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Abstract: This paper addresses the automatic carrier landing problem in the presence of deck motion,
carrier airwake disturbance, wind shears, wind gusts, and atmospheric turbulences. By transforming
the 6-DOF aircraft model into an affine dynamic with angle of attack controlled by thrust, the
equations associated to the resultant disturbances are deduced; then, a deck motion prediction
block (based on a recursive-least squares algorithm) and a tracking differentiator-based deck motion
compensation block are designed. After obtaining the aircraft reference trajectory, the backstepping
control method is employed to design a novel automatic carrier landing system with three functional
parts: a guidance control system, an attitude control system, and an approach power compensation
system. The design of the attitude subsystem involves the flight path control, the control of the
attitude angles, and the control of the angular rates. To obtain convergence performance for the
closed-loop system, the backstepping technique is combined with sliding mode-based command
differentiators for the computation of the virtual commands and extended state observers for the
estimation of the disturbances. The global stability of the closed-loop architecture is analyzed by
using the Lyapunov theory. Finally, simulation results verify the effectiveness of the proposed carrier
landing system, the aircraft reference trajectory being accurately tracked.

Keywords: automatic carrier landing system; deck motion compensation; backstepping control;
extended state observer

1. Introduction

Carrier landing requires skills from the pilot because this landing process is character-
ized by the simultaneous movement of aircraft and carrier ship. The pilot should bring the
airplane to a certain point on the ship; if it lands before the desired point, a crash into the
stern is possible; on the contrary, if the landing on the carrier is too long, the pilot must
take off and try again. The landing phase on carrier ships is also difficult because of the
small size of the ideal landing area (e.g., width: 16.76 m and length: 12.19 m for CVN-65
Enterprise carrier). Deviation from this desired landing area (the so-called “landing box”)
can lead to a collision with other aircraft parked on the carrier ship. Another difficulty of
the landing process on aircraft carriers is related to the deviation angle of the runway in
relation to the longitudinal axis of the ship, which is 9◦ [1]. Due to the restrictions caused
by the optimal landing area and the short length of the runway, the aircraft should track a
predefined landing path with a very small margin of error, while maintaining a constant
attack angle and velocity. The efficiency of the aerodynamic surfaces is low because of the
low speed and the high attack angle. The motion of the carrier deck makes the process even
more difficult as the desired landing path and the point of contact move with the runway.
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The landing process is also difficult because the aircraft descends on a slope that is not
aligned with the longitudinal axis of the runway.

The need of automatic carrier landing control systems (ACLSs) is due not only to the
positioning errors that should be very small but also to the weather conditions. Therefore,
the flight officers who monitor the landing process are very strict when it comes to landing
on aircraft carriers. If the carrier is not equipped with a navigation system that transmits
its position to the airplane in real time, the airplane must be equipped with a system
that accurately estimates the position of the carrier. When the airplane approaches the
ship, the time to impact with carrier deck is computed by using the distance between
the two vehicles, as well as the airplane-ship relative speed. For this purpose, various
motion prediction techniques are used; these algorithms calculate the future position of
the aircraft center of gravity, as well as the future position of the ideal point of contact
with the runway. A standard descent trajectory is also calculated; the lateral and the
vertical deviations from the optimal trajectory are computed and then used as inputs of the
controller [2]. The position and the speed of the two vehicles can be also obtained by means
of differential global positioning systems; thus, the number of systems required for an
automatic landing can be reduced, and the level of autonomy can be increased regardless of
weather conditions. Several automatic control subsystems are used to control the trajectory
of the aircraft; the first controls the deviation of the aircraft in vertical plane in relation
to the downward trajectory to be followed by using the elevator; the second subsystem
controls the aircraft lateral-directional deviation in relation to the desired trajectory by
using the ailerons and the rudder; the third system controls the speed and the attack angle
by changing the engine operating mode.

The deck motion and the external disturbances (especially the carrier airwake) are
two main factors causing carrier landing failures [3]. Over the past decades, various
ACLSs have been designed. Ref [4] established a control loop in longitudinal plane for
trajectory tracking during landing by means of the nonlinear dynamic inversion method; the
method eliminates the roll rate and the angle coupling, maintains constant aircraft velocity
and attack angle and rejects the airwake. In [5], a fitness sharing-based ant clustering
approach was developed to optimize the landing of an aircraft in a longitudinal plane; the
method concerns the lattice rule-based space sampling strategy. The clustering strategy was
modified by a fading memory fitness sharing function, an adaptive learning strategy being
also employed to optimize the search scope of the ant colony. An optimal control (based on
the H∞ technique) was used in ref [6] to counteract the negative effects of the vertical bursts.
In [7], one designed an ACLS based on the multivariable model reference adaptive control
and state feedback for output tracking in the case of a dynamics with nonlinearities, channel
couplings, and parametric uncertainty; the novel ACLS has two main subsystems, i.e., a
guidance subsystem and a flight control subsystem. Ref [8] treated the ACLSs as special
cyber-physical systems and introduced both a control strategy for airwake suppression and
a novel adaptive backstepping sliding mode control-based ACLS; it was proved that the
ACLS has the capability to restrain the flight performance deviation. The nonlinear dynamic
inversion method led to very good results in terms of robustness [9], the disadvantage of
this method being the need of a very good knowledge of the system dynamics, as well as
the accurate estimation of the state vector. Adjusting the parameters in the ACLS design
process is a repetitive and difficult process, various methods of parameter optimizing being
available: brain-storming optimization [10], pigeon-inspired type algorithms [11], Levy
pigeon-inspired type optimization [12], preview control [13], or sliding mode control [14].
Other control techniques used in the design of the automatic carrier landing systems
were used to guide and control the airplane on a reference glide path toward a specified
touchdown point: model predictive control [15–17], dynamic inversion control [18], active
disturbances rejection control [19], backstepping control [20–22], and finite-time and fixed-
time controls [23].

Beside the design of controllers to build up ACLSs, the literature also proposes some
deck motion prediction algorithms to compensate the effect of waves, the most important
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algorithms being the back propagation neural network [24], the particle filter [13], and the
auto-regressive model [25]. The deck motion was accurately estimated and predicted online
in [26], the deck motion information being then employed to generate correction control
laws depending on the flight path and heading angles. Ref [27] introduced improved
linearized dynamics for airplane compensating the cross-disturbance negative effects of
the wind gusts, while ref [3] proposed active disturbance rejection-based control laws that
provide excellent robustness especially due to the use of an extended state observer, which
estimates and compensates the external disturbances and the parameter uncertainties.
However, a first drawback is that only the longitudinal dynamics were considered. The
second shortcoming is the transformation of the six-degrees-of-freedom aircraft dynamics
into a linear one, this being remarked by many other papers; the control design procedure
has been simplified, but the linearized dynamics cannot accurately represent the motion of
the airplane, the anti-disturbance ability being also limited [21]. A time-varying vector field
guidance law is designed in [20] to follow a path depending on a moving target, while the
control performance is improved with a prescribed performance method; a combination
between an attitude controller for the active disturbance rejection and a backstepping
controller is employed to make sure the tracking errors do not exceed some pre-defined
arbitrary small residual sets. In the literature, the automatic carrier landing control systems
designed so far combine different advanced control methods with various observers to
estimate the external disturbances and to improve the control performance, such as the
classical disturbance observers [28], the extended state observers [3,20,29], the sliding mode
observers [30], neural network-based observers, etc.

This paper brings novelty compared to ref [22]: (1) a complete aircraft dynamics
with disturbance terms in all equations of the dynamic model; (2) ref [22] includes neither
deck motion prediction blocks nor deck motion compensation blocks as it happens in the
current paper; (3) besides the airwake disturbances, our paper takes into account additional
disturbances (wind shears, wind gusts, atmospheric turbulences); (4) the design of the
ACLS from [22] involves the fixed-time control (as control technique), fixed-time nonlinear
filters (as command filters), and fixed-time observers (to estimate the disturbances), while
the design of the new ACLS from this work employs the backstepping control, some sliding
mode-based command differentiators (SMCDs) and some extended state observers (ESOs).

This paper aims to: (i) develop a new form of the aircraft dynamics during carrier
landing; (ii) estimation and compensation of the deck motion; (iii) design of a novel ACLS
based on the backstepping control technique, sliding mode-based command differentiators,
and extended state observers. As the main contributions and features of this work, the
afore-mentioned targets are achieved in this paper by:

• Considering both the airwake and the wind type disturbances. Unlike most studies dealing
with automatic carrier landing affected only by the carrier airwake, in this paper, the
aircraft dynamics additionally take into account the three most important wind type
disturbances, i.e., the wind shears, the wind gusts, and the atmospheric turbulences.
Since the aircraft attack and sideslip angles are influenced both by the airwake and the
wind type disturbances, the new dynamics reflect better the motion of the airplane.

• Treating separately the prediction and the compensation problems via two independent
blocks: (1) a block for the prediction of the deck motion and (2) a block for the
compensation of the deck motion. The compensation of the deck motion is achieved
by using the signal provided by the deck motion prediction block. This way, the aircraft
can correct the position of the ideal touchdown point by using fewer signals from the
ship, while the landing accuracy is improved by considering both the airplane-ship
relative landing geometry and the configuration of the landing spot on the carrier.
Compared to the existing literature, the prediction of the deck motion is achieved here
with a recursive-least squares algorithm-based filter, while a tracking differentiator-
based deck motion compensation block (TD-DMC) is used to solve the deck motion
compensation problem. The TD-DMC blocks have been used so far only for obtaining
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the imposed values of the aircraft altitude [3]; compared to the classical DMCs, TD-
DMC has a simplified structure and an easier parameter tuning.

• Obtaining a novel 6-DOF dynamics with angle of attack controlled by thrust. Considering
the three wind type disturbances, we mathematically deduced the expressions of the
new resultant disturbance type terms, and we included them in the 6-DOF dynamics
of the airplane. Additionally, we considered a complete deck motion involving both
maneuvering and seakeeping equations; a deterministic form is associated to the
maneuvering part, while the seakeeping random motion refers to the motion affected
by the wave excitation.

• Designing a control architecture mainly based on innovative combinations between slid-
ing mode-based command differentiators, extended state observers, and backstepping-
based controllers. Considering the influence of deck motion, airwake, and wind type
disturbances, our novel ACLS has a classical configuration consisting of five control
loops, i.e., guidance control, flight path angle control, control of the attitude angles,
control of the angular rates, and approach power compensation subsystem. In four of
the five loops, the sliding mode-based command differentiators are used to compute
the virtual commands and their derivatives; then, five controllers are designed to track
the generated commands. The novel ACLS is characterized by trajectory tracking
capability, as well as excellent adaptability to the unexpected and even sudden changes
in the state of the sea.

• Enhancing the robustness of the controllers via extended state observers. The disturbances
depending on the airwake, the wind shears, the atmospheric turbulences, and the
wind gusts are successfully estimated by using ESOs and then suppressed by means
of the backstepping-based controllers.

The rest of the present work is organized as follows: the aircraft dynamics, the models
of the airwake, the model of the wind type disturbances, as well as the mathematical
expressions of the external disturbances are established in the next section. In Section 3,
we deduce the deck motion dynamics, and we design the two blocks for the deck motion
prediction and compensation. Section 4 deals with the deduction of the aircraft reference
trajectory, the design of the SMCDs and ESOs, the design of the controllers, and the stability
analysis. The fifth section includes both the software validation of the novel ACLS and the
analysis of the obtained results. Finally, the sixth section of this work concludes the study
and formulates some research directions for future research.

2. Aircraft Dynamics during Landing

The classical carrier landing involves three phases: final approach, glideslope, and
touchdown. In the first two phases, the aircraft descends to a certain point (called “marchall”
point) and then continues charging on a linear path to the point of contact with the runway.
During the touchdown phase, the aircraft places the landing gear on the ship deck and
brakes; this last stage is also carried out by means of a hook and four cables transversely
positioned on the deck [31]. The glideslope is characterized by a constant speed and a slope
angle (γs) of −2.5 ÷ −3.5 deg, the trajectory being linear; the vertical speed at touchdown
should be approximately 3–4 m/s. Several automatic control subsystems are used to control
the aircraft trajectory. Some of these subsystems control the aircraft deviation in vertical
plane relative to the desired downward trajectory by means of the elevator, while other
subsystems control the deviation in lateral-directional plane relative to the desired trajectory
via the deflections of rudder and ailerons; finally, the third category of subsystems control
the speed and the attack angle by changing the engine operating mode.

2.1. Aircraft Model

The aircraft considered in this paper is the SIAI Marchetti S211 aircraft—a military
training airplane produced by the Italian corporation SIAI-Marchetti since 1981; its geome-
try and aerodynamic data are reported in [32]. The airplane is equipped with a JTI5D-48
engine providing traction of 11.12 kN (25,000 lbs), maximum speed of 414 knots, and has a
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specific consumption of 0.57 lb/h. The control inputs of the airplane include the deflections
of the elevator, rudder, ailerons, as well as the throttle command. The 6-DOF model of the
airplane has been obtained by using the following reference frames: (1) Oixiyizi—the inertial
reference frame (North, East, and vertically down axes); (2) Oaxayaza—the aircraft body-fixed
reference frame (Oa—aircraft center of gravity, Oaxa—longitudinal axis, Oaya—right plane-
oriented axis, Oaza—vertical down axis); (3) Opxpypzp—the ship body-fixed reference frame
(Op—ship center of gravity, Opxp—longitudinal axis of the carrier, Opyp—transversal axis
of the carrier aircraft, Opzp—vertical axis oriented downward); (4) Odxdydzd—the deck body-
fixed reference frame (Od—the desired touchdown point on the runway, Odxd—axis oriented
parallel to the runway centerline, Odzd—vertical axis parallel to Opzp—axis, Odyd—axis
perpendicular to the plane Odxdzd). The four corresponding reference frames are depicted
in Figure 1.
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Figure 1. Landing geometry and reference frames.

Assumption 1. The aircraft is considered a rigid body, being symmetrical relative to the vertical
plane Oaxaza ; its dynamics are described by bounded variables.

Assumption 2. The motion information of the ship (i.e., position, linear velocities, angular rates,
etc.) is measured and sent to the aircraft with very good accuracy. Moreover, the velocity of the
aircraft is supposed to be higher than the speed of the ship, the aircraft being able to catch up to the
target motion.

With proper transformations, the aircraft dynamics are described by the equations
from [32], enriched in this paper with disturbance type terms whose expressions will be
deduced in Section 2.3:

.
V = −g sinγ+ Tmaxδt cosα cosβ−D

m + dV ,
.
χ = 1

mV cosγ [−Y cosµ+ L sinµ+ Tmaxδt (sinα sinµ− cosα sinβ cosµ)] + dχ,
.
γ = 1

mV [−mg cosγ+ Y sinµ+ L cosµ+ Tmaxδt (cosα sinβ sinµ+ sinα cosµ)] + dγ,
(1)


.
µ = (sinγ+ cosγ sinµ tanβ)

.
χ+ cosµ tanβ

.
γ+ (p cosα+r sinα)

cosβ + dµ ,
.
α = − cosγ sinµ

cosβ
.
χ− cosµ

cosβ
.
γ− p cosα tanβ+ q− r sinα tanβ+ dα ,

.
β =

.
χ cosγ cosµ− .

γ sinµ+ p sinα− r cosα+ dβ ,

(2)


.
p = I1qr + I2 pq + I3Ml + I4Mn + dp ,
.
q = I5 pr + I6

(
r2 − p2)+ I7Mm + dq ,

.
r = −I2qr + I8 pq + I4Ml + I9Mn + dr ,

(3)

.
x = V cosγ cosχ+ dx,

.
y = V cosγ sinχ+ dy,

.
z = −V sinγ+ dz , (4)
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where x, y, z are the aircraft position coordinates in inertial reference frame; V is the
airplane speed; γ is the slope angle of the airplane trajectory; χ is the heading angle; Tmax is
the maximum values of the thrust force; α, β, µ denote the attack angle, the sideslip angle,
and the bank angle; δt ∈ [0, 1] is the throttle command; D, L, Y are the drag, the lift, and
the lateral forces (their expressions are given in Section 2.3); p, q, r are the roll, pitch, and
yaw angular rates; Ik, k = 1, 9 , are functions (given in Appendices A and B) of the axial
inertia moments

(
Ix, Iy, Iz

)
and the planar inertia moment (Ixz), while Ml , Mm, Mn are

the roll, pitch, and yaw aerodynamic moments (also presented in Appendices A and B).
Before the design of the ACLS, the mathematical description of the aircraft is rewritten

into an affine form; for this, we proceed to some notations:
x1 =

[
y z

]T, x2 =
[
χ γ

]T, x3 =
[
θ β µ

]T, x4 =
[
p q r

]T, δ =
[
δa δe δr

]T,

d1 =
[
dy dz

]T, d3 =
[
dα dβ dµ

]T,d4 =
[
dp dq dr

]T. According to the issues pre-
sented above, we rewrite (1)–(4) into an affine form as follows:

.
x1 = f1(x2 , V) + b1(V) x2 + d1 ,
.
x2(1) = f2(x2 , x3 , V) + b2(x2 , V) x3(3) + dχ ,
.
x3 = f3

( .
x2 , x2 , x3

)
+ b3(x2 , x3) x4 + d3 ,

.
x4 = f4(x3 , x4 , V) + b4(V) δ+ d4 ,
.
α = fα(x2 , x4 , V) + bα(V) δt + d′α ,

(5)

with x2(1) = χ, x3(3) = µ ; the explicit expressions of fi, bi (i = 1, 2, 3, 4, α) , and distur-
bance d′α are provided in Appendices A and B, while the expressions of the disturbance
type terms are deduced in this section.

Assumption 3. The disturbances included in dynamics from Equation(5), namely d1 , dχ , d3 , d4 , d′α ,
are bounded by unknown constants, i.e., ‖di‖ ≤ di , with i = 1, χ, 3, 4, α .

Remark 1. The 6-DOF affine dynamics from Equation (5) contain novelty; compared to the
nonlinear dynamics deduced in [20–22,33], where some disturbances have been not considered, all
the equations from the model shown in Equation (5) contain external disturbances, thus making the
aircraft dynamics closer to the real case.

Remark 2. The affine dynamics from some studies (e.g., [34]) were obtained by independently
controlling the aircraft speed via the thrust force, but these results cannot be directly used in the
design of the automatic carrier landing controller. Therefore, we obtained novel nonlinear dynamics,
which consider the attack angle not the speed controlled by thrust.

Remark 3. The control of the aircraft during landing is obtained by going through the three control
surfaces (ailerons, elevator, and rudder) and also by adjusting the thrust. The dynamics of actuators
relating the control inputs δa , δe , δr , δt and the outputs of the controllers (δac , δec , δrc , δtc) are:
.
δj = − 1

τj
δj +

1
τj
δjc , with j = a, e, r, t; τj representing the time constants of the actuators and of

the engine, respectively [32]. For SIAI Marchetti S211 airplane, the constants are: τe = τa = τr =
0.0495, τt = 1. The rate limits for the elevator, ailerons, and rudder are: [−60 deg/s; 60 deg/s],
[−80 deg/s; 80 deg/s], and [−120 deg/s; 120 deg/s], respectively. The position limits are [−25 deg;
25 deg], [−21.5 deg; 21.5 deg], and [−30 deg; 30 deg], respectively.

2.2. Models of Airwake and Wind Type Disturbances

The accuracy of landing is mainly affected by the external disturbances (airwake and
wind type disturbances). The airwake is strong behind the aircraft carrier and, therefore,
the airplane may be blown away from the reference trajectory in the last part of the carrier
landing process. On the contrary, the wind is a disturbance, which alters the aircraft attitude
and velocity during all the three phases of landing. Unlike most studies dealing with the
automatic carrier landing, where only the airwake was considered, the present paper
considers both the airwake and the wind type disturbances (wind shears, atmospheric
turbulences, wind gusts) in the dynamics of the airplane.
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According to [3], the airwake type turbulence consists of four parts: free-air tur-
bulence, constant and random carrier-wake turbulences created by the waves that are
produced by the aircraft carrier, and turbulence induced by the periodic motion of the
carrier. Subsequently, the models of airwake type turbulences are described below.

Free-air turbulences do not depend on the aircraft position, being calculated by passing
a white noise through a filter; the transfer functions associated to the three components of
the free-air turbulence are [35]:

Hu1(s) =
u1(s)
η(s)

=

√
200
V

1
1 + 100s

V
, Hv1(s) =

v1(s)
η(s)

=

√
5900

V
1 + 400s

V

1 + 700s
3V + 4·104

3V2

, Hw1(s) =
w1(s)
η(s)

=

√
71.6
V

1
1 + 100s

V
, (6)

where u1, v1, w1 are the components (speeds) of free-air turbulence along the lon-
gitudinal, lateral, and vertical axes; V is the aircraft speed, while η is a band-limited
white noise.

The constant carrier-wake turbulences are mainly produced by the waves created
by the ship and the air flowing on the back of the aircraft carrier. The lateral component
of this turbulence is negligible (v2 = 0) , while the horizontal (u2) and the vertical (w2)
components depend on the distance between the ship center of mass and the aircraft center
of mass. Using the graphic from [35], we made some approximations for the velocities u2
and w2 in relation to the distance between the airplane and the desired touchdown point
(dc [ft]):

u2 ∼=


0 , dc ∈ [−3000 , −1800)
0.025 Vw/d , dc ∈ [−1800 , −1400)
0.04 Vw/d , dc ∈ [−1400 , −1000)
0.1 Vw/d , dc ∈ [−1000 , −400)
0.05 Vw/d , dc ∈ [−400 , 0]

, w2 ∼=


0 , dc ∈ [−3000 , −2600)
−0.06 Vw/d , dc ∈ [−2600 , −2200)
−0.05 Vw/d , dc ∈ [−2200 , −1500)
−0.015 Vw/d , dc ∈ [−1500 , −750)
0.01 Vw/d , dc ∈ [−750 , 0]

, (7)

where Vw/d [ft/s] is the wind speed over the deck.
The random carrier-wake turbulences can be generated by filtering white noises

and depend on the deck wind Vw/d [ft/s] and the distance between the aircraft and the
touchdown point. The transfer functions associated to the horizontal and the vertical
components (u3 and w3) are [2]:

Hu3(s) =
u3(s)
η̂(s)

=
σ(dc)

√
2τ(dc)

τ(dc)s + 1
, Hv3(s) =

v3(s)
η̂(s)

=
0.035Vw/d

√
6.66

3.33s + 1
, Hw3(s) =

w3(s)
η̂(s)

=
0.035Vw/d

√
6.66

3.33s + 1
, (8)

where σ(dc) and the time constant τ(dc) are computed in [35] as percentage of the speed
Vw/d depending on the distance between aircraft and its ideal touchdown point:

σ(dc) ∼=


0.01 Vw/d , dc ∈ [−3000 , −2000)
0.02 Vw/d , dc ∈ [−2000 , −1500)
0.04 Vw/d , dc ∈ [−1500 , −1000)
0.03 Vw/d , dc ∈ [−1000 , −500)
0.05 Vw/d , dc ∈ [−500 , 0]

, τ(dc) ∼=


1 sec , dc ∈ [−3000 , −2000)
1 sec , dc ∈ [−2000 , −1500)
1.1 sec , dc ∈ [−1500 , −1000)
0.4 sec , dc ∈ [−1000 , −500)
0.4 sec , dc ∈ [−500 , 0]

. (9)

In Equation (8), the white noise η̂ is chosen as follows [36]: η̂ = η
jω

jω+1 sin (10πt).
The turbulence induced by the periodic motion of the aircraft carrier occurs because

of the heave motion of the carrier; the lateral component has negligible values, while the
horizontal and the vertical components depend on the wind speed on the deck, ship heave
frequency

(
ωp
)

, pitch angle induced by the ship heave motion
(
θp
)

, aircraft speed (V),
and distance between the airplane and the desired touchdown point (dc). The expressions
for the horizontal and vertical components are [36]:

u4 = θpVw/d (2.22 + 0.009dc)C, w4 = θpVw/d (4.98 + 0.0018dc)C , (10)
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where C = cos
{
ωp

[
t
(

1− V−Vw/d
0.85Vw/d

)
+ dc

0.85Vw/d

]
+ P

}
, with P—random phase. One should

mention that u4 = 0 if dc > 2236 ft and w4 = 0 if dc > 2536 ft. In Equation (10), the
time t can be computed by considering constant values for the velocities of the airplane
(V = 37 m/s ∼= 121.36 ft/s) and of the ship (Vp = 10 m/s ∼= 32.8 ft/s); one obtains:

t ∼= dc
V−Vp

∼= dc [ft]
88.56 [ft/s] . We borrowed from [35] the following values: θp = 0.018 rad,

ωp = 0.62 rad/s, Vw/d = 9.84 ft/s, P = π/4.
Although the airwake has a greater influence on landing than a wind type disturbance,

the latter should be also considered in the aircraft dynamics. Thus, the equations of the
atmospheric turbulences, wind shears, and gusts are included into the airplane dynamics.
One defines three vectors: W5 =

[
u5 v5 w5

]T—the velocity vector associated to the wind

shears, W6 =
[
u6 v6 w6

]T—the velocity vector associated to the Dryden atmospheric

turbulences, and W7 =
[
u7 v7 w7

]T—the wind gust velocity vector.
The wind shears occur from a variety of geographical or atmospheric factors. The

mean wind shear has the magnitude [37]: W5 = W20
ln (H/z0)

ln (6.096/z0)
, 1 m < H < 300 m , with

W20—the wind speed at 20 ft, H—the flight altitude, while z0 depends on the flight stage.
The atmospheric turbulences are stochastic processes defined by means of the velocity

spectra. In the Dryden spectral model, the longitudinal, the lateral, and the vertical spectra
functions are presented in MIL-HDBK-1797/1797B [38]:

Hu(s) = σu

√
2Lu

πV
1

1 + Lu
V s

, Hv(s) = σv

√
2Lv

πV
1 +

√
3Lv
V s(

1 + Lv
V s
)2 , Hw(s) = σw

√
2Lw

πV
1 +

√
3Lw
V s(

1 + Lw
V s
)2 , (11)

where Lu, Lv, Lw represent the turbulence scale lengths, while σu, σv, σw are the intensities
of the turbulence. At low altitude, W20 is 15 knots for light turbulences, 30 knots for
moderate turbulences, and 45 knots for severe turbulences; the scale lengths and the
intensities are [39]: Lu = H

(0.177+0.000832H)1.2 , Lw = H, σu = σw
(0.177+0.000832H)0.4 , σw = 0.1 ·W20.

The wind gusts use the implementation of a standard “1-cos” function, being associ-
ated to the Military Specification MIL-F-8785C; their expression is [40]:

W7 =


0 , x̃ < 0 ,
Wm

2

(
1− cos πX

dm

)
, 0 ≤ x̃ ≤ dm ,

Wm , x̃ > dm ,
(12)

where x̃ is the travelled distance, while Wm and dm are the gust magnitude and length.
Considering both the airwake and the wind disturbances, we define the components

of the resultant disturbance: uW =
7
∑

j=1
uj, vW =

7
∑

j=1
vj, wW =

7
∑

j=1
wj ; index j is 1, 2, 3, 4 for

airwake and 5, 6, 7 for the other three wind type disturbances.

2.3. Mathematical Expressions of the External Disturbances

The wind and the disturbances caused by waves lead to the modification of the aircraft
attack and sideslip angles. Thus, supplementary dimensionless angles appear (measured
in [rad]): αW = wW

V and βW = − vW
V ; the influence of these supplementary angles on

the aerodynamic forces acting in longitudinal and lateral-directional planes is graphically
presented in Figure 2. The black color has been used to present the forces in the absence of
the disturbances, while the blue color and the red color were employed to figure out the
forces if the disturbances are taken into account.
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According to the first line of Equation (3), we write ( ),l np p M M=  , with the roll 

and the yaw aerodynamic moments ( lM  and nM ) depending on the roll and the yaw aer-

odynamic moment coefficients lC  and nC  with expressions given in Appendices A and 
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β β
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β
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Figure 2. Influence of the attack and sideslip supplementary angles on aircraft motion in longitudinal
plane (a) and lateral-directional plane (b).

The expressions of the drag (D), lift (L), and lateral force (Y) are [36]:

D = pdSCD =
ρV2

2
SCD, L = pdSCL =

ρV2

2
SCL, Y = pdSCY =

ρV2

2
SCY , (13)

where pd = ρV2/2 is the aircraft dynamic pressure, S is the wing area, while the drag force
coefficient (CD), the lift force coefficient (CL), and the lateral force coefficient (CY) are [41]:

CD = CD0 + CDαα+ c
2V CDq q + CDδe

δe,
CL = CL0 + CLαα+ c

2V CLq q + CLδe
δe,

CY = CY0 + CYββ+ b
2V

(
CYp p + CYr r

)
+ CYδr

δr + CYδa
δa ,

(14)

with b—wing span, c—aerodynamic mean chord, δe—elevator deflection, δr—rudder
deflection, δa—deflection of ailerons, CD0 , CDα , CDq , CL0 , CLα , CLq —longitudinal stabil-
ity derivatives, CY0 , CYβ , CYp , CYr —lateral-directional stability derivatives, CDδe

, CLδe
—

longitudinal control derivatives, while CYδr
, CYδa

—lateral-directional control derivatives.
According to Figure 2a, the new attack angle is α + αW ; therefore, the lift force

coefficient becomes:

C′L = CL0 + CLα(α+ αW) +
c

2V
CLq q + CLδe

δe = CL + CLααW , (15)

while the lift force obtains the form: L′ = ρV2

2 S(CL + CLααW) = L + LW , where

LW = ρV2

2 SCLααW . Using these expressions and Figure 2a, the new expression of the
lift force is deduced:

L′W = (L + LW + DαW) cosαW ∼= L + LW + DαW . (16)

Similarly, improved expressions are obtained for the drag and the lateral forces:

D′W =
D + DW
cosαW

∼= D + DW , Y′W = (Y + YW − DβW) cosβW
∼= Y + YW − DβW , (17)

where DW = ρV2

2 SCDααW and YW = ρV2

2 SCYββW .
Compared to other papers, Equations (1)–(4) consider the airwake, the wind shears, the

atmospheric turbulences, or the wind gusts in the expressions of the disturbances. Because
these external disturbances modify the attack and sideslip angles, the aerodynamic forces
have new expressions; thus, new expressions for these disturbances should be deduced.

The external disturbance dV from first line of Equation (1) is deduced by replacing
D with D′W = D + DW , while the expressions of disturbances dχ and dγ are obtained by
replacing L and Y with L′W = L + LW + DαW and Y′W = Y + YW − DβW in the last two
lines of Equation (1); it results in:
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dV = −DW
m

, dχ =
−(YW − DβW) cosµ+ (LW + DαW) sinµ

mV cosγ
, dγ =

(YW − DβW) sinµ+ (LW + DαW) cosµ
mV

. (18)

The expressions of the disturbances from Equation (2) are deduced by using the replace-
ments

.
χ→ .

χ+ dχ and
.
γ→ .

γ+ dγ ; we obtain:

dµ = −(YW−DβW ) sinγ cosµ+(LW+DαW ) (sinγ sinµ+cosγ tanβ)
mV cosγ ,

dα = − Lw+Dαw
mV cosβ , dβ = −Yw−Dβw

mV .
(19)

According to the first line of Equation (3), we write
.
p =

.
p (Ml , Mn) , with the roll

and the yaw aerodynamic moments (Ml and Mn) depending on the roll and the yaw
aerodynamic moment coefficients Cl and Cn with expressions given in Appendices A and B.
By replacing β with β + βW , we obtain: Cl → Cl + ClββW , Cn → Cn + CnββW . Thus,

one obtains: Ml → Ml +
ρV2

2 SbClββW and Mn → Mn +
ρV2

2 SbCnββW . For the second
line of Equation (3), we write

.
q =

.
q (Mm) , with the pitch aerodynamic moment (Mm)

depending on the pitch aerodynamic moment coefficient Cm; replacing αwith α+ αW in
the equation of Cm, we obtain: Cm → Cm + CmααW and Mm →Mm + ρV2

2 SbCmααW . The
same methodology is applied for the third line of Equation (3); we obtain:

dp =
ρV2

2
Sb
(

I3Clβ + I4Cnβ

)
βW , dq =

ρV2

2
ScCmααW , dr =

ρV2

2
Sb
(

I4Clβ + I9Cnβ

)
βW . (20)

To deduce the expressions of the disturbances dx, dy, and dz, we consider that the at-
tack and the sideslip angles are small enough, θ = γ + α, and we use the equation
γ ∼= θ− α→ θ− (α+ αW)⇒ γ→ γ− αW ; thus, by replacing γ with γ − αW into the
three equations in Equation (4), we obtain:

dx = VαW cosχ sinγ, dy = VαW sinχ sinγ, dz = VαW cosγ . (21)

In this paper, all the unknown disturbances are to be estimated by some extended
state observers that will be discussed in the fourth section of this work.

3. Model of the Deck Motion
3.1. Deck Motion Dynamics

The aircraft carrier considered in this work is a CVN-65 Enterprise carrier [32]. It has a
length of 331 m and a width of 75.6 m; the angle between the longitudinal axes of the ship
(Opxp) and the runway (Odxd) is ψdp = 9 deg. The distances between the carrier center of
gravity (Op) and the desired touchdown point (Od) are: 68 m along the longitudinal axis,
3 m along the transversal axis, and 20 m along the vertical axis; thus, the relative position
vector is rp

pd =
[
−68 −3 −20

]T. The runway distance is 265 ft, while the airplane center
of gravity should be located on the runway centerline. Since the lines delimiting the runway
are approximately ±50 ft from the runway axis, it is desired that the optimal landing area
be at ±22.65 ft from the runway centerline. The runway is equipped with four cables to
slow down the aircraft; the cables are located at 40 ft from each other, the numbering of
these cables (cables 4, 3, 2, 1) being performed in this order starting with the end of the
runway. Ideally, the aircraft should hang cable 3 during landing, and in this case, the
desired touchdown point is given by the intersection of cable 3 with the runway centerline.

The motion of the ship includes both a deterministic and a random part; thus, it can be
decoupled into maneuvering and seakeeping (directly influenced by the wave excitation) [31].
As already stated above, we assume that the ship moves along its longitudinal axis with
constant speed Vp, the other two components of the velocity being null. The surge, the
sway, and the heave motions of the aircraft carrier are characterized by sinusoidal signals
and the translation dynamics [32]:
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rp
sea =

[
xp

b yp
l zp

rc
]T

=
[
Ab sin (ωbt + ∆b) Al sin (ωlt + ∆l) Arc sin (ωrct + ∆rc)

]T, (22)

where xp
b , yp

l , zp
rc are the displacements of the carrier mass center along Opxp, Opyp, Opzp

axes as a result of the motions induced by the wave excitation; rp
sea is the position vector of

the ship, Ab, Al , Arc are the amplitudes of the sinusoidal signals characterizing the surge,
the sway, and the heave motions, while ωb, ωl , ωrc and ∆b, ∆l , ∆rc are the oscillation
frequencies and the initial phases of the three motions, respectively. We assume that the
carrier moves toward North (χd = ψd + βd

∼= ψd = 0) , the deck pitch and roll being null
(φd = θd = 0) . In the absence of the airwake, the deck roll, pith, and yaw are null; instead,
if the disturbances are taken into account, the rotational dynamics of the deck are written
as: Φd =

[
φd θd ψd

]T
=
[
φdwave θdwave ψdwave

]T, where φdwave , θdwave , ψdwave have
the forms φdwave =Aφ sin (ωφt), θdwave = Aθ sin (ωθt), ψdwave = Aψ sin (ωψt) , with
Aφ, Aθ, Aψ—the amplitudes of the sinusoidal signals characterizing the ship roll, pitch,
and yaw, whileωφ, ωθ, ωψ—the roll, the pitch, and the yaw oscillation frequencies. The
rotational dynamics of the aircraft carrier are obtained with respect to the vector Φd as
follows: Φp = Φd +

[
0 0 9 deg

]T.
According to Figure 1, the deck position vector relative to the inertial frame

(
ri

id
)

is:

ri
id = ri

ip + ri
pd = RT

pi
(
Φp
)

rp
ip + RT

pi
(
Φp
)

rp
pd = RT

pi
(
Φp
) (

rp
sea +

[
Vpt 0 0

]T
+ rp

pd

)
, (23)

where Rpi is the rotation matrix from the inertial reference frame to the carrier body-fixed
reference frame; its form is [42,43]:

Rpi
(
Φp
)
=

 cos θp cosψp cos θp sinψp − sin θp
sinφp sin θp cosψp − cosφp sinψp sinφp sin θp sinψp + cosφp cosψp sinφp cos θp
cosφp sin θp cosψp + sinφp sinψp cosφp sin θp sinψp − sinφp cosψp cosφp cos θp

 . (24)

Concluding, the real trajectory of the ship deck is written as (23), where rp
sea has the

form (22), while the rotational matrix Rpi is expressed with (24). A simplified equation
for the real trajectory of the deck can be deduced if we write ri

id = RT
di(Φd) rd

id , where

rd
id
∼= rp

sea +
[
Vpt 0 0

]T, while the rotation matrix from the inertial reference frame to
the deck body-fixed reference frame Rdi(Φd) is obtained with an equation similar in type
to Equation (24), in which we make the change: Φp → Φd . For small values of the surge,
sway, and heave amplitudes (i.e., waves up to 1 meter high), we can use the approximation
Rdi(Φd) ∼= I3.

3.2. Prediction of the Deck Motion

The sea waves–wind type disturbances cocktail leads to an irregular motion of the deck;
this causes the drift of the desired touchdown point and transforms the landing process into
a difficult one [33]. Moreover, the surge, the sway, and the heave motions are considered
stochastic processes; these can be measured at various times, but the measurements are
generally inaccurate and contaminated by noise. This is a serious problem that requires
the prediction of the deck motion, i.e., the estimation of the deck position vector with
high precision at any given time. By introducing an algorithm predicting the carrier deck
motion into the automatic carrier landing system, we enhance the accuracy of the guidance
architecture especially during the touchdown stage.

Difficult prediction algorithms are presented in the literature [31–33]. Usually, these
algorithms involve a simple DMC, which predict and compensate the motion of the deck. In
this paper, we separately treat the prediction and the compensation problems by designing
two independent blocks—a deck motion prediction block and a deck motion compensation
block. The output of the block for deck motion prediction represents the input of the block
for the deck motion compensation. This way, the aircraft can correct the position of the ideal
touchdown point using fewer signals from the ship, while the landing accuracy is improved
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by considering both the airplane-ship relative landing geometry and the configuration of
the landing spot on the carrier.

The prediction of the deck motion is obtained in this paper by means of a recursive-
least squares (RLS) algorithm-based filter. RLS algorithm is generally used for system
identification and adaptive control. In contrast to the least mean squares (LMS) algorithm,
the RLS filter has better convergence speed. The equations associated to a RLS filter are [44]:

k(n) = λ−1P(n−1) u(n)
1+λ−1uH(n) P(n−1) u(n)

, y(n) = w(n− 1) u(n), e(n) = d(n)− y(n),

w(n) = w(n− 1) + kH(n) e(n), P(n) = λ−1P(n− 1)− λ−1k(n) uH(n) P(n− 1) ,
(25)

where n—current time, u(n)—vector containing the input samples at step n, P(n)—inverse
covariance matrix at step n, k(n)—gain vector at step n, w(n)—vector of estimates at step n,
y(n)—filtered output at step n, e(n)—estimation error at step n, d(n)—desired response at
step n, λ—forgetting factor (coefficient), while uH(n) and kH(n) are the hermitian functions

at step n for vectors u(n) and k(n) , respectively; 1− 1

2
_
L
< λ < 1, with

_
L—filter length. For

our case, the input of the RLS filter is d(n) = ri
id (deck position vector), while the filtered

output of this block is y(n) = r̂i
id (predicted deck position vector).

3.3. Compensation of the Deck Motion

In order to cancel the inherent phase lag in the frequency range of the carrier motion
and prevent the appearance of large landing errors or even landing failures, deck motion
compensation (DMC) blocks can be introduced in the architectures of various ACLSs. The
cancellation of the phase lag can be achieved via a classical DMC (phase-lead network)
by placing the frequency response of the desired position close to the unity gain and zero
phase between the frequency ranges of the carrier motion. Compared to the frequency
domain designed DMC (used sometimes in conventional ACLSs and more), the tracking
differentiator-based deck motion compensation (TD-DMC) has much simpler structure, an
easier parameter tuning being ideal for arranging transient processes [3]. In the literature
dealing with the automatic carrier landing control, the TD-DMC blocks have been used till
now only for obtaining the imposed values of the aircraft altitude. Therefore, its use in this
paper in tandem with a deck motion prediction block represents an innovative element.
Thereby, we include in our novel landing control architecture a TD-DMC whose input is
the output of the deck motion prediction block, i.e., the predicted deck position vector r̂i

id.
The output of the TD-DMC (denoted r̂′iid) is a signal necessary to establish the reference
trajectory of the aircraft.

As any tracking differentiator, the TD-DMC block decreases the deviation between a
command signal and a feedback signal, improving the tracking performance, as well as
generating tracking and differential signals of the reference signal. Denoting the reference
signal

(
r̂i

id

)
with v and the output signal of TD-DMC

(
r̂′iid
)

with y, the equations of the
TD-DMC are [44]:

.
v1 = v2,

.
v2 = −r1

( a
d
− sgn (a)

)
sa − r1 sgn (a),

.
v2 = −r1

( a
d
− sgn (a)

)
sa − r1 sgn (a) , (26)

where v1 denotes the tracking signal of v; v2 is the differential signal of v; Γ1, Γ2, r1, and
h1 are scalars; d = h1r2

1, a0 = h1 v2, y0 = v1 − v + a0 = v1 − v + h1v2, a1 =
√

d (d + 8 |y0|),
a2 = a0 + sgn (y0)· a1−d

2 , sy0 = [sgn (y0 + d)− sgn (y0 − d)]/2, a = (a0 + y0 − a2) sy0 + a2 ,

and sa = [sgn (a + d)− sgn (a− d)]/2 .
.
v2 is an optimal control law that guarantees an

excellent convergence (without overshoot) from v1 to v, the speed of this convergence being
also adjusted by changing the parameters Γ1, Γ2, r1, and h1.
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4. Automatic Carrier Landing System Design
4.1. Reference Trajectory of the Aircraft

Before the design of the controllers, one has to generate the reference glide slope, i.e.,
the reference trajectory of the airplane; obtaining the desired trajectory means to compute
desired expressions for the components of the aircraft position vector ri

ia having in mind
that the deck motion causes a drift of the ideal contact point. Let us denote the coordinates
of the aircraft desired position with x∗, y∗, and z∗, respectively. The aircraft real position
relative to the inertial reference frame is denoted with ri

ia =
[
x y z

]T, the real position

of the desired touchdown point is denoted with ri
id =

[
xd yd zd

]T, while the desired

position vector of the airplane is ri
ia
∗ =

[
x∗ y∗ z∗

]T. Figure 3a [22] presents the aircraft-
ship relative motions in longitudinal and lateral-directional planes; γs = −2.5 deg is the
imposed slope angle, while θs denotes the angle between the longitudinal axes of the carrier
and runway, its desired value being ψdp = 9 deg. In the longitudinal plane (Figure 3b),
for the AOaOd triangle, one writes: tan γs =

z−zd
xd−x ⇔ z = (xd − x) tan γs + zd . We can

also remark that z is the airplane altitude relative to the deck; therefore, considering that
hd = 30 m is the high of the deck relative to the sea level, the previous equation is written
as follows: z∗ = (xd − x) tan γs + zd + hd . In lateral-directional plane (Figure 3c), for
the COaOd triangle, one writes: tan θs =

y−yd
xd−x ⇔ y = y∗ = (xd − x) tan θs + yd ; one has

considered that the angle between the longitudinal axis of the ship and the longitudinal
axis of the aircraft should be equal to the angle between the longitudinal axis of the aircraft
carrier and the runway centerline, i.e., θs = ψdp = 9 deg .
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Concluding, the above presented method provides the expressions associated to the
aircraft reference trajectory:

x∗ = xd, y∗ = (xd − x) tan θs + yd, z∗ = (xd − x) tan γs + zd + hd . (27)

4.2. Design of the Sliding Mode-Based Command Differentiator

The backstepping control method to be used for the design of the controllers requires
the complete knowledge of the virtual commands and of their derivatives. Moreover,
the automatic carrier landing problem is a moving path following problems involving
high-order systems and differential calculation for obtaining the time derivatives of the
virtual commands. In these situations, the computing burden is considerable, leading to
the so called “explosion of terms”; a solution to this problem is to use command filters in
the control architecture to compute the virtual commands and their derivatives, thus not
affecting the control performance.

The command filter used here is a sliding mode-based command differentiator (SMCD),
namely a command filter (reference model), which is based on the sliding mode approach.
The equations associated to the SMCD have been borrowed from [33]. To introduce
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these equations, we first define the following vectors: e =
[
e1 e2 . . . en

]T ∈ Rn,

a =
[
a1 a2 . . . an

]T ∈ Rn, b =
[
b1 b2 . . . bn

]T ∈ Rn . The components of these
vectors are denoted with [e]i, [a]i, [b]i, i = 1, n ; all the entries of vectors a and b satisfy
the conditions: [a] i > 1 ,0 < [b] i < 1, i = 1, n . We consider yc—the calculated value of
a vector y, y—the imposed value of the vector y , and

.
y—its derivative. For obtaining a

computational expression for y and
.
y , with respect to yc, one defines the function:

fσ (a , b , e)(e) = diag
{
|[e]i|

σ ([a]i , [b]i , [e]i)
}
·
[
sgn ([e] 1) sgn ([e] 2) . . . sgn ([e] n)

]T, (28)

with σ ([a] i, [b] i, [e] i) = 1
2 ([a] i + [b] i) +

1
2 ([a] i − [b] i) sgn (|[e] i| − 1), i = 1, n . Cus-

tomizing the theory from [33] to our case, we obtain:

.
y = −k01 fσ (a , b , y−yc)(y− yc)− k02 fσ (b , a , y−yc)(y− yc) , (29)

where k01 = diag
{

k11 k12 . . . k1n
}

and k02 = diag
{

k21 k22 . . . k2n
}

are positive
definite matrices. The fast fixed-time stable convergence y→ yc in a settling time depend-
ing on the components of the vectors a and b , as well as the accurate estimation of the
derivatives of the reference commands are proved in ref [33].

4.3. Design of the Controllers

This subsection includes the design of four controllers and the design of the approach
power compensation subsystem (APCS). To begin with, the design control methodology
involves three functional parts, namely a guidance subsystem, an attitude subsystem, and
an approach power compensation system. In turn, the design of the attitude subsystem
is decomposed into three different steps, namely the flight path control, the control of
the attitude angles, and the control of the angular rates. Each subsystem is controlled by
an intermediate virtual control and/or relevant actuators. Sequentially, the backstepping
control is combined with sliding mode-based command differentiators (for the computation
of the virtual commands) and extended state observers (for the estimation of the external
disturbances). The architecture of the novel automatic carrier landing system is presented
in Figure 4 with some state feedbacks omitted for simplicity.
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Since the ACLS in Figure 4 has no measurement devices for the disturbances (airwake
and wind type disturbances), some observers for the estimation of the disturbances are
required. For this, we choose the extended state observers (ESOs) [3,20] because of their
multiple advantages [45]: (i) ESOs are efficient and powerful tools for the estimation of
the state and disturbances in uncertain nonlinear systems; (ii) these observers can estimate
in real time both the state and the disturbances of the system; (iii) ESOs are extended
high-gain observers, the system total uncertainty being considered as an extended state
and estimated simultaneously with the state of the system; (iv) intrinsic robustness with
respect to uncertainties; (v) good performance even if the observer’s gain is high; and
(vi) using the estimated state provided by an ESO, the uncertainty of a system can be
directly compensated in real time by means of a controller.

To generally present the equations of an ESO, we define general dynamics:

.
x = f + b u + d , (30)

where f ∈ Rn—unknown nonlinear function, d ∈ Rn—the vector of disturbances to be
estimated, and u ∈ Rm—the vector of inputs or pseudo-commands. By means of notation
g = f + d, the system from Equation (30) obtains the form:

.
x = g + b u. Considering that

Assumption 3 is satisfied, the disturbance vector d can be accurately estimated with the
ESO [3,20]: { .

x̂ = ĝ + β1(x− x̂) + b u ,
.
ĝ = β2(x− x̂) ,

(31)

where x̂ and ĝ are the estimated values of x and g , β1 = diag
{

2ω1 2ω2 . . . 2ωn
}

,
and β2 = diag

{
ω2

1 ω2
2 . . . ω2

n
}

;ωi, i = 1, n , are the amplification gains of the ESO.
Computing the vector ĝ = f + d̂, one obtains the estimation of the disturbance d̂ = ĝ− f.
We will consider in this work that the estimation error g̃ = g− ĝ always converges to a
small region in finite time; the proof is given in [20].

Step 1: Guidance control
The main target of the guidance subsystem is to compute the desired values of the

heading angle (χ) and trajectory slope angle (γ) . In other words, we consider the known
vector x∗1 =

[
y∗ z∗

]T—Equation (27), and we want to obtain the vector x∗2 =
[
χ∗ γ∗

]T.
A guidance control law has to be designed to make the aircraft accurately track the refer-
ence trajectory.

To begin with, the desired values of the components of the vector x1 (i.e., y and z),
as well as the derivatives of these variables (i.e.,

.
y and

.
z) are obtained by means of a first

sliding mode-based command differentiator (SMCD_1). The design of the guidance control
law is achieved by using the first line in Equation (5), the target being the convergence
x1 → x1 . For this, we define the tracking error ex1 = x1 − x1 and the Lyapunov function
V1(ex1) =

1
2 eT

x1
ex1 ; the time derivative of ex1 becomes:

.
ex1 =

.
x1 −

.
x1 =

.
x1 − f1 − b1 x2 − d1 + ξ1ex1 − ξ1ex1 , (32)

where ξ1 ∈ R2×2 is a positive definite matrix; one chooses ξ1 = ξI2, with ξ—positive
constant and I2—identity matrix. In order to cancel the error ex1 , we impose a desired form
for (32), i.e.,

.
ex1 = −ξ1ex1 and we obtain:

.
x1 − f1 − b1 x2 − d1 + ξ1ex1 = 0, which leads to:

x∗2 = b−1
1

( .
x1 − f1 + ξ1ex1 − d̂1

)
, (33)

where d̂1 is the estimated value of d1 =
[
dy dz

]T observed via the first extended state
observer (ESO_1): { .

x̂1 = ĝ1 + β11(x1 − x̂1) + b1x2 ,
.
ĝ1 = β21(x1 − x̂1) ,

(34)
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with β11 = diag
(
2ω1 2ω2

)
, β21 = diag

(
ω2

1 ω2
2
)
, ĝ1 = f1 + d̂1 ; ESO_1 cancels the

error d̃1 = d1 − d̂1.
The time derivative of the Lyapunov function V1 is:

.
V1(ex1) = eT

x1

.
ex1 = eT

x1

( .
x1 − f1 − b1x∗2 − d1

)
= −eT

x1
ξ1ex1 − eT

x1
d̃1 . (35)

Step 2: Flight path angle control
The flight path angle control is the first step in controlling the aircraft attitude, which

mainly involves the determination of the command vector δ, as well as the fulfillment
of the following three convergences: χ→ χ, x3 → x3, x4 → x4 . The aim of this step is to
control the heading angle (χ) and to obtain a pseudo-command for the next subsystem. In
Step 1, we obtained the vector x∗2 =

[
χ∗ γ∗

]T, which is used now for the control of the
heading angle. Thus, by means of a second sliding mode-based command differentiator
(SMCD_2), the desired values of the components of the vector x2 (i.e., χ and γ), as well as
the time derivatives of these variables are obtained; only χ and

.
χ are used in this step. We

define the tracking error eχ = χ− χ and the Lyapunov function V2(eχ) = 1
2 e2
χ; by means of

the second line of Equation (5), we write:

.
eχ =

.
χ− .

χ =
.
χ− f2 − b2µ− dχ − ξeχ + ξeχ , (36)

with ξ—positive constant defined above. By using the backstepping control and by impos-
ing a simplified form for Equation (36), namely

.
eχ = −ξeχ, the virtual control is computed

as:
µ∗ = b−1

2

( .
χ− f2 + ξeχ − d̂χ

)
, (37)

where d̂χ (the estimation of the disturbance dχ) is obtained by means of the second extended
state observer (ESO_2): { .

χ̂ = ĝ2 + β12(χ− χ̂) + b2µ ,
.
ĝ2 = β22(χ− χ̂) ,

(38)

with β12 = 2ω1, β22 = ω2
1, and ĝ2 = f2 + d̂χ. The time derivative of the Lyapunov

function V2 becomes:

.
V2(eχ) = eχ

.
eχ = eχ

( .
χ− f2 − b2µ

∗ − dχ
)
= −ξe2

χ − eχd̃χ , (39)

with d̃χ = dχ − d̂χ.
Step 3: Control of the attitude angles
Within this step, the convergence x3 → x3 has to be obtained by computing the virtual

control x∗4 . To begin with, in order to deduce the expression of x3, one has to compute

first the vector x∗3 =
[
θ∗ β∗ µ∗

]T and then employ a sliding mode-based command
differentiator (SMCD_3); the pseudo-command µ∗ has the form of Equation (37), β∗ = 0,
while θ∗ = γ∗ + α∗, where γ∗ = x∗2(2) (computed with Equation (33)) and α∗ = 8 deg.
By using the vector x∗3 as yc in Equation (29), SMCD_3 provides the desired values of

the components of the vector y = x3=
[
θ β µ

]T, as well as the time derivatives of
this vector.

Now, let us define the error ex3 = x3− x3 and the Lyapunov function V3(ex3) =
1
2 eT

x3
ex3 ;

by using the same procedure as above, the fulfillment of the convergence ex3 → 0 is
performed with the backstepping control method. The time derivative of the error ex3 is
computed as:

.
ex3 =

.
x3 − f3 − b3 x4 − d3 + ξ3ex3 − ξ3ex3 , with ξ3 = ξI3 ∈ R3×3—positive

definite matrix. Imposing
.
ex3 = −ξ3ex3 , one obtains:

x∗4 = b−1
3

( .
x3 − f3 + ξ3ex3 − d̂3

)
, (40)
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with d̂3—the estimated value of d3 =
[
dα dβ dµ

]T; the error d̃3 = d3 − d̂3 is cancelled
by the extended state observer (ESO_3):{ .

x̂3 = ĝ3 + β13(x3 − x̂3) + b3x4 ,
.
ĝ3 = β23(x3 − x̂3) ,

(41)

with β13 = diag
(
2ω1 2ω2 2ω3

)
, β23 = diag

(
ω2

1 ω2
2 ω2

3
)
, ĝ3 = f3 + d̂3 . We also

compute the time derivative of Lyapunov function V3:

.
V3(ex3) = eT

x3

.
ex3 = eT

x3

( .
x3 − f3 − b3x∗4 − d3

)
= −eT

x3
ξ3ex3 − eT

x3
d̃3 . (42)

Step 4: Control of the angular rates
A similar technique is employed in this case too, the convergence x4 → x4 being

obtained by computing the control vector δc. Using x∗4 computed with Equation (40) as
the input vector of the fourth sliding mode-based command differentiator (SMCD_4),
one obtains x4 and

.
x4. The error to cancel is ex4 = x4 − x4, while the Lyapunov function

candidate is chosen as: V4(ex4) = 1
2 eT

x4
ex4 ; the control law for the angular rate loop is

obtained as follows:
δc = b−1

4

( .
x4 − f4 + ξ4ex4 − d̂4

)
, (43)

with ξ4 = ξ3 = ξI3 ∈ R3×3; the extended state observer (ESO_4), designed for cancelling
the error d̃4 = d4 − d̂4, is governed by:{ .

x̂4 = ĝ4 + β14(x4 − x̂4) + b4δ ,
.
ĝ4 = β24(x4 − x̂4) ,

(44)

with β14 = β13, β24 = β23, ĝ4 = f4 + d̂4. The time derivative of the Lyapunov function V4
is: .

V4(ex4) = eT
x4

.
ex4 = eT

x4

( .
x4 − f4 − b3δ− d4

)
= −eT

x4
ξ4ex4 − eT

x4
d̃4 . (45)

Step 5: Approachpower compensation subsystem design
To land safely, an accurate airspeed control is mandatory. However, because of the

deck length, the aircraft speed should be much lower, while the attack angle should
have larger values. Since this phenomenon can easily cause instability, an approach
power compensation system (APCS) is included in the architecture of the novel ACLS to
automatically control the throttle and the phugoid damping [21]. Having in mind that
the APCSs with constant attack angle provide better results than the APCSs with constant
airspeed, an APCS is developed in this subsection to directly control the attack angle, to
indirectly control the airspeed, and to formulate the throttle command δtc .

According to the fifth line of Equation (5), the attack angle α depends on the throttle
input; a new sliding mode-based command differentiator is not needed here since we
consider α = α∗ = 8 deg. The attack angle should be maintained constantly during carrier
landing by adjusting the thrust. Let us consider the tracking error of the attack angle
eα = α− α, as well as the Lyapunov function V5(eα) = 1

2 e2
α; by means of the fifth line of

Equation (5), we write:
.
eα =

.
α− .

α = − fα − bαδt − d′α − ξeα + ξeα, with ξ—the positive
constant defined above. By using the backstepping control and by imposing

.
eα = −ξeα,

the throttle command is written as:

δtc = b−1
α

(
− fα + ξeα − d̂′α

)
, (46)

where d̂′α (the estimation of the disturbance d′α) is obtained via the fifth extended state
observer (ESO_5): { .

α̂ = ĝα + β15(α− α̂) + bαδt ,
.
ĝα = β25(α− α̂) ,

(47)
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with β15 = β12, β25 = β22, ĝα = fα + d̂′α. Denoting d̃′α = d′α − d̂′α, the derivative of
V5 becomes:

.
V5(eα) = −ξe2

α − eαd̃′α . (48)

4.4. Stability Analysis

The main outcome of this work is summarized as follows:

Theorem 1. Consider aircraft dynamics using Equation (5), under external disturbances (airwake,
wind shears, atmospheric turbulences, wind gusts) and suppose Assumptions 1 and 3 are satisfied. If
the controllers are obtained with Equations (33), (37), (40), (43), and (46), along with the convergent
extended state observers using Equations (34), (38), (41), (44), (47), as well as four sliding mode-
based command differentiators of form from Equation (29), then, the aircraft reference trajectory is
accurately tracked, and the closed loop system is globally stable.

Proof. Let us consider the complete Lyapunov candidate function as: V0 =
5
∑

i=1
Vi

= 1
2
(
eT

x1
ex1 + e2

χ + eT
x3

ex3 + eT
x4

ex4 + e2
α

)
> 0 . Combining Equations (35), (39), (42), (45),

and (48), the time derivative of the function V0 is governed by:

.
V0 =

5

∑
i=1

.
Vi = −

(
eT

x1
ξ1ex1 + ξe2

χ + eT
x3
ξ3ex3 + eT

x4
ξ4ex4 + ξe2

α

)
−
(

eT
x1

d̃1 + eχd̃χ + eT
x3

d̃3 + eT
x4

d̃4 + eαd̃′α
)

. (49)

Because ξ1 = ξI2 , ξ3 = ξ4 = ξI3, we write eT
x1
ξ1ex1 = ξeT

x1
ex1 , eT

x3
ξ3ex3 = ξeT

x3
ex3 ,

eT
x4
ξ4ex4 = ξeT

x4
ex4 , and we compute:

.
V0 = −ξ

(
eT

x1
ex1 + eT

x3
ex3 + eT

x4
ex4 + e2

χ + e2
α

)
−
(

eT
x1

d̃1 + eχd̃χ + eT
x3

d̃3 + eT
x4

d̃4 + eαd̃′α
)

. (50)

Using Young’s inequality, written under the form: zT
1 Az2 ≤ ς

∣∣zT
1 z2
∣∣ ≤ ς

2
(
zT

1 z1 + zT
2 z2
)

,
with ς = ‖A‖∞, one obtains:

eT
x1

d̃1 ≤ 1
2

(
eT

x1
ex1 + d̃1

Td̃1

)
, eχd̃χ ≤ 1

2

(
e2
χ + d̃2

χ

)
,

eT
x3

d̃3 ≤ 1
2

(
eT

x3
ex3 + d̃3

Td̃3

)
, eT

x4
d̃4 ≤ 1

2

(
eT

x4
ex4 + d̃4

Td̃4

)
, eαd̃′α ≤ 1

2

(
e2
α + d̃′

2
α

)
,

(51)

while, by means of Assumption 3, Equation (50) yields:
.

V0 ≤ −
(
ξ− 1

2

) (
eT

x1
ex1 + eT

x3
ex3 + eT

x4
ex4 + e2

χ + e2
α

)
+ 1

2

(
d̃1

Td̃1 + d̃3
Td̃3 + d̃4

Td̃4 + d̃2
χ + d̃′2α

)
⇔

.
V0 ≤ −(2ξ− 1)

(
eT

x1
ex1 + eT

x3
ex3 + eT

x4
ex4 + e2

χ + e2
α

)
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while, by means of Assumption 3, Equation (50) yields: 

( ) ( )
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V e e d d
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χ α χ α

ξ

ξ

  ′≤ − − + + + + + + + + + ⇔ 
 

≤ − − + + + + + + + + +

      




x x x x x x

x x x x x x

e e e e e e d d d d d d

e e e e e e
 (52)

equivalent to 

0 0 ,V VV V dω≤ − +  (53)

where 2 1 0Vω ξ= − >  and ( )1 3 4
1
2Vd d d d d dχ α= + + + + . 

By integrating both sides of Equation (53), one obtains the following result: 

V0

+ 1
2

(
d1 + dχ + d3 + d4 + dα

)
, (52)

equivalent to
.

V0 ≤ −ωVV0 + dV , (53)

whereωV = 2ξ− 1 > 0 and dV = 1
2

(
d1 + dχ + d3 + d4 + dα

)
.

By integrating both sides of Equation (53), one obtains the following result:

V0 ≤
[

V0(0)−
dV
ωV

]
exp (−ωV t) +

dV
ωV

(54)

which proves that V0 is bounded and, in this case, ex1 , eχ , ex3 , ex4 , eα are uniformly
bounded. Additionally, with Lemma 2 from [21], we obtain the boundedness of d̃1 , d̃χ , d̃3 , d̃4,
and d̃′α. Moreover, Equations (53) and (54) show that choosing a large value for constant ξ

such thatωV is much larger than dV , V0 converges into region Ω =
{

V0 : V0 ≤ dV
ωV

}
. The

proof is complete. �
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5. Numerical Simulations
5.1. Numerical Simulation Setup

In this section, a series of numerical simulations has been carried out to verify
the effectiveness of the proposed control architecture. The airwake, the wind shears,
the atmospheric turbulences, and the wind gusts are adopted as the main disturbances
of the system. The geometry and the aerodynamic parameters of the SIAI Marchetti
S211 aircraft are also given in Appendices A and B. The imposed value of the slope an-
gle is set γs = −2.5 deg , while the angle between the longitudinal axes of the carrier
and runway is θs = ψdp = 9 deg . The initial position of the aircraft is (x0 ; y0 ; z0) =
(−2160 m ; 342.1 m ; 132.2 m) , i.e., 132.2 m away from the desired trajectory in longitudi-
nal plane and 342.1 m away from the imposed trajectory in lateral-directional plane. By
controlling the attack angle of the airplane (within APCS), the velocity is kept constant
(37 m/s). For the CVN-65 Enterprise carrier ship considered in this work, we assume that
the aircraft carrier moves along its longitudinal axis with constant speed

(
Vp = 10 m/s

)
.

The amplitudes and the frequencies of the sea perturbations (Equation (22) and the ex-
pression of vector Φd) depend on the sea state and the height of waves; we consider
in the simulation the surge, sway, and heave motions for a moderate sea, namely [32]:
Ab = 0.2909 m, Al = 0.431 m, Arc = 0.6789 m ; ωb = 0.3307 rad/s, ωl = 0.3307 rad/s,
ωrc = 0.3491 rad/s ; Aφ= 0.6223 deg, Aθ = 0.5162 deg, Aψ = 0.18 deg ; ωφ = 0.2856 rad/s ;
ωθ = 0.5236 rad/s, ωψ = 0.52 rad/s . For the simulation of the wind shears (W5), atmo-
spheric disturbances (W6), and wind gusts (W7), one used the simulation blocks from
the Matlab library, light values of the three disturbances being chosen. For the wind
shears, one considered W20 = 15 m/s and 0 degrees clockwise from North. For the
atmospheric disturbances described by Dryden spectral model, one employed a light
turbulence, with 0.1 seconds band-limited noise sample time, 533 m scale length at
medium/high altitude, and [23341 23342 23343 23344] noise seeds. For discrete wind
gusts, one has chosen a length described by [134.87 67.43 66.66] m and an amplitude of
[0.89 0.89 0.45] m/s. The initial aircraft trim state involves: x1 =

[
342.1 m 132.2 m

]T,

x2 =
[
−3.25 deg −7.5 deg

]T, x3 =
[
1.5 deg 0.05 deg 0.35 deg

]T, x4 =
[
0 0 0

]T,
while the trim value of the aircraft velocity is 37 m/s, this value being kept constant by
means of the APCS system.

For good convergence speed of the TD-DMC block, the following parameters were
chosen: Γ1 = 2.85, Γ2 = 1, r1 = 7, h1 = 0.058 . For sliding mode command differentia-
tors, we used: [a] i = 1.1, [b] i = 0.7, k01 = diag

{
10−2 10−2}, k02 = diag

{
14.5 14.5

}
(for SMCD_1), k01 = k02 = diag

{
10−3 10−3} (for SMCD_2 and SMCD_4), and k01 =

diag
{

0.05 0.05 0.05
}

, k02 = diag
{

0.5 0.5 0.5
}

(for SMCD_3). The amplification
gains of the extended state observers were selected by using ωi = 25, while for all the
backstepping-based controllers, we adopted ξ = 0.6.

Remark 4. In the literature, there are some modern techniques for tuning the design parameters
of the backstepping control laws [46,47]. On the contrary, [18] and [42] have theoretically proved
that the increase in the backstepping controller gain generally leads to better robustness since
the conditions

.
V1(ex1) < 0 ,

.
V2(eχ) < 0 ,

.
V2(eχ) < 0 ,

.
V4(ex4) < 0 ,

.
V5(eα) < 0 are better

fulfilled. Having in mind that ξ1 = ξI2 , ξ3 = ξ4 = ξI3, the control laws in Equations (33), (37),
(40), (43), and (46) depend on the gain ξ ; because there are limitations regarding the maximum
values of the variables/vectors x∗2 , µ∗, x∗4 , x∗4 , δc ,δtc , the gain ξ cannot be increased indefinitely.

5.2. Simulation Results

The simulation results are provided in Figures 5–13. Figure 5 presents the longitudinal,
the lateral, and the vertical components of the resultant airwake (consisting of free-air
turbulence, turbulence induced by the carrier periodic motion, and constant and random
carrier-wake turbulences) for moderate sea, the resultant wind (consisting of light wind
shears, light atmospheric turbulences, and light wind gusts), as well as the resultant
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disturbances in forward, lateral, and vertical directions (uW , vW , wW) defined in Section 2.
Figure 6 presents the roll, the pitch, and the yaw of the carrier deck (rotational dynamics)—
angles φd, θd, ψd, as well as the surge, the sway, and the heave motions of the carrier
(translation dynamics)—the displacement of the carrier mass center along Opxp, Opyp, and
Opzp axes as a result of the motions induced by the wave excitation.
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Figure 5. Airwake and wind type disturbances.
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Figure 6. Rotational and translation dynamics of the carrier deck.
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Figure 7. Signals associated to the deck motion prediction and deck motion compensation blocks.

Aerospace 2022, 9, x FOR PEER REVIEW 26 of 34 
 

 

 
Figure 8. Time histories of the variables associated to ESO_1 and guidance control. 

For the flight path angle control (Step 2), Figure 9 depicts: (i) the disturbance dχ  (con-

tinuous line), as well as its estimated value d̂χ  (dashed line) obtained via ESO_2; (ii) the 

imposed value of the heading angle ( )χ , as well as its controlled value ( )χ  by using the 

backstepping-based flight path angle controller; (iii) the disturbance dα′  (continuous line), 

as well as its estimated value d̂α′  (dashed line) observed with ESO_5; (iv) the desired value 

of the attack angle ( )*α , as well as its controlled value by using the backstepping-based 

APCS. ESO_2 and ESO_5 are convergent and cancel the estimation errors ˆd d dχ χ χ= −  

and ˆd d dα α α′ ′ ′= − , respectively. Additionally, by means of the backstepping-based control 

laws (37) and (46), the tracking errors eχ χ χ= −  and eα α α= −  are cancelled in about 
5 s. 

Figure 10 presents the main variables for the attitude angle control (Step 3): (i) the three 
components of the disturbance vector 3d  (continuous lines), as well as their estimated val-

ues ˆ ˆ ˆ, ,d d dα β μ  (dashed lines) obtained by means of ESO_3; (ii) the real and the imposed 

values of the pitch angle (θ  and θ ), sideslip angle ( β and β ), and bank angle (μ  and 

μ ), respectively. ESO_3 cancels the estimation error 3 3 3
ˆ= −d d d , while the attitude angle 

controller uses the signals provided by SMCD_3 and the backstepping-based virtual control 
shown in Equation (40) to cancel the tracking error 

3 3 3= −xe x x  and to achieve the con-

vergence 3 3→x x  in less than 5 s. 

0 10 20 30 40 50 60 70 80

-5

0

5

10

Time [s]
0 10 20 30 40 50 60 70 80

-2
-1.5

-1

-0.5

0

0.5

1

Time [s]

0 10 20 30 40 50 60 70 80
0

50
100
150
200
250
300
350

Time [s]
0 10 20 30 40 50 60 70 80

0
20
40
60
80

100
120
140

Time [s]

x 10-3

70 72 74 76 78 80
-6
-4
-2
0
2
4

x 10
-3

70 72 74 76 78 80
-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10290
300
310
320
330
340
350

0 2 4 6 8 10115

120

125

130

135

[ ]m/syd [ ]m/sˆ
yd [ ]m/szd [ ]m/sˆ

zd

[ ]mz
[m]z

[ ]my
[m]y

[
]

m
/s

ˆ ,
y

y
d

d

[
]

m
/s

ˆ ,
z

z
d

d

[
]

m
,yy

[
]

m
,zz

ES
O

_1
G

ui
da

nc
e 

co
nt

ro
lle

r

Figure 8. Time histories of the variables associated to ESO_1 and guidance control.
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Figure 9. Time histories of the variables associated to the flight path control and APCS.
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Figure 10. Time histories of the variables associated to ESO_3 and attitude angle control.
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The first three mini-graphics in Figure 7 are associated to the block for the deck motion
prediction (based on the recursive-least squares algorithm and detailed in Section 3.2); the
target of this block (i.e., the noise decontamination of the signal associated to the deck
motion) is achieved since the predicted deck position vector

(
r̂i

id

)
tends to the real deck

position vector
(
ri

id
)
. For the deck motion prediction, it can be remarked that after less than

2 s, the curves obtained with the deck motion prediction system are superposed over to the
curves associated to the real motion, which proves the efficiency of the prediction algorithm.
The last three mini-graphics in Figure 7 are associated to the tracking differentiator-based
deck motion compensation detailed in Section 3.3. The TD-DMC block decreases the
deviation between the reference signal (i.e., the predicted deck position vector r̂i

id) and
the feedback signal (i.e., the signal r̂′iid necessary to establish the reference trajectory of the
aircraft); very good tracking performance is obtained in less than 9–10 s.

For the guidance control (Step 1), Figure 8 depicts: (i) the two components of the dis-
turbance vector d1 (continuous lines), as well as their estimated values d̂x, d̂y (dashed lines)
obtained via the first extended state observer (ESO_1); (ii) the lateral and the vertical aircraft
imposed coordinates (y and z) with continuous lines, as well as their controlled values by
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using the backstepping-based guidance controller (with dashed lines). From the estimation
point of view, ESO_1 is convergent since the components of the estimated disturbance
vector

(
d̂1
)

tend to their real values, this being equivalent to the cancellation of the error
d̃1 = d1 − d̂1. Thus, ESO_1 provides excellent ability in estimating the disturbances. When
beginning the descent path, the airplane should track the vertical and lateral references [33].
Thus, by using the controller Equation (33), the tracking error ex1 = x1 − x1 is cancelled,
the convergence x1 → x1 being achieved in less than 4 seconds; the convergence of the
guidance controller leads to the cancellation of the initial deviation between the airplane’s
real and desired trajectories obtained with a block generating the reference glide slope(
x∗1
)

and then by means of the sliding mode-based command differentiator SMCD_1 that
achieves the convergence x∗1 → x1 , also providing the time derivative

.
x1. For an accurate

presentation, the time histories of the vectors x∗1 and x1 are not provided here.
For the flight path angle control (Step 2), Figure 9 depicts: (i) the disturbance dχ

(continuous line), as well as its estimated value d̂χ (dashed line) obtained via ESO_2; (ii)
the imposed value of the heading angle (χ) , as well as its controlled value (χ) by using the
backstepping-based flight path angle controller; (iii) the disturbance d′α (continuous line),
as well as its estimated value d̂′α (dashed line) observed with ESO_5; (iv) the desired value
of the attack angle (α∗) , as well as its controlled value by using the backstepping-based
APCS. ESO_2 and ESO_5 are convergent and cancel the estimation errors d̃χ = dχ− d̂χ and
d̃′α = d′α − d̂′α, respectively. Additionally, by means of the backstepping-based control
laws (37) and (46), the tracking errors eχ = χ− χ and eα = α− α are cancelled in about 5 s.

Figure 10 presents the main variables for the attitude angle control (Step 3): (i) the three
components of the disturbance vector d3 (continuous lines), as well as their estimated values
d̂α, d̂β, d̂µ (dashed lines) obtained by means of ESO_3; (ii) the real and the imposed values
of the pitch angle (θ and θ), sideslip angle (β and β), and bank angle (µ and µ), respectively.
ESO_3 cancels the estimation error d̃3 = d3 − d̂3, while the attitude angle controller uses
the signals provided by SMCD_3 and the backstepping-based virtual control shown in
Equation (40) to cancel the tracking error ex3 = x3 − x3 and to achieve the convergence
x3 → x3 in less than 5 s.

Remark 5. In the last part of the landing process, when the variables are close to their steady values,
the pitch angle oscillates between 5 and 6 deg, especially because of the airwake producing the heave
motion; by using the mean value of the pitch angle (i.e., 5.5 deg) and the steady value of the attack
angle (8 deg) (see Figure 9), we can easily remark the concordance between the imposed value of the
slope angle and the one resulted from simulations: γ ∼= 5.5 deg− 8 deg = −2.5 deg = γs .

Similarly, for the control of the angular rates (Step 4), in Figure 11 depicts: (i) the three
components of the disturbance vector d4 (continuous lines), as well as their estimated values
d̂p, d̂q, d̂r (dashed lines) observed via ESO_4; (ii) the real and the imposed values of the roll,

pitch, and yaw angular rate, namely the components of the vectors x4 =
[
p q r

]T and

x4 =
[
p q r

]T, respectively. Both x4 and its time derivative (necessary in the controller
Equation (43)) have been obtained by means of SMCD_4 that achieves the convergence
x∗4 → x4 , where x∗4 has been computed with virtual control shown in Equation (40). We
remark the convergence of ESO_4 (Equation (44)), i.e., the cancellation of the estimation
error d̃4 = d4 − d̂4, as well as the cancellation of the tracking error ex4 = x4 − x4.

Figure 12 presents the characteristic z = z (x, y) for a classical carrier landing process
involving final approach, glideslope, and touchdown phases. The following conclusions
can be drawn: (i) the aircraft successfully accomplishes the landing under the control of the
scheme from Figure 4; (ii) the real time varying trajectory of the aircraft tends to its reference
time varying trajectory, thus proving not only the accuracy of the backstepping controllers
but also their robustness with respect to the disturbances considered in this work (airwake,
shears, atmospheric turbulences, wind gusts); (iii) the airplane achieves a safe landing in the
presence of deck motion (see Figure 6), carrier airwake, and other wind type disturbances
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(see Figure 5); (iv) under the proposed ACLS, although the desired touchdown point has
oscillations in vertical and lateral planes, the airplane motion overlaps the carrier motion,
successfully capturing the time-varying reference trajectory; (v) due to the presence in the
ACLS of the blocks for the prediction and compensation of the deck motion, the glide path
commands are corrected, thus enhancing the accuracy of the guidance control scheme; (vi)
the transition from glideslope phase to touchdown phase is continuous and smooth, the
stability of the system being not altered.

Figures 5–12 have been drawn for moderate sea, light wind shears, light atmospheric
turbulences, and light gusts. Now, it is interesting to see how the intensity of the airwake
(quantified by the sea state) and the intensity of the wind influence the aircraft landing point.
Figure 13 presents the distribution of the touchdown points depending on the sea state
(airwake) and the intensities of the three wind type disturbances (wind shears, atmospheric
turbulences, gusts). Thus, we simulated the functionality of the novel ACLS for different
scenarios by considering three types of wind (light, moderate, and severe) and four types of
sea (calm, moderate, rough, and very rough). The three mini graphics prove that the wind
intensity influences to an insignificant extent the touchdown point, whether or not a DMC
block is used. Instead, the state of the sea and the amplitude of the sea waves have a visible
influence on touchdown landing point; moreover, the use of a deck motion compensation
block also influences the point of contact with the runway. A quantitative comparison is
detailed in Table 1. The more turbulent the sea and the higher the intensities of airwake
disturbances are, the greater the longitudinal and lateral deviations from the ideal point of
contact with the runway are. Moreover, the deck motion compensation block improves
the landing accuracy, decreasing on average the longitudinal touchdown error by 39.38%
and the lateral touchdown error by 63.76%. Thus, we conclude that the TD-DMC block
significantly increases the success rate of the ACLS. The longitudinal and lateral errors have
been computed relative to the ideal touchdown point (intersection of the runway center line
with the third cable transversely positioned on the deck) characterized by (x ; y) = (0 ; 0).
Even in the most unfavorable scenario (very rough sea), for the novel ACLS (Figure 4),
the two tracking errors remain within an imaginary circle with radius R = 1 m, which
corresponds to the best landing standards of the Federal Aviation Administration [33,48].

Table 1. Distribution of the touchdown points.

Longitudinal Without tracking differentiator-based DMC With tracking differentiator-based DMC
Touchdown Error [m] Light wind Moderate wind Severe wind Light wind Moderate wind Severe wind

Calm sea 0.0975 m 0.0964 m 0.0951 m 0.0028 m 0.0018 m 0.0007 m

Moderate sea 0.2191 m 0.2180 m 0.2170 m 0.1163 m 0.1153 m 0.1142 m

Rough sea 0.3893 m 0.3882 m 0.3870 m 0.2793 m 0.2783 m 0.2773 m

Very rough sea 0.6233 m 0.6223 m 0.6211 m 0.5011 m 0.5002 m 0.4990 m
Lateral Touchdown Without tracking differentiator-based DMC With tracking differentiator-based DMC

Error [m] Light wind Moderate wind Severe wind Light wind Moderate wind Severe wind
Calm sea 0.341 m 0.341 m 0.341 m −0.2913 m −0.2913 m −0.2913 m

Moderate sea 0.5151 m 0.5151 m 0.5151 m 0.1930 m 0.1930 m 0.1930 m

Rough sea 0.7915 m 0.7915 m 0.7915 m 0.4833 m 0.4832 m 0.4832 m

Very rough sea 1.1609 m 1.1609 m 1.1609 m 0.8708 m 0.8708 m 0.8707 m

Remark 6. From the time characteristics presented in Figures 5–13, the following can be concluded:
(1) the deck motion is accurately predicted and compensated; (2) the SMCDs from the architecture of
the ACLS provide the virtual commands and their time derivatives, preventing the occurrence of the
“explosion of terms” phenomenon and not affecting the control performance; (3) the disturbances,
depending on the airwake, wind shears, atmospheric turbulences, and wind gusts, are successfully
estimated by means of the five ESOs and then suppressed by means of the five backstepping
controllers; (4) the novel ACLS is characterized by excellent trajectory tracking capability, as
well as very good adaptability to the unexpected and even sudden changes in the state of the sea;
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(5) we managed to prove both theoretically and through numerical simulations that the proposed
landing auto-pilot ensures the landing at the desired touchdown point within small error margin.

The ACLS proposed in this work brings innovative elements, the most important
being: (1) the deck motion involves both the maneuvering and the seakeeping motions;
(2) complete new dynamics, all the equations including disturbance type terms; (3) the
dynamics are brought to an affine form, thus making many advanced nonlinear control
methods suitable to be employed; (4) the deck motion compensation is, for the first time,
achieved using the signal provided by a deck motion prediction block; (5) the disturbances
in the system include, for the first time, not only the airwake but also the wind shears, the
atmospheric turbulences, and the wind gusts; (6) within guidance and attitude control, one
designed an innovative combination between sliding mode-based command differentiators,
extended state observers, and backstepping controllers.

Our new designed ACLS offers tracking performance better than the conventional
automatic carrier landing systems; for the conventional ACLS presented in [3], the lon-
gitudinal and the lateral touchdown errors are both equal to 0.56 m; in contrast, for the
simulated scenario involving moderate sea and light wind type disturbances, the longi-
tudinal and the lateral touchdown errors for the backstepping-based control architecture
proposed in this work are 0.1163 m and 0.1930 m, respectively. Moreover, the controllers
from the conventional ACLSs do not have the capacity to provide the desired performances
and cannot ensure a safe landing in the case of severe or unexpected disturbances. The
proposed ACLS using blocks for prediction and compensation of the deck motion has
small touchdown dispersion from the desired touchdown point and in 100% of the possible
scenarios (including severe wind and very rough sea), the aircraft succeeds in achieving
a precision landing; in contrast, the ACLS proposed in [31] is characterized by a 95%
success rate.

The ACLS designed in this paper tracks the time-varying reference trajectories more
quickly and accurately than the ACLS from [49], which involved the use of three control
techniques (incremental sliding mode control—ISMC, nonlinear dynamic inversion—NDI,
and incremental nonlinear dynamic inversion—INDI), as well as the airwake compensation
by means of some homogeneous extended state observers. The transient regimes are 20 s
for ISMC-based ACLS, 25 s for INDI-based ACLS, and 27 s for NDI-based ACLS; in contrast,
our automatic carrier landing system provides the tracking of the reference trajectory in
only 4.5s. Moreover, all the three ACLSs given in [49] are sensitive to carrier airwake
in the last part of the descent phase, important fluctuations being remarked for velocity
(about 3 m/s), climb angle (about 0.5 deg), attack angle (about 0.6 deg), pitch angle (about
0.7 deg), and pitch angular rate (about 0.6 deg/s); unlike these three ACLSs, in the case of
the backstepping- and sliding mode-based automatic carrier landing system designed in
the present work, the deviations of above mentioned variables from their imposed values
are close to zero.

The backstepping control method used in this paper has important advantages with
respect to the control method used in [32]: (i) the dynamics should not be linearized, the
performances of the linear controllers being always restricted by the linearized dynamic
models; (ii) the backstepping control technique successfully handles the multi-variable sys-
tems with channel interferences [50,51]; (iii) superior disturbance rejection ability, smaller
overshoot, and convergence time result. Another disadvantage of ref [32] is that the LQR
control technique is suitable for strong nonlinear systems with channel interferences only
in the case of strong stable aircraft. On the contrary, by including disturbance observers
in the novel ACLS, we eliminated the main shortcoming of the dynamic inversion control
method used in [9], i.e., the complete knowledge of all the nonlinear terms.

6. Conclusions

A novel backstepping-based ACLS was proposed to control the landing of a military
training airplane subject to airwake, wind shears, atmospheric turbulences, and wind
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gusts. The deck motion is accurately predicted with a filter using the recursive-least
squares algorithm and compensated by using a tracking differentiator-based deck motion
compensation block. The novel automatic carrier landing control system consists of three
functional parts: a guidance subsystem, an attitude subsystem, and an approach power
compensation system. The design approach involved the use of some sliding mode-based
command differentiators (to compute the virtual commands) and extended state observers
(to estimate the disturbances depending on the airwake and wind type disturbances).
A campaign of simulations involving different scenarios (various sea states and wind
type disturbances) has been performed. The new designed ACLS ensures the landing
at the ideal touchdown point within a small error margin, being also characterized by
excellent trajectory tracking ability and adaptability to the uncertain and the changeable
sea environment.

Some future research directions involve: (1) the employment of new control techniques
(dynamic inversion, sliding mode, or backstepping sliding mode) and neural network-
based observers; (2) compensating the model uncertainties and/or the asymmetric flight;
(3) considering the measurement errors of the sensors as new sources of errors.
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Appendix A. Aerodynamic and Geometric Parameters [32]

Meaning Symbol Value Meaning Symbol Value

Aircraft mass m 1587.59 kg Roll moment of inertia Ix 1016.863 kg·m2

Wing area S 12.5348 m2 Pitch moment of inertia Iy 6236.762 kg·m2

Wingspan b 8.016 m Yaw moment of inertia Iz 6779.089 kg·m2

Aerodynamic mean chord c 1.6459 m Product moment of inertia Ixz 271.164 kg·m2

Meaning Rolling moment coefficients Meaning Yawing moment coefficients

Symbol Cl0 Clβ Clp Clr Clδr
Clδa

Symbol Cm0 Cmα Cmq Cmδe

Value 0 −0.14 −0.35 0.56 0.03 0.11 Value −0.07 −0.6 −15.7 −0.9

Meaning Pitching moment coefficients Meaning Lift force coefficients

Symbol Cn0 Cnβ
Cnp Cnr Cnδr

Cnδa
Symbol CL0 CLα

CLq CLδe

Value 0 0.16 −0.03 −0.31 −0.11 −0.03 Value 0.65 5 9 0.39

Meaning Lateral force coefficients Meaning Drag force coefficients

Symbol CY0 CYβ
CYp CYr CYδr

CYδa
Symbol CD0 CDα

CDq CDδe

Value 0 −0.94 0.01 0.59 0.26 0 Value 0.09 1.14 0 0
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Appendix B. Variables and Vectors for Aircraft Dynamics

I1 = − Iz(Iz−Iy)+I2
xz

Ix Iz−I2
xz

, I2 =
Ixz(Ix−Iy+Iz)

Ix Iz−I2
xz

, I3 = Iz
Ix Iz−I2

xz
, I4 = Ixz

Ix Iz−I2
xz

,

I5 = Iz−Ix
Iy

, I6 = Ixz
Iy

, I7 = 1
Iy

, I8 =
Ix(Ix−Iy)+I2

xz

Ix Iz−I2
xz

, I9 = Ix
Ix Iz−I2

xz
.

Ml = pdSbCl =
ρV2

2
SbCl , Mm = pdScCm =

ρV2

2
ScCm, Mn = pdSbCn =

ρV2

2
SbCn .


Cl = Cl0 + Clββ+ b

2V

(
Clp p + Clr r

)
+ Clδr

δr + Clδa
δa ,

Cm = Cm0 + Cmαα+ c
2V Cmq q + Cmδe

δe ,

Cn = Cn0 + Cnββ+ b
2V

(
Cnp p + Cnr r

)
+ Cnδr

δr + Cnδa
δa .

f1(x2 , V) =

[
V(cosγ sinχ− χ)
−V(sinγ− γ)

]
, b1(V) =

[
V 0
0 −V

]
,

f2(x2 , x3 , V) = 1
mV cosγ [−Y cosµ+ Tmaxδt (sinα sinµ− cosα sinβ cosµ) + L(sinµ− µ)], b2(x2 , V) = L

mV cosγ ,

f3
( .
x2 , x2 , x3

)
=

 ( .
γ− .

χ cosγ sinµ+ γ cosµ
)
/ cosβ

.
χ cosγ cosµ− .

γ sinµ
.
χ (sinγ+ cosγ sinµ tanβ) +

.
γ cosµ tanβ

, b3(x2 , x3) =

 − cosα tanβ 1 − sinα tanβ
sinα 0 − cosα

cosα/ cosβ 0 sinα/ cosβ

 ,

f4(x3 , x4 , V) =

 f4(1 , 1)
f4(2 , 1)
f4(3 , 1)

, b4(V) =

 b4(1 , 1) b4(1 , 2) b4(1 , 3)
b4(2 , 1) b4(2 , 2) b4(2 , 3)
b4(3 , 1) b4(3 , 2) b4(3 , 3)

 ,

f4(1 , 1) = I1qr + I2 pq + I3Ml + I4Mn, f4(2 , 1) = I5 pr + I6
(
r2 − p2)+ I7Mm, f4(3 , 1) = −I2qr + I8 pq + I4Ml + I9Mn ,

b4(1 , 1) = ρV2

2 Sb
(

I3Clδa
+ I4Cnδa

)
, b4(1 , 2) = 0, b4(1 , 3) = ρV2

2 Sb
(

I3Clδr
+ I4Cnδr

)
,

b4(2 , 1) = 0, b4(2 , 2) = ρV2

2 Sc I7Cmδe
, b4(2 , 3) = 0,

b4(3 , 1) = ρV2

2 Sb
(

I4Clδa
+ I9Cnδa

)
, b4(3 , 2) = 0, b4(3 , 3) = ρV2

2 Sb
(

I4Clδr
+ I9Cnδr

)
,

fα(x2 , x4 , V) = − 1
mV cosγ (L−mg cosγ cosµ)− p cosα tanβ+ q− r sinα tanβ,

bα(V) = − Tmax sinα
mV cosβ , d′α = − cosγ sinµ

cosβ dχ − cosµ
cosβ dγ + dα .
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