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Abstract: The transfer between two coplanar Keplerian orbits of a spacecraft with a continuous-
thrust propulsion system is a classical problem of astrodynamics, in which a numerical procedure
is usually employed to find the transfer trajectory that optimizes (i.e., maximizes or minimizes)
a given performance index such as, for example, the delivered payload mass, the propellant mass,
the total flight time, or a suitable combination of them. In the last decade, this class of problem has
been thoroughly analyzed in the context of heliocentric mission scenarios of a spacecraft equipped
with an Electric Solar Wind Sail as primary propulsion system. The aim of this paper is to further
extend the existing related literature by analyzing the optimal transfer of an Electric Solar Wind
Sail-based spacecraft with a Sun-facing attitude, a particular configuration in which the sail nominal
plane is perpendicular to the Sun-spacecraft (i.e., radial) direction, so that the propulsion system is
able to produce its maximum propulsive acceleration magnitude. The problem consists in transferring
the spacecraft, which initially traces a heliocentric circular orbit, into an elliptic coplanar orbit of
given eccentricity with a minimum-time trajectory. Using a classical indirect approach for trajectory
optimization, the paper shows that a simplified version of the optimal control problem can be
obtained by enforcing the typical transfer constraints. The numerical simulations show that the
proposed approach is able to quantify the transfer performance in a parametric and general form,
with a simple and efficient algorithm.

Keywords: Electric Solar Wind Sail; Sun-facing attitude; optimal transfer; heliocentric mission analysis

1. Introduction

An Electric Solar Wind Sail (or E-sail) [1] is a propellantless device, conceived by
Dr. Pekka Janhunen in 2004 [2], whose aim is to navigate the interplanetary space by
extracting momentum from the stream of solar wind charged particles. When compared
to more conventional propulsion systems, such as chemical or electric thrusters, an E-sail
presents interesting peculiarities, including the capability of guaranteing long-lasting space
missions or the possibility of conceiving new scenarios and innovative mission concepts.

A very promising class of potential applications for an E-sail consists in the exploration
of the outer regions of the Solar System. In this regard, Janhunen et al. [3] analyzed an
E-sail-based transfer towards Uranus, while a more ambitious objective is represented
by an escape from the Solar System to reach the heliopause [4–7], the Sun’s gravitational
focus [8], or even other stellar systems [9]. Notably, such long transfers can be made faster
if the E-sail approaches the Sun in the first phase of its transfer trajectory. Such a strategy,
referred to as solar wind assist [5], allows the E-sail to exploit the increased thrust due to a
higher plasma density to reach very high orbital speeds and reduce the total mission time.

Other innovative mission scenarios that could be performed by an E-sail include the
maintenance of displaced non-Keplerian orbits [10], the generation of artificial equilibrium
points in the restricted three-body problem [11], and the asteroid deflection by means of a
kinetic impactor [12,13]. Finally, an E-sail could also be exploited for deep space transfers
towards planets [14,15], comets [16], asteroids [17], or other targets in the Solar System [18].

Since the E-sail propulsive acceleration depends on the orientation of its nominal
plane [19] (that is, the mean plane containing the sail conducting tethers), the attitude
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control problem of an E-sail is closely related to that of its orbital control [20–23]. According
to some preliminary studies [24–27], the particular orientation in which the E-sail nominal
plane is perpendicular to the Sun-spacecraft line, referred to as Sun-facing configuration,
may be passively maintained when the E-sail has an axisymmetric shape. Because of this
relative simplicity from the standpoint of attitude control, much effort has been dedicated
to the mission analysis of a Sun-facing E-sail configuration [28,29]. The latter is useful,
for example, for generating spiral trajectories [30] or to perform phasing maneuvers [31].
A Sun-facing attitude has also been investigated for devices based on photonic propul-
sion [32–35], such as solar sails [36] or Smart Dusts [37], to simulate time-optimal transfer
trajectories [38], to obtain closed-form solutions to the equations of motion [39], and to
calculate the performance requirements for the maintenance of an artificial equilibrium
point in the restricted three-body problem [40,41].

This paper focuses on two-dimensional transfers between heliocentric Keplerian orbits
using a Sun-facing E-sail. It is assumed that the spacecraft departs from a circular parking
orbit with the aim of reaching a coplanar target orbit of given eccentricity. Orbit-to-orbit
transfers are analyzed in an optimal framework, where the total flight time is minimized
with an indirect approach [42–44]. The novelty of the paper is to apply the optimal
control theory to the special but important case when the direction of the E-sail propulsive
acceleration vector is aligned with the Sun-spacecraft line. The resulting simplification
of the control problem due to the reduced form of the thrust vector model, allows some
useful analytical results to be obtained in a compact and elegant form. In particular,
a set of dimensionless state variables is used in the dynamical model to make the results
independent of the radius of the initial orbit. A parametric study is conducted, in which the
transfer time is obtained as a function of the final eccentricity and the E-sail performance
level. The optimal control law is then applied to simulate some potential heliocentric
mission scenarios, including mission towards planets close to the Earth (Mars and Venus),
or more ambitious targets, such as Jupiter.

The remainder of the manuscript is structured as follows. Section 2 introduces the
dynamical model of a spacecraft subject to the Sun’s gravity and propelled by a Sun-
facing E-sail. It also describes the procedure for trajectory optimization. Section 3 shows
the results of the parametric analysis and analyzes some potential mission applications.
The concluding section summarizes the main outcomes of the paper.

2. Problem Description

Consider a spacecraft that initially traces a heliocentric circular (parking) orbit of
assigned radius r0. The spacecraft primary propulsion system is an E-sail that, after the
deployment at time t0 , 0, is maintained in a Sun-facing condition, so that its propulsive
acceleration vector ap is given by the following compact equation

ap = s β
µ�

r2
0

( r0

r

)
îr ≡ s β

µ�
r0 r

îr (1)

where µ� is the Sun’s gravitational parameter, r is the Sun-spacecraft distance, îr is the
radial (or Sun-spacecraft) unit vector, and s ∈ {0, 1} is a dimensionless switching parameter
that models the E-sail electron gun on (s = 1) or off (s = 0) condition. Here, s is introduced
to account for possible coasting arcs (obtained with s = 0) in the spacecraft heliocentric tra-
jectory. In Equation (1), β is a dimensionless positive parameter, defined as the ratio of the
maximum propulsive acceleration magnitude ‖ap‖ to the Sun’s gravitational acceleration
along the parking orbit, when r = r0. Note that β is a sort of reference propulsive accelera-
tion, whose value depends on both the spacecraft mass and the E-sail design characteristics,
such as the number and the length of the conducting tethers [45].

Using the propulsive acceleration of Equation (1) and assuming a simplified mission
scenario where the external forces on the spacecraft are the E-sail thrust and the Sun’s
gravitational pull only, it is easily concluded that the spacecraft propelled trajectory belongs
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to the parking orbit plane, and the semilatus rectum p of the osculating orbit is a constant
of motion, that is

p ≡ r0 for t ≥ t0 (2)

Accordingly, the Sun-facing E-sail can potentially reach an elliptic Keplerian (target) orbit of
eccentricity e f < 1 and semilatus rectum p f = r0, which is coplanar to the circular parking
orbit. The aim of this paper is to analyze the optimal transfer trajectory that minimizes the
flight time ∆t , t f − t0 ≡ t f necessary for the E-sail to obtain a rendez-vous with a target
coplanar orbit of given eccentricity e f . In particular, the orientation of the target orbit apse
line (measured with respect to the Sun-spacecraft line at time t0) is left free and is an output
of the optimization process described at the end of this section.

2.1. Spacecraft Dynamics

The two-dimensional spacecraft dynamics can be studied by introducing a heliocentric
polar reference frame T (O; îr, îθ), whose origin coincides with the Sun’s center of mass O,
where îθ is the transverse (or circumferential) unit vector in the direction of the spacecraft
inertial velocity; see Figure 1.

to the Sun

Sun

transfer
trajectory

parking
orbit

final
orbit

aphelion

arrival

start

perihelion

�

r

�

p
a

E-sail

0r

ˆ
ri

ˆ
�
i

O

Figure 1. Reference frame and E-sail-based spacecraft state variables.

Bearing in mind that the semilatus rectum of the osculating orbit is a constant of motion
and using Equation (1) for the propulsive acceleration vector, the spacecraft equations of
motion in the polar reference frame are

dr
dt

= u (3)

dθ

dt
=

h
r2 ≡

√
µ� r0

r2 (4)

du
dt

= −µ�
r2 +

h2

r3 + s β
µ�

r2
0

( r0

r

)
≡ µ�

r2

(
−1 +

r0

r
+ s β

r
r0

)
(5)
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where u is the radial component of the spacecraft inertial velocity vector, θ is the polar
angle measured counterclockwise from the initial Sun-spacecraft line (see Figure 1), and

h =
√

µ� p ≡ √µ� r0 (6)

is the (constant) specific angular momentum of the spacecraft osculating orbit. The nonlin-
ear differential Equations (3)–(5) are completed by the following initial conditions

r(t0) = r0 , θ(t0) = 0 , u(t0) = 0 (7)

where, without loss of generality, it is assumed that the initial spacecraft polar angle is zero.
The spacecraft dynamics can be more conveniently described in a dimensionless form by
introducing the auxiliary (dimensionless) variables

τ , t

√
µ�

r3
0

, ρ ,
r
r0

, υ , u
√

r0

µ�
(8)

so that the equations of motion (3)–(5) can be rewritten as

dρ

dτ
= υ (9)

dθ

dτ
=

1
ρ2 (10)

dυ

dτ
= − 1

ρ2 +
1
ρ3 +

s β

ρ
(11)

while the initial conditions (7) become

ρ(τ0) = 1 , θ(τ0) = 0 , υ(τ0) = 0 (12)

where τ0 , 0 is the initial dimensionless time.
The τ-variation of the E-sail switching parameter s is chosen to minimize the flight

time ∆τ = τf − τ0 ≡ τf necessary for the spacecraft to reach an osculating elliptic orbit
of given eccentricity e f < 1. Note that this amounts to reaching a Keplerian orbit with a
semimajor axis

a f =
r0

1− e2
f

(13)

or a specific mechanical energy

E f = −
µ�

2 a f
≡

µ�
(

e2
f − 1

)
2 r0

(14)

The latter relation, in a dimensionless form, becomes

E f ,
E f

µ�/r0
=

e2
f − 1

2
(15)

The optimal function s = s(τ), with τ ∈ [0, τf ], and the corresponding value of the
minimum flight time τf are the solution of the minimum-time problem described in the
next section.
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2.2. Trajectory Optimization

The optimal transfer trajectory is obtained by maximizing the dimensionless perfor-
mance index

J , −τf (16)

Using an indirect approach, introduce the Hamiltonian function

H , λρ υ +
λθ

ρ2 + λυ

(
− 1

ρ2 +
1
ρ3 +

s β

ρ

)
(17)

where {λρ, λθ , λυ} are the costates of {ρ, θ, υ}, respectively. The τ-variation of the costates
is described by the Euler-Lagrange equations

dλρ

dτ
, −∂H

∂ρ
=

3 λυ

ρ4 −
2 λυ

ρ3 +
s β λυ

ρ2 +
2 λθ

ρ3 (18)

dλθ

dτ
, −∂H

∂θ
= 0 (19)

dλυ

dτ
, −∂H

∂υ
= −λρ (20)

In particular, Equation (19) states that λθ is a constant of motion, whose value is found
by enforcing the transversality condition. In fact, assuming that the spacecraft final angular
position θ f is left free, the transversality condition on λθ is

λθ = 0 (21)

and Equation (18) becomes

dλρ

dτ
=

3 λυ

ρ4 −
2 λυ

ρ3 +
s β λυ

ρ2 (22)

Instead, the initial value of the costate λυ is derived by exploiting the transversality
condition on the final value of the Hamiltonian function, that is

H(τf ) = 1 (23)

Indeed, observing that H is a constant of motion (as the Hamiltonian (17) does not
explicitly depend on τ) and using Equations (12) and (21), the condition (23) with s = 1
(the thruster is on to start the orbital transfer) gives

H(τ0) = λυ(τ0) β = 1 (24)

and the initial value λυ is

λυ(τ0) =
1
β

(25)

Finally, the transversality condition gives an additional equation related to the terminal
constraint (recall that the transverse component of the dimensionless spacecraft velocity is
1/ρ), that is

E(τf ) =
υ2

f

2
+

1
2 ρ2

f
− 1

ρ f
= E f (26)
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where υ f = υ(τf ), ρ f = ρ(τf ), and E f is the final value of the orbital energy given by
Equation (15). Note that Equation (26) can be rewritten in standard form as

χ ,
υ2

f

2
+

1
2 ρ2

f
− 1

ρ f
− E f = 0 (27)

so that the transversality condition gives

ρ3
f υ f λρ(τf ) =

(
ρ f − 1

)
λυ(τf ) (28)

Using the Pontryagin’s maximum principle, the control function s = s(τ) is obtained
by maximizing, at any time τ, the portion of the Hamiltonian that explicitly depends on
the control s, that is

H′ , λυ
s β

ρ
(29)

Since ρ and β are both positive parameters, the maximization ofH′ gives a bang-bang
control law

s =
sign(λυ) + 1

2
(30)

where sign(2) is the signum function. In other terms, the costate λυ plays the role of a
switching function in determining the value of s. Note that the characteristics of the target
orbit appear in Equation (27) through the orbital energy E f defined in Equation (15).

The initial value of the costate λρ and the optimal flight time τf are solutions of a
two-point boundary value problem (TPBVP) in which the two final constraints are given by
Equations (27) and (28). The TPBVP has been solved, with an absolute error less than 10−8,
through a hybrid numerical technique that uses gradient-based and stochastic methods.
Finally, the spacecraft nonlinear equations of motion have been numerically integrated
with a variable order Adams-Bashforth-Moulton PECE solver, with absolute and relative
errors equal to 10−10. The numerical results are presented in the next section.

3. Numerical Simulations

The previous optimization procedure has been implemented to simulate the op-
timal circle-to-ellipse transfer of a Sun-facing E-sail for twenty different mission sce-
narios, corresponding to all possible combinations of e f ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and
β ∈ {0.2, 0.3, 0.4, 0.5}.

The main simulation results are reported in Figure 2, which, in its left-hand side, shows
the function τf = τf (e f , β) obtained with a two-dimensional interpolation procedure of the
numerical results (black circles), while the right-hand side of the figure illustrates the level
curves of the same function.

The main characteristics of the rendez-vous point, that is, {ρ f , θ f , υ f , ν f }, are summa-
rized in Figure 3 as a function of the design parameters {e f , β}, where ν f ∈ [0, 2π] rad is
the spacecraft true anomaly on the target orbit, calculated with the conic polar equation in
dimensionless form, that is

ν f = arccos

[
1
e f

(
1
ρ f
− 1

)]
with ν f ∈

[0, π] rad if υ f ≥ 0

(π, 2π] rad if υ f < 0
(31)
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Figure 2. Minimum flight time τf as a function of e f and β.
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Finally, Figure 4 reports the semimajor axis a f and apse line rotation angle ω f (see
Figure 1) of the elliptic target orbit.
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Figure 4. Geometric characteristics of target elliptic orbit as a function of e f and β.

The data of Figures 2–4 are useful for obtaining a quick estimate of the overall transfer
mission performance in a generic problem, because their values are independent of the
radius r0 of the circular parking.

The twenty analyzed mission scenarios, that is, the optimal transfer trajectories that
are representative of the two design parameters ranging in the intervals e f ∈ [0.1, 0.5]
and β ∈ [0.2, 0.5], are characterized by the absence of coasting arcs in the transfer trajec-
tory, which is completed in less than one full revolution around the Sun. This aspect is
evident in Figures 5 and 6, which show the results of the numerical simulation for the case of
e f = 0.3 and β = 0.2, while Figure 7 shows the optimal transfer trajectory for three sets of
design parameters.
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Figure 5. Optimal transfer trajectory when e f = 0.3 and β = 0.2.
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Figure 6. Optimal τ-variation of the spacecraft states when e f = 0.3 and β = 0.2.
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Figure 7. Optimal transfer trajectory for some set of design parameters.

A more involved transfer trajectory, with a coasting arc, results when β is sufficiently
small. For example, Figures 8 and 9 show the numerical simulations for e f = 0.3 and
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β = 0.1. In this case, the spacecraft completes a full revolution around the Sun before
reaching the final orbit, and a coating arc appears in the time range τ ∈ [2, 6].
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0.5 r0
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Figure 8. Optimal transfer trajectory when e f = 0.3 and β = 0.1.

The proposed procedure can be used in the study of an interplanetary mission appli-
cation, as discussed in the next section.

3.1. Mission Application

Consider an interplanetary mission scenario in which the Earth and the target planet
orbit are assumed to be coplanar and circular. Starting from a heliocentric orbit of radius
r0 = 1 au, which models a spacecraft deployment along a parabolic escape orbit relative to
the Earth, the Sun-facing E-sail is used to insert the vehicle into an elliptic target orbit, whose
aphelion (or perihelion) lies on the circular orbit of the target (inner or outer) planet. In this
case, the Sun’s gravitational acceleration along the parking orbit is µ�/r2

0 ' 5.93 mm/s2, so
that the maximum propulsive acceleration can be written as

max‖ap‖ ' β× 5.93 mm/s2 when r = r0 , 1 au (32)

while the semimajor axis of the elliptic target orbit, as a function of its eccentricity e f , is

a f =
1 au

1− e2
f

(33)

Finally, the perihelion and aphelion radius are, respectively

rp =
1 au

1 + e f
(34)

ra =
1 au

1− e f
(35)
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Figure 9. Optimal τ-variation of the spacecraft states when e f = 0.3 and β = 0.1.

3.1.1. Mars Case

Consider first a transfer towards Mars, where the planet orbit is approximated as a
circular trajectory of radius r = r♂ , 1.524 au. In this case, assuming that the aphelion
radius ra of the elliptic target orbit is equal to r♂, Equation (35) gives the value of the
(target) eccentricity e f , that is

e f = 1− 1 au
r♂
' 0.3438 (36)

Using the eccentricity from the last equation and considering an E-sail with
β ∈ {0.2, 0.3, 0.4, 0.5}, the proposed optimization procedure gives the results summa-
rized in Figure 10. The figure shows that an elliptic orbit with an aphelion radius equal
to the heliocentric distance of Mars can be reached with a flight time on the order of one
hundred days.
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Figure 10. Optimal transfer performances in a Mars-based mission scenario (e f = 0.3438) as a
function of β.

For example, assuming β = 0.3, which corresponds to a maximum propulsive accel-
eration of about 1.8 mm/s2 at 1 au, the optimal transfer trajectory and the transfer orbit
characteristics are reported in Figures 11 and 12, respectively.
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Figure 11. Optimal transfer trajectory in a Mars-based mission scenario with e f = 0.3438 and β = 0.3.
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Figure 12. Transfer trajectory characteristics in a Mars-based mission scenario with e f = 0.3438 and
β = 0.3.

3.1.2. Venus case

Consider now a circular heliocentric orbit of radius r = r♀ = 0.723 au, that is,
a scenario that models a transfer towards Venus. In that case, from Equation (34), the eccentricity
of the target orbit is obtained by enforcing the constraint rp = r♀, and the result is

e f =
1 au
r♀
− 1 ' 0.3831 (37)

Using the usual range of variation of β ∈ {0.2, 0.3, 0.4, 0.5}, the simulation results are
summarized in Figure 13, while Figures 14 and 15 give the transfer characteristics when
β = 0.3.
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Figure 13. Optimal transfer performances in a Venus-based mission scenario (e f = 0.3831) as a
function of β.
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Figure 14. Optimal transfer trajectory in a Venus-based mission scenario with e f = 0.3831 and β = 0.3.
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Figure 15. Transfer trajectory characteristics in a Venus-based mission scenario with e f = 0.3831 and
β = 0.3.

3.1.3. Jupiter Case

The final mission case refers to a more challenging transfer towards Jupiter, with a
maximum propulsive acceleration of 1 mm/s2, which, according to Equation (32), corre-
sponds to an E-sail with β ' 0.1686. In this case, we assume a circular Jupiter orbit of
radius r = rX = 5.2 au, so that Equation (35) provides e f = 0.8077 as target eccentricity.
This case is characterized by a large value of the target eccentricity and a relatively small
value of the E-sail propulsive acceleration. In fact, the optimal transfer trajectory obtained
with the proposed approach is more involved and contains a single coasting arc, as shown
in Figure 16.

In this case, the transfer trajectory characteristics are summarized in Figure 17.
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Figure 16. Optimal transfer trajectory in a Jupiter-based mission scenario with e f = 0.8077 and β = 0.1686.
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Figure 17. Transfer trajectory characteristics in a Jupiter-based mission scenario with e f = 0.8077 and
β = 0.1686.
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4. Conclusions

This paper has analyzed the transfer performance of a spacecraft propelled by an
Electric Solar Wind Sail with a Sun-facing attitude in a two-dimensional circle-to-ellipse
mission scenario. With the introduction of a suitable set of dimensionless spacecraft states,
the proposed approach allows the transfer performance of the spacecraft to be evaluated as
a function of two parameters only, that is, the final value of the orbital eccentricity and the
sail propulsive performance. To that end, the paper presents a set of graphs that can be
used to obtain a quick estimate of the minimum flight time and the characteristics of the
final orbit without the need of any numerical simulation. The paper also shows a simplified
mathematical model for the spacecraft trajectory optimization, which is able to numerically
solve the two-point boundary value problem associated with the optimization procedure in
a simple and effective way. The potential extensions of this work are related to the analysis
of circle-to-ellipse transfers of the Sun-facing Electric Solar Wind Sail in the presence of an
intermediate gravity assist maneuver. In that case the flyby could be used, for example,
to change the value of the osculating orbit semilatus rectum, thus increasing the degrees of
freedom in the design of the final orbit shape.
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Abbreviations
a osculating orbit semimajor axis [au]
ap propulsive acceleration vector [mm/s2]
e osculating orbit eccentricity
E specific orbital energy [km2/s2]
E dimensionless specific orbital energy
h orbital specific angular momentum magnitude [km2/s]
H dimensionless Hamiltonian function
îr radial unit vector
îθ transverse unit vector
J dimensionless performance index
O Sun’s center of mass
p semilatus rectum [au]
r Sun-spacecraft radial distance [au]
s dimensionless switching parameter
t time [days]
T polar reference frame
u radial component of the spacecraft velocity [km/s]
β dimensionless reference propulsive acceleration magnitude
θ polar angle [rad]
λρ dimensionless variable adjoint to ρ

λυ dimensionless variable adjoint to υ

λθ dimensionless variable adjoint to θ

µ� Sun’s gravitational parameter [km3/s2]
ρ dimensionless radial distance
τ dimensionless time
υ dimensionless radial velocity
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χ final dimensionless constraint
ω osculating orbit apse line rotation angle [rad]
Subscripts
0 initial, parking orbit
a aphelion
f final, target orbit
X Jupiter
♂ Mars
p perihelion
♀ Venus
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