[
cx0QS

m + cα2
x QS

m α + g sin θM − daX
M
] + dT

= −
.
R

.
qL + g cos θM cos(θM − qL) + ( cx0QS

m + g sin θM) sin(θM − qL)

+[ cα2
x QS

m sin(θM − qL)−
QScα

y
m cos(θM − qL)]α + d2(daY

M
, daX

M
, dT)

(14)

where d2(daY
M

, daX
M

, dT) is the lumped disturbance, which contains unmodeled parts of the
system, perturbations caused by time-varying aerodynamic parameters, and uncertain
terms caused by the target maneuvers.

Remark 1. Owing to the rudder mechanical structure, in addition to the limitation of the maximum
rudder angle, the dynamic delay between the actual rudder command and the rudder angle must be
considered owing to the fast time-varying characteristics in the terminal guidance phase, which are
ignored in most of the literature.
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The rudder system model can be approximated as

δzc = τz
.
δz + δz (15)

Owing to the physical limitations of the actuator, the saturation constraint of the
rudder deflection angle can be expressed as

sat(δzc) =

{
δmax

zc sign(δz), if |δzc| > δmax
zc

δzc, if |δzc| ≤ δmax
zc

(16)

To simplify the equations, the system parameters are redefined as follows:

a1 = QScx0
m , a2 = QScα2

x
m , a3 =

QScα
y

m , a4 =
QScδz

y
m ,

a5 = QSlmα
z

Jz
, a6 = QSl2mωz

z
JzVM

, a7 = QSlmδz
z

Jz
, a8 = 1

τz

Defining the state vector X = [x1, x2, x3, x4, x5] = [qB,
.
qL, α, ωz, δz] and the control

input u = δzc, the IGC model for the strapdown missile with strict-feedback state questions
can be formulated as 

.
x1 = b1x2 + d1.
x2 = f2(x2) + b2x3 + d2.
x3 = f3(x3) + b3x4 + d3.
x4 = f4(x4) + b4x5 + d4.
x5 = f5(x5) + b5u

(17)

where 

b1 = 1, d1 = −ωz

f2(x2) = −
2

.
R

.
qL

R + g cos θM cos(θM−qL)+(a1+g sin θM) sin(θM−qL)
R

b2 = a2 sin(θM−qL)−a3 cos(θM−qL)
R , d2 = d2

(
daY

MS
, daX

MS
, dT

)
f3(x3) = − a3

VM
α + g cos θM

VM
, b3 = 1, d3 = dα

f4(x4) = a5α + a6ωz, b4 = a7, d4 = dωz

f5(x5) = −a8δz, b5 = a8


Assumption 2. The lumped disturbances di, i = 1, 2, · · · , 4 in system (17) and their first-order
derivatives are bounded; however, the upper bounds are unknown.

Remark 2. d1 is determined by the pitch angular velocity of the missile, d2 is mainly determined by
the unknown target acceleration, and d3 and d4 are more influenced by the perturbations caused by
variation in the aerodynamic parameters. As the variations in the target maneuver, aerodynamic
parameters, and missile attitude are all bounded, Assumption 2 is reasonable.

2.2. IGC Controller Design Objective

The objectives of this study were to design an IGC controller for the strict feedback
IGC model in Equation (17), which can satisfy the following requirements:

• The FOV constraint is satisfied during the entire interception; that is, |x1| < qmax
B ,

where qmax
B is the maximum seeker FOV angle.

• The desired terminal FOV angle converges to 0, i.e., qB → qBd = 0 .
• The actuator dynamic characteristics are considered, and a small miss distance is

achieved.
• All signals of the closed-loop system are uniform ultimately bounded.
• There is strong robustness in the face of multiple uncertainties.
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3. IGC Controller Design

The derivation of the novel IGC controller is detailed in this section for the IGC model
in Equation (17) with strict-feedback states, where the lumped disturbances in the system
model are estimated and compensated for using a reduced-order ESO to enhance the
controller robustness.

The BLF function is an efficient way to address the state constraint problem [25]. Thus,
this study uses the BLF to ensure that the seeker FOV does not exceed the maximum
FOV angle. As shown in Equation (17), the fifth-order strict-feedback IGC model is a
time-varying nonlinear system with mismatched uncertainties. The GCS consists of seeker,
guidance, angle-of-attack, attitude, and rudder subsystems based on the BC. Consequently,
the BLF is used to design the seeker subsystem, and the sliding mode control (SMC)
algorithm is used to design the other four subsystems. First-order filters obtain the virtual
control command derivatives to prevent “differential explosions” caused by the BC.

Step 1: The first equation in Equation (17) is the seeker subsystem that guarantees that the
BLOS angle does not exceed the maximum FOV angle by the BLF, that is, |x1| < kc1.
To ensure the precise interception of a maneuvering target, the desired FOV angle
is x1d = 0. The first sliding mode surface is defined as

s1 = x1 − x1d (18)

According to Equation (18), |s1| < kc1 − 0 = kb1.
The BLF is defined as

VBLF =
1
2

a0 In
k2

b1
k2

b1 − s2
1

(19)

where a0 > 0.
Differentiating Equation (19) yields

VBLF = a0s1
.
s1

k2
b1−s2

1
= a0s1

.
x1

k2
b1−s2

1

= a0s1[b1x2+d1]

k2
b1−s2

1

(20)

According to Equation (20), the virtual control command x2c is designed as follows:

x2c =
1
b1
(−d1 − k1s1) (21)

where k1 > 0.
The reduced-order ESO used to estimate the system lumped disturbance d1 [26] can

be formulated as follows: { .
p1 = −β1 p1 − β1

2x1 − β1b1x2
>
d1 = p1 + β1x1

(22)

where p1 is the auxiliary variable,
>
d1 is the estimation of the lumped disturbance d1, and

β1 > 0 is the observer gain to be designed.
Therefore, the virtual control command in Equation (21) can be rewritten as

x2c =
1
b1
(−>

d1 − k1s1) (23)

To avoid the “differential explosion” caused by the BC, the DSC is adopted to make
x2c pass through a first-order filter to obtain x2d and

.
x2d.{

τ2
.
x2d + x2d = x2c,

x2d(0) = x2c(0)
(24)
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where τ2 > 0 is the time constant.

Step 2: For the guidance subsystem (the second equation in Equation (17)), to ensure the
tracking of x2 to the virtual command x2d, the second sliding mode surface is
defined as

s2 = x2 − x2d (25)

Differentiating Equation (25), and combining the second equation in Equation (17)
yields

.
s2 =

.
x2 −

.
x2d = f2(x2) + b2x3 + d2 −

.
x2d (26)

Choosing x3 as the virtual control input that can be designed as follows:

x3c =
1
b2
[− f2(x2)− d2 +

.
x2d − k2s2 −

s1

k2
b1 − s2

1
] (27)

where k2 > 0.
Similarly, the reduced-order ESO used to estimate the lumped disturbance d2 can be

formulated as { .
p2 = −β2 p2 − β2

2x2 − β2[ f2(x2) + b2x3]
>
d2 = p2 + β2x2

(28)

where p2 is the auxiliary variable,
>
d2 is the estimation of the lumped disturbance d2, and

β2 > 0 is the observer gain to be designed.
Equation (27) can be rewritten as

x3c =
1
b2
[− f2(x2)−

>
d2 +

.
x2d − k2s2 −

s1

k2
b1 − s2

1
] (29)

Letting x3c pass through the first-order filter with the time constant τ3 > 0 yields x3d
and

.
x3d. {

τ3
.
x3d + x3d = x3c,

x3d(0) = x3c(0)
(30)

Step 3: For the angle-of-attack subsystem (the third equation in Equation (17)), to ensure
the tracking of x3 to the virtual command x3d, the third sliding mode surface is
defined as

s3 = x3 − x3d (31)

Differentiating Equation (31), and combining the third equation in Equation (17) yields

.
s3 =

.
x3 −

.
x3d = f3(x3) + b3x4 + d3 −

.
x3d (32)

x4 is selected as the virtual control input that can be designed as follows:

x4c =
1
b3
[− f3(x3)− d3 +

.
x3d − k3s3] (33)

where k3 > 0.
The reduced-order ESO used to estimate the lumped disturbance d3 can be formulated as{ .

p3 = −β3 p3 − β3
2x3 − β3[ f3(x3) + b3x4]

>
d3 = p3 + β3x3

(34)

where p3 is the auxiliary variable,
>
d3 is the estimation of the lumped disturbance d3, and

β3 > 0 is the observer gain to be designed.
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Equation (33) can be rewritten as

x4c =
1
b3
[− f3(x3)−

>
d3 +

.
x3d − k3s3] (35)

Letting x4c pass through the first-order filter with the time constant τ4 > 0 yields x4d
and

.
x4d. {

τ4
.
x4d + x4d = x4c,

x4d(0) = x4c(0)
(36)

Step 4: For the attitude subsystem (the fourth equation in Equation (17)), to ensure the
tracking of x4 to the virtual command x4d, the fourth sliding mode surface is
defined as

s4 = x4 − x4d (37)

Differentiating Equation (37), and combining the fourth equation in Equation (17)
yields

.
s4 =

.
x4 −

.
x4d = f4(x4) + b4x5 + d4 −

.
x4d (38)

x5 is selected as the virtual control input that can be designed as follows:

x5c =
1
b4
[− f4(x4)− d4 +

.
x4d − k4s4] (39)

where k4 > 0.
The reduced-order ESO used to estimate the lumped disturbance d4 can be formulated as{ .

p4 = −β4 p4 − β4
2x4 − β4[ f4(x4) + b4x5]

>
d4 = p4 + β4x4

(40)

where p4 is the auxiliary variable, p4 is the estimation of the lumped disturbance d4, and
β4 > 0 is the observer gain to be designed.

Equation (39) can be rewritten as

x5c =
1
b4
[− f4(x4)−

>
d4 +

.
x4d − k4s4] (41)

Letting x5c pass through the first-order filter with the time constant τ5 > 0 yields x5d
and

.
x5d. {

τ5
.
x5d + x5d = x5c,

x5d(0) = x5c(0)
(42)

Step 5: For the rudder subsystem (the fifth equation in Equation (17)), to ensure the track-
ing of x5 to the virtual command x5d, the fifth sliding mode surface is defined as

s5 = x5 − x5d (43)

Differentiating Equation (43) and combining the fifth equation in Equation (17) yields

.
s5 =

.
x5 −

.
x5d = f5(x5) + b5u− .

x5d (44)

The desired controller input is designed as

u = δzc =
1
b5
[− f5(x5) +

.
x5d − k5s5] (45)

where k5 > 0.
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The results are shown in Figure 2. The proposed IGC controller includes virtual control
commands, and the control input can be summarized as follows:

x2c =
1
b1
(−>

d1 − k1s1)

x3c =
1
b2
[− f2(x2)−

>
d2 +

.
x2d − k2s2 − s1

k2
b1−s2

1
]

x4c =
1
b3
[− f3(x3)−

>
d3 +

.
x3d − k3s3]

x5c =
1
b4
[− f4(x4)−

>
d4 +

.
x4d − k4s4]

δzc =
1
b5
[− f5(x5) +

.
x5d − k5s5]

(46)
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4. Stability Analysis of the Closed-Loop System

In this section, the stability of the closed-loop system is proved using the Lyapunov the-
ory. First, the following lemmas and assumptions are introduced to prove the system’s stability.

Lemma 1. For any kbi > 0, satisfying ∀|zi| < kbi, i = 1, 2, · · · , there is then

In

(
k2

bi
k2

bi − z2
i

)
≤

z2
i

k2
bi − z2

i
. (47)

Lemma 2. There exist observer gains βi, i = 1, 2, · · · , 4 for the reduced-order ESO in Equations
(22), (28), (34) and (40) that make the observer estimations

>
di, i = 1, 2, · · · , 4 converge to the

system-lumped disturbances di, i = 1, 2, · · · , 4; that is,
>
d1 → d1 ,

>
d2 → d2 ,

>
d3 → d3 , and

>
d4 → d4 [26].

Lemma 3. Under the conditions that the system states are continuous and bounded, there exists
ηi > 0, i = 2, 3, · · · , 5 such that

∣∣ .
xic
∣∣ ≤ ηi . Further, defining the filter errors as e0i = xid − xic,

i = 2, 3, · · · , 5, there are e0i
.
e0i = −

e2
0i
τi
− e0i

.
xic, i = 2, 3, · · · , 5 [27].

Assumption 3. At the initial time of the interception start, the target is captured by the missile
seeker, and the FOV angle satisfies that |qB| ≤ qmax

B .

Assumption 4. There exist the positive constants Rmin and Rmax in the terminal guidance
phase, such that 0 < Rmin ≤ Rt f ≤ Rmax at the interception point and

.
R < 0 in the terminal

guidance phase.

Assumption 5. When the missile–target distance is very close, the strapdown seeker is in the
dead zone, and the BLOS angle is not available. Therefore, the designed controller only considers
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the situation when R ≥ Rdz; Rdz > 0 is the minimum distance related to the dead zone of the
strapdown seeker.

The Lyapunov function candidate is considered as

Vs = V1 + V2 + V3 + V4 + V5 (48)

where
V1 = VBLF +

1
2

e2
02 +

1
2

ε2
1 (49)

V2 =
1
2

s2
2 +

1
2

e2
03 +

1
2

ε2
2 (50)

V3 =
1
2

s2
3 +

1
2

e2
04 +

1
2

ε2
3 (51)

V4 =
1
2

s2
4 +

1
2

e2
05 +

1
2

ε2
4 (52)

V5 =
1
2

s2
5 (53)

where εi = di −
>
di, i = 1, 2, · · · , 4 are the disturbance estimation errors.

According to [26], there is

εi
.
εi = εi(−βiεi +

.
di), i = 1, 2, · · · , 4 (54)

According to Assumption 2, the lumped disturbances
.
di, i = 1, 2, · · · , 4 are bounded,

but unknown. We assume that the upper bounds are Ni > 0, i = 1, 2, · · · , 4 and
.
di ≤ Ni.

Differentiating the terms in Equations (49)–(53) and combining Equations (23), (29),
(35), (41) and (45) yields

.
V1=

.
VBLF + e02

.
e02 + ε1

.
ε1

=
a0s1

.
s1

k2
b1 − s2

1
+ e02

.
e02 + ε1

.
ε1

=
a0s1

.
x1

k2
b1 − s2

1
−

e2
02
τ2
− e02

.
x2c − β1ε2

1 + ε1
.
d1

=
a0s1[b1x2 + d1]

k2
b1 − s2

1
−

e2
02
τ2
− e02

.
x2c − β1ε2

1 + ε1
.
d1

=
a0s1[b1(s2 + e02 + x2c) + d1]

k2
b1 − s2

1
−

e2
02
τ2
− e02

.
x2c − β1ε2

1 + ε1
.
d1

=
a0b1s1s2 + a1b1s1e02 + a1s1ε1 − a1k1s2

1
k2

b1 − s2
1

−
e2

02
τ2
− e02

.
x2c − β1ε2

1 + ε1
.
d1

(55)

.
V2 = s2

.
s2 + e03

.
e03 + ε2

.
ε2

= s2[ f2(x2) + b2x3 + d2 −
.
x2d] + e03

.
e03 + ε2

.
ε2

= s2[ f2(x2) + b2(s3 + e03 + x3c) + d2 −
.
x2d]−

e2
03
τ3
− e03

.
x3c − β2ε2

2 + ε2
.
d2

= b2s2s3 + b2s2e03 + s2ε2 − k2s2
2 −

s1s2
k2

b1−s2
1
− e2

03
τ3
− e03

.
x3c − β2ε2

2 + ε2
.
d2

(56)

.
V3 = s3

.
s3 + e04

.
e04 + ε3

.
ε3

= s3[ f3(x3) + b3x4 + d3 −
.
x3d] + e04

.
e04 + ε3

.
ε3

= s3[ f3(x3) + b3(s4 + e04 + x4c) + d3 −
.
x3d]−

e2
04
τ4
− e04

.
x4c − β3ε2

3 + ε3
.
d3

= b3s3s4 + b3s3e04 + s3ε3 − k3s2
3 −

e2
04
τ4
− e04

.
x4c − β3ε2

3 + ε3
.
d3

(57)
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.
V4 = s4

.
s4 + e05

.
e05 + ε4

.
ε4

= s4[ f4(x4) + b4x5 + d4 −
.
x4d] + e05

.
e05 + ε4

.
ε4

= s4[ f4(x4) + b4(s5 + e05 + x5c) + d4 −
.
x4d]−

e2
05
τ5
− e05

.
x5c − β4ε2

4 + ε4
.
d4

= b4s4s5 + b4s4e05 + s4ε4 − k4s2
4 −

e2
05
τ5
− e05

.
x5c − β4ε2

4 + ε4
.
d4

(58)

.
V5 = s5

.
s5

= s5[ f5(x5) + b5δzc −
.
x5d]

= −k5s2
5

(59)

According to Equations (55)–(59), it is known that

.
Vs =

a0b1s1s2 − s1s2

k2
b1 − s2

1
+ b2s2s3 + b3s3s4 + b4s4s5 +

a0b1s1e02

k2
b1 − s2

1
+ b2s2e03 + b3s3e04

+b4s4e05 +
a0s1ε1

k2
b1 − s2

1
+ s2ε2 + s3ε3 + s4ε4 −

a0k1s2
1

k2
b1 − s2

1
− k2s2

2 − k3s2
3 − k4s2

4

−k5s2
5 −

e2
02
τ2
− e02

.
x2c −

e2
03
τ3
− e03

.
x3c −

e2
04
τ4
− e04

.
x4c −

e2
05
τ5
− e05

.
x5c − β1ε2

1

+ε1
.
d1 − β2ε2

2 + ε2
.
d2 − β3ε2

3 + ε3
.
d3 − β4ε2

4 + ε4
.
d4

(60)

By using Young’s inequality, it is known that

sisi+1 ≤ s2
i +

1
4 s2

i+1

sie0i+1 ≤ s2
i +

1
4 e2

0i+1

−e0i
.
xic ≤ η2

i e2
0i +

1
4

εi
.
di ≤ N2

i ε2
i +

1
4

(61)

Equation (60) can be rewritten as

.
Vs ≤ (a0b1−1)2

(k2
b1−s2

1)
2 s2

1 +
1
4 s2

2 + b2
2s2

2 +
1
4 s2

3 + b2
3s2

3 +
1
4 s2

4 + b2
4s2

4 +
1
4 s2

5

+
a2

0b2
1

(k2
b1−s2

1)
2 s2

1 +
1
4 e2

02 + b2
2s2

2 +
1
4 e2

03 + b2
3s2

3 +
1
4 e2

04 + b2
4s2

4

+ 1
4 e2

05 +
a2

0

(k2
b1−s2

1)
2 s2

1 +
1
4 ε2

1 + s2
2 +

1
4 ε2

2 + s2
3 +

1
4 ε2

3 + s2
4

+ 1
4 ε2

4 −
a0k1

k2
b1−s2

1
s2

1 − k2s2
2 − k3s2

3 − k4s2
4 − k5s2

5 −
e2

02
τ2

+ η2
2e2

02

+ 1
4 −

e2
03
τ3

+ η2
3e2

03 +
1
4 −

e2
04
τ4

+ η2
4e2

04 +
1
4 −

e2
05
τ5

+ η2
5e2

05 +
1
4 − β1ε2

1

+N2
1 ε2

1 +
1
4 − β2ε2

2 + N2
2 ε2

2 +
1
4 − β3ε2

3 + N2
3 ε2

3 +
1
4 − β4ε2

4

+N2
4 ε2

4 +
1
4

≤ −
[

a0k1 − (a0b1−1)2

k2
b1−s2

1
− a2

0b2
1

k2
b1−s2

1
− a2

0
k2

b1−s2
1

]
s2

1
k2

b1−s2
1
−
[
k2 − 5

4 − 2b2
2
]
s2

2

−
[
k3 − 5

4 − 2b2
3
]
s2

3 −
[
k4 − 5

4 − 2b2
4
]
s2

4 −
[
k5 − 1

4

]
s2

5 −
[

1
τ2
− 1

4 − η2
2

]
e2

02

−
[

1
τ3
− 1

4 − η2
3

]
e2

03 −
[

1
τ4
− 1

4 − η2
4

]
e2

04 −
[

1
τ5
− 1

4 − η2
5

]
e2

05 −
[

β1 − 1
4

]
ε2

1

−
[

β2 − 1
4

]
ε2

2 −
[

β3 − 1
4

]
ε2

3 −
[

β4 − 1
4

]
ε2

4 + 2 + N2
1 ε2

1 + N2
2 ε2

2 + N2
3 ε2

3

+N2
4 ε2

4

(62)
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Subsequently, by selecting the design parameters as

λ = min
{

a0k1 − (a0b1−1)2

k2
b1−s2

1
− a2

0b2
1

k2
b1−s2

1
− a2

0
k2

b1−s2
1
, k2 − 5

4 − 2b2
2, k3 − 5

4 − 2b2
3,

k4 − 5
4 − 2b2

4, k5 − 1
4 , 1

τ2
− 1

4 − η2
2 , 1

τ3
− 1

4 − η2
3 , 1

τ4
− 1

4 − η2
4 , 1

τ5
− 1

4 − η2
5 ,

β1 − 1
4 , β2 − 1

4 , β3 − 1
4 , β4 − 1

4

}
Equation (62) can be formulated as

.
Vs ≤ λVs + D (63)

where D = N2
1 ε2

1 + N2
2 ε2

2 + N2
3 ε2

3 + N2
4 ε2

4 + 2.
Therefore, the closed-loop system is asymptotically stable, and all system states are

ultimately uniformly bounded.
According to Equation (63), we can obtain

Vs(t) ≤ Vs(0) exp(−λt) +
D
λ
[1− exp(−λt)] (64)

From Equations (19), (48) and (64), it can be further deduced that

1
2

a0 In
k2

b1
k2

b1 − s2
1
≤ Vs(0) exp(−λt) +

D
λ
[1− exp(−λt)] ≤ Vs(0) +

D
λ

(65)

Further derivation subsequently yields

|s1| ≤ kb1

√
1− e−

2
a0
[Vs(0)+ D

λ ] (66)

Hence, there is |s1| < kb1. According to |x1| = |s1 + x1d| < kb1 + 0 = kc1, the BLOS
angle x1 is bounded and the FOV constraint |x1| < kc1 is ensured.

Hereto, the proof is completed.

Remark 3. The proposed controller in Equation (46) for the IGC model in Equation (17) ensures
that the tracking error of the closed-loop system asymptotically converges to zero and that all states of
the closed-loop system are ultimately uniformly bounded. In particular, the BLOS angle constraint
is ensured.

5. Simulation Results and Analysis

To verify the effectiveness and robustness of the proposed IGC scheme for hypersonic
missiles with strapdown seekers, simulations with different initial conditions, different
target accelerations, and aerodynamic parameter deviations are presented in this section.
The aerodynamic parameters used in this section are detailed in [28].

The initial simulation values of the missile and target are listed in Tables 1 and 2,
respectively. The initial missile–target distance is R = 5000 m. The initial LOS angle is
qL = 30◦. The initial FOV angle is qB = −10◦ and the maximum FOV angle is qmax

B = 20◦.
The minimum distance related to the dead zone of the strapdown seeker is Rdz = 10 m,
and the rudder time constant and maximum rudder angle are assumed to be τz = 0.1 and
δmax

z = 15◦, respectively.

Table 1. Initial simulation values of the missile.

(xM, yM) VM θM ϑ α ωz δz

(0, 0) 2000 m/s 35◦ 35◦ 0◦ 0◦/s 0◦
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Table 2. Initial simulation values of the target.

(xT, yT) VT θT

(2500
√

3, 2500) 800 m/s 0
◦

The design parameters of the proposed controller (BLF-SMC-BC) are k1 = 14, k2 = 15,
k3 = 25, k4 = 25, and k5 = 25. The first-order filter parameters are τ2 = 0.01, τ3 = 0.01,
τ4 = 0.01, and τ5 = 0.01. The reduced-order ESO parameters are β1 = 20, β2 = 30, β3 = 30,
and β4 = 1. The desired FOV angle is assumed to be x1d = 0◦.

Case 1: If we suppose that the FOV constraint is kc1 = 20◦, 15◦, 10◦ and the maneuvering target’s
constant acceleration is aY

T = 50 m/s2.

The simulation results are shown in Figure 3. Figure 3a–i show the missile and
target trajectories, FOV angle, LOS angle, missile velocity, angle of attack, pitch angle rate,
remaining intercept distance, rudder angle, and controller input, respectively. As can be
observed in Table 3, the miss distance under the three constraints is less than 1 m. Figure 3b
shows that the FOV angle does not exceed its maximum during the entire interception and
the FOV constraint is assured under different FOV constraints. Moreover, the designed
controller can ensure that the FOV angle converges rapidly to zero from its initial value
and maintains it until the missile–target distance is very close, when it gradually diverges.
However, the FOV angle is still within its maximum when the missile–target distance is
close to the dead zone distance of the strapdown seeker. Figure 3d shows that the missile
under aerodynamic drag achieves interception of a maneuvering target by its kinetic energy
after losing thrust.
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Table 3. Simulation results under Case 1.

FOV Constraint kc1 = 10◦ kc1 = 15◦ kc1 = 20◦

Miss distance 0.81 m 0.85 m 0.88 m
Interception time 5.136 s 5.092 s 5.08 s

Case 2: If we suppose that the FOV constraint is kc1 = 20◦, 15◦, 10◦ and the sinusoidal wave
acceleration of the maneuvering target is aY

T = 50 sin(0.25t) m/s2.

The simulation results are shown in Figure 4. The missile and target trajectories, FOV
angle, LOS angle, missile velocity, angle of attack, pitch angle rate, remaining intercept
distance, rudder angle, and controller input are shown in Figure 4a–i, respectively. From
Table 4, it can be observed that the miss distance under the three constraints is less than
1 m. Similar to the simulation results in Case 2, the FOV angle can be ensured to be within
the maximum FOV angle during the entire interception.
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Figure 4. Simulation results under Case 2. (a) Missile–target pursuit trajectory. (b) The BLOS angle.
(c) The LOS angle. (d) The velocity of missile. (e) The angle of attack. (f) The pitch angular rate.
(g) The relative missile-target distance. (h) The deflection angle. (i) The control input.

Table 4. Simulation results under Case 2.

FOV Constraint kc1 = 10◦ kc1 = 15◦ kc1 = 20◦

Miss distance 0.76 m 0.77 m 0.78 m
Interception time 5.106 s 5.062 s 5.05 s

Case 3: Monte Carlo simulations.

A Monte Carlo simulation is conducted to prove the robustness of the proposed
IGC controller. It is planned to run 1000 samples, where the targets perform sinusoidal
maneuvers. The simulation conditions for each sample in this paper are set as follows.
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(1) The FOV angle constraint is generated randomly and satisfies kc1 = 10◦ ∼ 20◦.
(2) The normal acceleration of the target is generated randomly and satisfies

aT = 10 sin(0.25t) ∼ 50 sin(0.25t) m/s2.
(3) Other biased parameters are listed in Table 5. The coefficients of the aerodynamic

forces and moments are assumed to change randomly in the range of −20% to 20% of
their respective nominal values.

(4) The initial values of the missile are assumed to change randomly in the range of −5%
to 5%.

Table 5. Biased parameters.

Biased Parameters Bias Value

Initial values
Pitch angle ϑ

±5%
Flight path angle θM

Aerodynamic coefficients

Drag coefficient cx0, cα2

x

±20%Lift coefficient cα
y , cδz

y

Pitch moment coefficient mα
z , mωz

z , mδz
z

The 1000 Monte Carlo simulation results are shown in Figures 5–7. Figure 5 shows
the BLOS angle of 1000 simulations, which indicate that the FOV angle rapidly converges
to zero from its initial FOV angle and maintains it until the missile–target distance is very
close, when it slowly diverges. In addition, the FOV angle does not exceed its maximum
during the entire interception. The FOV angle is still within its maximum until the missile–
target distance approaches the seeker’s dead zone distance. Figure 6 shows the interception
point distribution. A box plot of miss distance distribution is shown in Figure 7. It shows
that all of the miss distances are within 0.9 m, the average is 0.48 m, and approximately
50% fall within an interval of 0.35 to 0.60 m. In summary, the Monte Carlo simulation
results further demonstrate the robustness of the proposed IGC controller for intercepting
high-speed maneuvering targets.
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6. Conclusions

Based on the BC, BLF, SMC, DSC, and reduced-ESO, this paper proposes a new
IGC scheme with FOV constraints for a hypersonic STT missile intercepting a high-speed
maneuvering target. A new fifth-order strict feedback form IGC model considering the
FOV angle and rudder delay dynamics is derived considering the drag effect on axial
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velocity, which most studies ignore. The BLF ensures that the FOV angle is bounded across
the interception, and that the FOV constraint is realized. The DSC prevents the “differential
explosion” caused by introducing virtual control commands by the BC. To improve the
controller robustness, the system-lumped disturbances were estimated using the reduced-
ESO and compensated in the designed controller. The simulation results under different
constraints and Monte Carlo simulations demonstrate the effectiveness and robustness of
the proposed IGC controller.

Adding filtering algorithms to further verify the effectiveness of the IGC controller as
well as studying the IGC scheme considering the FOV constraint of the strapdown seeker
in a 3D spatial coordinate system are our future research directions.
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