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Abstract: This paper addresses the issue of a complex three-dimension (3-D) terminal guidance
process that is used against maneuvering targets while considering both the terminal impact angle
(TIA) and field-of-view (FOV) angle constraints. According to the highly coupled and nonlinear
3-D terminal guidance model, an adaptive back-stepping sliding-mode guidance law algorithm is
proposed in order to guarantee the stability and robustness of the guidance system. Considering the
explicit expression of the line-of-sight (LOS) angle in the kinematics and dynamics of the terminal
guidance process, the TIA constraint is transformed into an LOS constraint based on their well-known
relationship. In view of the challenges in obtaining the motion information of maneuvering targets,
an adaptive law design is introduced in order to estimate and compensate for external disturbances
caused by the maneuvering of the target and modeling uncertainty. In addition, because the FOV
angle represented by the overall leading angle is not a state variable in the sliding-mode guidance
system, it is decoupled into two partial leading angles based on a specific transformation relation,
so the 3-D terminal guidance control problem is converted into separate tracking system control
issues in the pitch and yaw planes. Then, the Lyapunov stability theory is utilized to substantiate the
stability of the guidance system, where the Lyapunov functions in both of the subsystems consist
of the LOS and partial FOV state error terms. Finally, a series of simulations of various motion
states of maneuvering targets under different terminal cases were carried out. It was proved that the
terminal guidance design based on the strategies presented above was able to obtain the desired LOS
constraints with satisfying the FOV limitation, and the simulation results verified the effectiveness,
universality, and significance for practical applications of the proposed guidance design method.

Keywords: multiple constraints; three-dimensional guidance law; back-stepping sliding mode;
maneuvering target

1. Introduction

As an emerging type of weaponry with the ability to precisely strike high-value targets,
terminal precision guidance technology for loitering munitions is gradually developing,
and the design of the guidance law plays a key role. According to the action mechanism
and characteristics of the general warhead that is loaded into the loitering munition, a strict
TIA constraint is required to inflict the maximum damage on a typical target. Moreover, the
photoelectric seeker of a loitering munition undertakes both reconnaissance and guidance
functions. The locations and restricted detection zones of the optical assembly further
introduce an FOV constraint into the system. Therefore, as this is a multiple-constraint
guidance issue, it is necessary to design a novel advanced guidance law while considering
both the TIA and FOV limitations.

The original research on the classical guidance law began with proportional navigation
(PN), where the rotational angular velocity of the velocity vector in space is always propor-
tional to that of the line of sight (LOS) during the process of approaching the target. Owing
to its effectiveness and simplicity of implementation, the PN method has been widely used
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in homing guidance laws for practical engineering applications. However, when faced
with the TIA constraint, the conventional PN guidance strategy cannot effectively solve
the problem. A series of improved PN methods for striking and intercepting a target at a
desired impact angle have emerged [1,2]. Pang et al. [3] designed a biased PN guidance
law for infrared-guided munitions that were used against non-maneuvering targets on a
surface while considering the impact angle constraint. A modified biased PN method was
also applied in order to attack stationary and non-maneuvering targets, resulting in an
expansion of the application range of the PNG method [4–6]. Nevertheless, the accurate
maneuvering information of targets is required in order to produce guidance commands,
but it is challenging to obtain.

With the development of modern control and strategic theories, the design of guidance
laws for attacks on large maneuvering targets has an opportunity for development. A
large number of new guidance laws based on modern control theory have been emerging.
At present, modern guidance laws are mainly represented by the optimal guidance law,
differential guidance law, and guidance law based on robust control theory.

The optimal guidance law involves the implementation of the optimal guidance
strategy according to a given performance index; it was first used by Bryson to illustrate
the optimality of explicit guidance [7]. It not only considers the dynamic relationship
between a missile and its target, but also restricts the starting point or the ending point of
the guidance, such as with the minimum terminal miss distance, the shortest guidance time,
the lowest energy consumption, and the attack angle constraint [8,9]. Banerjee et al. [10]
proposed an optimal guidance strategy that was solved with Legendre’s pseudo-spectrum
method while considering the contradiction between the minimum energy consumption
and shortest interception time in the process of ammunition guidance. Park et al. [11]
proposed an optimal guidance law restricted by the FOV limit of the seeker. Through
nonlinear comparative simulations with other guidance laws that considered constraints,
the results showed the high efficiency of the algorithm in energy control. However, the
optimal guidance law also has some defects. Due to the variability of the structure and
large amount of information required for guidance, such as accurate information on the
target’s acceleration and an estimation of the remaining flight time, the performance of
airborne measurement sensors is faced with serious challenges. When the measurement or
estimation error increases, the guidance accuracy sharply declines.

In addition, as a powerful method for solving optimization problems, the model
predictive control (MPC) technique can be suitable for the design of terminal guidance
with multiple state and output constraints. A large amount of research has been performed
on the design of MPC guidance laws with the ability to handle constraints [12–14]. Bhat-
tacharjee et al. [15] proposed a combination of nonlinear model predictive control and a
collision cone strategy, which ensured that the guidance design satisfied the requirements
of both the interception and TIA constraints. Bachtiar et al. [16] extended the MPC method
to integrated missile control by predicting future dynamics during the engagement process,
and a multi-objective parameter tuning design was addressed. Meanwhile, another model-
prediction-based approach, model predictive static programming, was first presented and
applied on guidance law design for missiles by Padhi [17]. In later research, a generalized
MPSP method was further developed [18,19], and it showed higher accuracy without
the discretization of a dynamic model. However, similarly to the conventional optimal
guidance method, model-prediction-based guidance algorithms have high requirements
for the model accuracy, and there is usually a considerable computation cost for solving the
optimization problem.

The guidance problem is essentially an issue of an optimal strategy for both loitering
munitions and targets, so scholars have proposed an optimal guidance law based on
differential game theory. Differential games were first proposed by Isaacs [20]. Compared
with the optimal guidance law, differential games have obvious advantages and are widely
used in terminal guidance [21,22]. Duan et al. [23] proposed an optimal control law
for finite-time missile interception systems in the framework of two-player zero-sum
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differential games with a finite field of view by using a periodic event-driven scheme.
Bardhan and Ghose [24] proposed a feedback solution for nonlinear zero-sum differential
games by extending the state-dependent Riccati equation strategy. In fact, the complex
design process and the requirement of an extremely accurate guidance model limit the
applications in engineering practice to some extent.

In the early 1980s, Zames [25] proposed the theory of the H∞ robust control, which is
one of the effective means of enhancing the robustness of a control system. The guidance
law based on robust control theory can very well handle the high uncertainty of guidance
parameters and external disturbances, such as target maneuvers. Yang and Chen [26] first
derived the robust guidance law for the nonlinear kinematics model of homing guidance
segment by solving partial Hamilton-Jacobi differential inequalities. Chwa [27] proposed a
robust nonlinear integrated guidance law based on the disturbance observer by thoroughly
examining the dynamics of nonlinear coupled missiles and rapid target maneuvers. In
addition, the guidance law based on sliding control (SMC) has recently given rise to many
concerns, due to the strong robustness of external interference and the uncertainty of
system parameters. Brierley and Longchamp [28] first applied the SMC method in air-to-air
missile nonlinear guidance system to intercept maneuvering targets, and proved the partial
robustness. Hou et al. [29] designed an improved nonlinear adaptive SMC guidance law
that satisfied both the interception success rate requirement and the desired LOS constraint.
However, although the SMC guidance law has the advantage of great robustness, it can
only achieve asymptotic convergence of the control system. With the requirement for the
process of the terminal guidance becoming shorter and shorter, researchers gradually pay
attention to the finite-time control guidance strategies, wherein the terminal SMC method
is a typical finite-time control algorithm [30,31].

On the other hand, given the technology of terminal guidance law with FOV limitation,
extensive work has been carried out [32–34]. Kim et al. [35] proposed a SMC guidance
law method that took into account both the impact angle constraint and time control while
intercepting a stationary target with FOV limitation. Ma et al. [36] investigated the issue
of 3D impact time control guidance while considering FOV constraints and time-varying
velocity, and proposed a simplified algorithm for numerical estimation of flight time based
on the 3-D biased proportional guidance law. Lee and Kim [37] proposed a composite
guidance law to perform impact angle control, and investigated the range of the achievable
impact angle by taking account of the collision condition and FOV limitation. However,
a comprehensive analysis of relevant studies shows that current guidance law methods
while considering both the impact angle constraint and the seeker’s FOV limitation, only
described the simpler two-dimensional guidance process [38–40], or only studied the design
of guidance laws against stationary targets in 3-D guidance scenarios [41–43]. Obviously, it
is not generally applicable for the complex actual guidance environment.

Motivated by the above discussions, classical terminal guidance law technology is no
longer suitable with multiple constraints. Although some modern control theory-based
guidance law algorithms have been proposed in order to solve partial problems; however,
due to the complexity and highly coupling of the 3-D guidance model, especially against
maneuvering targets, the design of efficient terminal guidance law is still a challenge.
In this paper, focusing on typical maneuvering targets on the ground, we propose an
adaptive back-stepping sliding mode control method and design a more comprehensive
three-dimensional guidance law with multiple constraints suitable for complex actual
combat application scenarios. The primary contributions of this paper can be summarized
as follows.

(1) Aiming at the maneuvering targets, a complex three-dimensional guidance model
with highly coupling pitch plane and yaw plane dynamics is constructed while considering
the motion information of targets as external disturbances. It is highlighted that the
proposed method is more practical than previous studies on non-maneuvering targets and
two-dimensional engagement cases.
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(2) An adaptive back-stepping sliding mode controller (BSMC) is proposed in order to
compensate for the interference term caused by the maneuvering target. The design of an
adaptive law to estimate and compensate for external disturbances effectively improves
the universality for varieties of target motion. The proposed controller is nonlinear without
a small angle hypothesis, which is more accurate than that with linearization.

(3) Using the Lyapunov stability analysis method, we have integrated FOV limitation
and the LOS constraint (represents TIA constraint) into the sliding mode control method.
The FOV limitation represented by the overall leading angle is decoupled into two partial
leading angles in pitch and yaw directions. Accordingly, Lyapunov functions consisting of
partial leading angle and LOS angle error terms are separately derived while maintaining
the stability of both subsystems, while the partial leading angle constraints are guaranteed
by a specific transformation method.

The remainder of this paper is divided as follows. Section 2 analyzes the issue of
loitering munitions striking the maneuvering targets on the ground, and constructs the
guidance and dynamic models. Section 3 derives the novel BSMC guidance law using Lya-
punov stability theory with multiple constraints in two planes. Then, Section 4 implements
a series of numerical simulations in order to validate the effectiveness of the proposed
method. Finally, the conclusions and contributions are presented in Section 5.

2. Problem Formulation and Guidance Models Construction

According to the multiple constraints, including the TIA constraint and FOV limitation
during the terminal guidance process, the conventional Impact Angle Control Guidance
(IACG) method is no longer applicable. Moreover, due to the complex motion characteristics
in the three-dimensional space, the two-dimensional terminal guidance law cannot entirely
reflect the actual combat application of loitering munitions. The current research focuses
on designing a novel intelligent terminal guidance law algorithm aiming at the three-
dimensional scene. In the current section, we will research the highly coupled and complex
3-D guidance dynamics model.

As shown in Figure 1, a 3-D engagement geometry is considered in the inertial coordi-
nate frame OXIYI ZI where a loitering munition M is attacking a maneuvering target T. Two
ballistic coordinates for the loitering munition and target are defined as OXMYMZM and
O′XTYTZT , where OXM and O′XT axes coincide with the velocity vectors of the munition
and target, VM and VT , respectively. In elevation and azimuth planes, the LOS frame
OXLYLZL is described by two angles φL and θL. r represents the relative range between the
munition and target. The two Euler angles φM and θM from the LOS frame to the munition’s
velocity direction denote the partial leading angles, and σM is the overall leading angle
representing the field-of-view angle. Accordingly, φT and θT denote the transformation
relation between the velocity direction of the target and the LOS frame. Moreover, the
velocity directions of the munition and target in the inertial frame are defined as γM, ϑM
and γT , ϑT , respectively.

We put forward some assumptions in advance in order to facilitate analysis of the
guidance law.

Assumption 1. The ground coordinate system is inertial, i.e., the influence of the earth’s curvature
and rotation can be ignored.

Assumption 2. The attitude of both loitering munition and target can be ignored, i.e., the body
frames coincide with ballistic coordinates of the munition and the target.

Assumption 3. The velocity of the loitering munition can be regarded as a constant value.
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Figure 1. Munition-target engagement geometry in a 3-D space.

According to the definition of each coordinate system in the terminal guidance process
as described above and the corresponding transformation relationship, the following three-
dimensional space kinematic relationships of the terminal guidance are defined:

ṙ = VT cos φT cos θT −VM cos φM cos θM (1)

rθ̇L = VT sin θT −VM sin θM (2)

rφ̇L cos θL = VT cos φT sin θT −VM cos φM sin θM (3)

Additionally, since ballistic coordinate frames of the loitering munition and the target
are both motion coordinate frames; therefore, the acceleration (AM, AT) of the munition
and target in the mutually orthogonal planes can be obtained as:

AM = [0, AyM, AzM]T = ΩL ×VM + ΩM ×VM (4)

AT = [0, AyT , AzT ]
T = ΩL ×VT + ΩT ×VT (5)

where AyM, AzM and AyT , AzT represent the acceleration components in OY and OZ axes
of the munition and the target in both ballistic coordinate frames; ΩL, ΩM and ΩT represent
the angular velocity vector of the LOS coordinate frame, ballistic coordinate system of both
the munition and the target with respect to the LOS coordinate frame, respectively. The
specific expressions is defined as follows:

ΩL =
[
−φ̇L sin θL, θ̇L, φ̇L cos θL

]T (6)

ΩM =
[
−φ̇M sin θM, θ̇M, φ̇M cos θM

]T (7)

ΩT =
[
−φ̇T sin θT , θ̇T , φ̇T cos θT

]T (8)

In addition, the path angles of the loitering munition and the target in the inertial
coordinate frame γM, ϑM and γT , ϑT can be further expressed as follows:
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{
γ̇M = −AzM/VM

ϑ̇M = AyM/(VM cos γM)
(9)

{
γ̇T = −AzT/VT

ϑ̇T = AyT/(VT cos γT)
(10)

The following relationships can be further derived by combining Equations (4) and (5):

θ̇M = −AzM/VM − cos φM θ̇L − sin θL sin φMφ̇L (11)

φ̇M =
AyM

VM cos θM
− tan θM sin φM θ̇L − cos θLφ̇L + sin θL tan θM cos φMφ̇L (12)

θ̇T = −AzT/VT − cos φT θ̇L − sin θL sin φT φ̇L (13)

φ̇T =
AyT

VT cos θT
− tan θT sin φT θ̇L − cos θLφ̇L + sin θL tan θT cos φT φ̇L (14)

In order to further obtain the influence of the pitch and yaw acceleration of the loitering
munition on the LOS angle. The derivative of Equations (2) and (3) with the Assumption 3,
combine with Equations (11)–(14), can be derived as follows:

θ̈L = −2ṙθ̇L
r
− cos θM

r
AzM +

cos θT
r

AzT − φ̇2
L sin θL cos θL (15)

φ̈L =− 2ṙφ̇L
r
− sin θM sin φM

r cos θL
AzM −

cos φM
r cos θL

AyM

+
sin θT sin φT

r cos θL
AzT +

cos φT
r cos θL

AyT + 2φ̇L θ̇L tan θL

(16)

In this paper, we examine the situations where different impact angle constraints are
required to be satisfied in order to maximize the attacking efficiency of the warhead when
striking various targets. According to the definition, the impact angle (γimp, ϑimp) refers to
the deviation of path angles between the loitering munition and the target in the inertial
coordinate at the time of collision, which is expressed as follows:{

γimp = γMF − γTF

ϑimp = ϑMF − ϑTF
(17)

Here the subscripts “F” denote the time of the collision.

Remark 1. The direction of the munition’ s velocity vector is desired to coincide with that of the
LOS angle as much as possible to ensure the minimum miss distance during the terminal attack
for the ground fixed target. As for the ground moving target, there needs to be an expected angle
between the velocity vector and the direction of LOS. It is known that there exists a transformation
relation between the impact angle and the LOS angle. Therefore, TIA constraints in elevation and
azimuth plane can be transformed into the expected LOS angle combined with the target motion
information [44].

Additionally, a nonlinear relation between the overall leading angle σM and the two
partial leading angles θM and φM is defined as follows:

cos σM = cos θM cos φM (18)

According to the FOV limitation of the photoelectric seeker, the inequality |σM| < σmax
is required to be satisfied. Meanwhile, according to the requirement of the warhead carried
by some loitering munitions, the airborne guidance system may be located under the belly.
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In this case, the partial leading angle θM is required to meet θM ≥ θMmin to avoid view
obstruction from the aircraft fuselage.

In conclusion, the design objectives of 3-D terminal guidance law against the maneu-
vering target can be expressed as follows:

rF → 0

θL → θLF, φL → φLF

|σM| < σMmax, θM ≥ θMmin

(19)

3. Multiple Constraints Based Adaptive BMSC Guidance Law

Based on Equations (15) and (16), the dynamics model of LOS angle can be expressed
as follows: {

Ė1 = E2

Ė2 = A + BU + D
(20)

where, {
E1 = [θL − θLF, φL − φLF]

T

E2 = [θ̇L − θ̇LF, φ̇L − φ̇LF]
T

(21)

U = [AzM, AyM]T (22)

A =

[
−2ṙθ̇L/r− φ̇2

L sin θL cos θL − θ̈LF
−2ṙφ̇L/r− 2φ̇L θ̇L tan θL − φ̈LF

]
(23)

B =

[
cos θM/r 0

− sin θM sin φM/(r cos θL) − cos φM/(r cos θL)

]
(24)

D =

[
AzT cos θT/r + ∆D1

(sin θT sin φT AzT + cos φT AyT)/(r cos θL) + ∆D2

]
(25)

where D denotes the external disturbances of the dynamics system, including motion
information of the target and modeling uncertainty (∆D1, ∆D2). In this paper, the first and
second derivatives of the expected LOS angle is set to 0.

Assumption 4. The modeling uncertainty ∆D1, ∆D2 is bounded with a constant, i.e., ∆D1 ≤ ρ,
∆D2 ≤ ρ.

Remark 2. Due to the difficulty of obtaining exact modeling uncertainties ∆D1 and ∆D2, according
to Assumption 4, a Gaussian distribution with a boundness of ρ is employed in order to represent
the unknown modeling uncertainty.

Remark 3. As it is seen in Equations (20)–(25), the accelerations of the pitch and yaw planes (AzM,
AyM) are highly coupled. However, according to Equations (11) and (12), two partial leading angles
can be controlled as state variables, while the overall leading angle σM is not a state variable in
the dynamic’s equations. Consequently, it is requisite to decouple the IACG problem with directly
uncontrollable FOV limitation into a tracking control issue based on state constraints in elevation
and azimuth directions.

Remark 4. The analysis shows that the state control process of the LOS angle in the pitch plane
is only affected by the acceleration AzM, so θL can be independently controlled to converge to
the desired θLF. Then, after obtaining AzM at every moment, a reasonable AyM is designed to
ensure that φL simultaneously converges to the desired terminal LOS angle in the azimuth direction
according to the system dynamics model to obtain real-time changes in the terminal guidance process.
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Remark 5. Given good performance of sliding mode controllers, a novel adaptive back-stepping
sliding mode control method is proposed to design the terminal guidance law in this paper. The
Lyapunov theory is utilized to validate the stability of guidance control system.

3.1. Guidance Law Design in Pitch Plane

A Lyapunov function based on the error of θL is defined as follows:

V1 =
1
2

e2
1 (26)

where e1 = θL − θLF.
The derivative of V1 is derived:

V̇1 = e1 ė1 (27)

A virtual control component e2 = ė1 + c1e1 is defined, where c1 is a positive constant.
Then, Equation (27) can be derived:

V̇1 = e1 ė1 = e1e2 − c1e2
1 (28)

Furthermore, an error fusion function σ1 is defined:

σ1 = k1e1 + e2 (29)

where k1 is also positive constant.
Combined with the equality ė1 = e2 − c1e1, σ1 can be denoted as follows:

σ1 = k1e1 + ė1 + c1e1 = (k1 + c1)e1 + ė1 (30)

Since the equality k1 + c1 > 0 always holds, e1 and e2 must converge to zero when σ1
converges to zero. Given that, the Lyapunov function is further defined as V2,

V2 = V1 +
1
2

σ2
1 (31)

By invoking Equations (28) and (30), we can obtain the time derivative of V2,

V̇2 =V̇1 + σ1σ̇1 = e1e2 − c1e2
1 + σ1(k1 ė1 + ė2)

= e1e2 − c1e2
1 + σ1(k1(e2 − c1e1) + ë1 + c1 ė1)

= e1e2 − c1e2
1 + σ1(k1(e2 − c1e1) + θ̈L + c1θ̇L)

(32)

Considering that the expression of θ̈L contains target motion information, which is
generally impossible to obtain directly for the loitering munition. An adaptive method is
proposed to estimate the unknown total uncertainty D. Therefore, the Lyapunov function
is transformed into V3 in the pitch plane,

V3 = V2 +
1

2η1
D̃2

1 (33)

where D̃1 = D1 − D̂1 denotes the estimation error of total external disturbances, and D̂1 is
the estimation value of D1. η1 is a positive constant.

Taking the time derivative of V3 leads to:
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V̇3 = V̇2 −
1
η1

D̃1
˙̂D1

= e1e2 − c1e2
1 + σ1(k1(e2 − c1e1) + θ̈L + c1θ̇L)−

1
η1

D̃1
˙̂D1

= e1e2 − c1e2
1 + σ1(k1(e2 − c1e1) + A1 + B1U + D̂1 + c1θ̇L)−

1
η1

D̃1(
˙̂D1 + η1σ1)

(34)

where A1, B1, D1 are determined by the first row of each matrix in Equations (23)–(25),
respectively.

According to the Lyapunov stability theorem, if V̇3 is negative definite, V3 can asymp-
totically converge to zero, and θL → θLF, θ̇L → θ̇LF, D̃1 → 0 in finite time.

However, the FOV constraint also has to be focused on in the design of guidance law.
Therefore, a FOV angle constraint term is introduced to construct a new Lyapunov function.
Aiming at the FOV constraint described in this paper, we design a nonlinear mapping
relationship from θM to a new variable s1, where the value range of θM is θMmin < θM <
θMmax. The mapping relationship can be specifically expressed as:

s1(θM) =
1
2

log(θM − θMmin)−
1
2

log(θMmax − θM) (35)

Remark 6. According to the one-to-one mapping relationship between the variables s1 and θM, the
magnitude limitation on θM can be transformed into the boundedness of s1. It is clear that if s1 can
always be proved bounded, the inequality θMmin < θM < θMmax always holds.

For the equality in Equation (18), if the FOV limitation can be satisfied, we can obtain
the following relationship:

0 < |θM| ≤ |σM| < σmax (36)

Remark 7. Here, an assumption that θMmin < θM(t0) < θMmax, |σM(t0)| < σmax holds, where
t0 denotes the initial guidance moment. Thus, let θMmax = kθ = σmax − δ > 0, where δ is a small
positive constant. Meanwhile, δ satisfies the condition 0 < δ ≤ σmax − |θM(t0)|, where

0 ≤ |θM(t0)| ≤ kθ < σmax. (37)

Considering θM → θMF based on the mapping relation between θM and s1 in the
available value range, an error variable is defined as:

e3 = s1(θM)− sd1 (38)

where sd1 = k3e1 + s1(θMF), and s1(θMF) is a constant.
The modified Lyapunov function that includes the FOV angle constraint term is

expressed as follows:

V4 = V3 +
1
2

e2
3 (39)

Taking the derivative of V4 leads to

V̇4 =e1e2 − c1e2
1 + σ1(k1(e2 − c1e1) + A1 + B1U + D̂1 + c1θ̇L)

− 1
η1

D̃1(
˙̂D1 + η1σ1) + e3(ṡ1 − ṡd1)

(40)

where
ṡ1 − ṡd1 = (

1
θM − θMmin

+
1

θMmax − θM
)θ̇M − k3 (41)
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According to the derivation of the Lyapunov function, the guidance law in the eleva-
tion direction AzM is designed as follows:

AzM = (−Bθ1 − Bθ2 + Cθ)/Aθ (42)

where each parameter is described as follows:

Aθ =
σ1 cos θM

r
− e3(kθ − θMmin)

2(θM − θMmin)(kθ − θM)VM

Bθ1 = σ1

[
k1(e2 − c1e1)−

2ṙθ̇L
r
− φ̇2

L sin θL cos θL + c1θ̇L

]
+ e1k3e3

Bθ2 = − e3(kθ − θMmin)

2(θM − θMmin)(kθ − θM)
(cos φM θ̇L + sin θL sin φMφ̇L)

Cθ = −D̂1σ1 − h1(σ
2
1 + β1|σ1|)

(43)

where h1 and β1 are two positive constant values, and we let ˙̂D1 = −η1σ1.

Remark 8. In the design of terminal guidance law, the external disturbances, including the motion
of targets and modeling uncertainties, can be compensated by disturbance estimation with adaptive
law about the error variable σ1.

Substituting Equations (42) and (43) into (41) with Equation (11), the derivative of V4
leads to

V̇4 = e1e2 − c1e2
1 − h1σ2

1 − h1β1|σ1| = −eT
1 Q1e1 − h1β1|σ1| (44)

where e1 = [e1, e2]
T , and Q1 is defined as:

Q1 =

 c1 + h1k2
1 h1k1 −

1
2

h1k1 −
1
2

h1

 (45)

In order to satisfy the condition that Lyapunov function V4 is monotonically decreasing
in the domain, V̇4 ≤ 0 needs to hold. Therefore, according to Equation (44), letting the
matrix Q1 be definite positive leads to the following:

|Q1| = (c1 + h1k2
1)h1 − (h1k1 −

1
2
)2 = h1(c1 + k1)−

1
4
≥ 0 (46)

Here, combined with the guidance dynamics equation, the design of the terminal
guidance law in the pitch plane is obtained by using the Lyapunov stability analysis method.

Particularly, the following theorem illustrates the performance of the proposed guid-
ance method.

Theorem 1. Aiming at the nonlinear guidance control system of the loitering munition, the pitch
acceleration AzM is determined according to the design of the guidance command in Equations (42)
and (43). In terminal guidance, the LOS angle θL will converge θL → θLF, the LOS angle rate
will converge θ̇L → 0, and the partial leading angle θM will always meet the FOV angle constraint
condition θMmin < θL < θMmax.
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Proof of Theorem 1. We know the Lyapunov function V4 ≤ 0 always holds if the acceler-
ation command AzM in the pitch plane is determined according to Theorem 1, we have
e1 → 0, e2 → 0, σ1 → 0, and e3 → 0. Therefore, it is concluded as follows:

lim
e1→0

θL = θLF

lim
e1→0
e2→0

θ̇L = θ̇LF = 0

lim
e3→0

θM = lim
sd1→s1F
s1→sd1

f (s1) = lim
s1→s1F

f (s1) = θMF

(47)

where s1F = s1(θMF), and f denotes the inverse mapping from θM to s1.
Moreover, consider the case that the Lyapunov function V4 ≤ 0. It is illustrated that

V4 monotonically decreases to have V4(t) ≤ V4(t0), which means e1 and e2 are bounded.
Therefore, it is further proved that s1 is bounded on [t0, t∞). According to the one-to-
one mapping relation between θM and s1, the inequality θMmin < θM < θMmax is finally
guaranteed to hold. Hence it proves Theorem 1.

3.2. Guidance Law Design in Yaw Plane

In this subsection, the guidance command in yaw plane will be reasonably designed to
ensure that the LOS angle satisfies φL → φLF based on the pitch plane design. Likewise, an
error variable of the LOS angle is defined as e4 = φL− φLF, and a virtual control component
is defined as e5 = ė4 + c2e4, where c2 is a positive constant. A new error fusion variable is
then defined as σ2 = k2e4 + e5, where k2 is a positive constant.

Combined with the relation ė4 = e5 − c2e4, σ2 can be further expressed as:

σ2 = k2e4 + ė4 + c2e4 = (k2 + c2)e4 + ė4 (48)

Also, considering the total uncertainty involving the target motion information in the
expression of θ̇L, a new Lyapunov function for azimuth direction is defined as:

V5 =
1
2

e2
4 +

1
2

σ2
2 +

1
2η2

D̃2
2 (49)

where D̃2 = D2 − D̂2 denotes the estimated error of the external disturbances in the yaw
plane, D̂2 denotes the estimation value of D2, and η2 is a positive constant.

Taking the derivation of V5 leads to the following:

V̇5 = e4e5 − c2e2
4 + σ2(k2(e5 − c2e4) + φ̈L + c2φ̇L)−

1
η2

D̃2
˙̂D2

= e4e5 − c2e2
4 + σ2(k2(e5 − c2e4) + A2 + B2U + D̂2 + c2φ̇L)−

1
η2

D̃2(
˙̂D2 + η2σ2)

(50)

The second row of each matrix determines A2, B2, and D2 in Equations (23)–(25),
respectively.

Based on the Lyapunov stability theory, if the condition V̇5 ≤ 0 holds, and V5 converges
to zero, we have that φL → φLF, φ̇L → φ̇LF, D̃2 → 0. In addition, the FOV angle constraint
must be considered in the design of yaw guidance command.

According to Equation (18) about the relationship between the overall leading angle
and partial leading angles in two directions, a variable with respect to θM is designed as:

kφ = arccos
(

cos σmax

cos θM

)
(51)
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Therefore, in order to satisfy the FOV limitation, construct the following inequality
with the change of θM.

− kφ < φM < kφ (52)

Then, the Equation above can be written as:

− arccos
(

cos σmax

cos θM

)
< φM < arccos

(
cos σmax

cos θM

)
. (53)

Since the inequality Equation (53) holds with the condition 0 ≤ cos θM ≤ 1, the
following relation can be guaranteed:

0 ≤ cos σmax < cos θM cos φM = cos σM ≤ 1 (54)

Therefore, the following inequality always holds:

0 ≤ | arccos(cos θM cos φM)| = |σM| < σmax. (55)

In view of the above FOV angle constraints, a nonlinear mapping relationship from
the variable φM to a new one s2 is also introduced, where the value range of φM is −kφ <
φM < kφ, and the mapping relationship can be expressed as:

s2(φM) =
1
2

log(kφ + φM)− 1
2

log(kφ − φM) (56)

whereas the following inequality can be obtained by Equation (18)

0 < |φM| ≤ |σM| < σmax (57)

and the initial partial leading angle also satisfies

0 < |φM(t0)| < kφ < σmax. (58)

Like the situation in pitch plane, a similar error is defined as follows:

e6 = s2(φM)− sd2 (59)

where sd2 = k6e4 + s2(φMF), and s2(φMF) is a constant.
Then, the Lyapunov function is updated as:

V6 = V5 +
1
2

e2
6. (60)

Differentiating V6 with respect to time yields:

V̇6 =e4e5 − c2e2
4 + σ2(k2(e5 − c2e4) + A2 + B2U + D̂2 + c2φ̇L)

− 1
η2

D̃2(
˙̂D2 + η2σ2) + e6(ṡ2 − ṡd2)

(61)

where

ṡ2 =
k̇φ + φ̇M

kφ + φM
−

k̇φ − φ̇M

kφ − φM
= −

k̇φ

k2
φ − φ2

M
φM +

kφ

k2
φ − φ2

M
φ̇M (62)

ṡd2 = k6 ė4. (63)

According to the definition of kφ, the time derivative can be expressed as:

k̇φ = −cos σmax tan θM
sin kφ cos θM

θ̇M (64)
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and φ̇M can be determined by Equation (12).
Based on the above derivation process of V6 and the elevation guidance law design,

the azimuth guidance law can be further designed as follows:

AyM = (−Bφ1 − Bφ2 − Bφ3 + Cφ)/Aφ (65)

where every term can be determined as follows:



Aφ =
kφe6

k2
φ − φ2

M
· 1

VM cos θM
− σ2 cos φM

r cos θL

Bφ1 = σ2

[
k2(e5 − c2e4)−

2ṙφ̇L
r

+ 2φ̇L θ̇L tan θL + c2φ̇L

]
+ e4k6e6

Bφ2 = − e6φM

k2
φ − φ2

M
· cos σmax tan θM

sin kφ cos θM
(cos φM θ̇L + sin θL sin φMφ̇L)

+
e6kφ

k2
φ − φ2

M
(− tan θM sin φM θ̇L − cos θLφ̇L + sin θL tan θM cos φMφ̇L)

Bφ3 = −(σ2 sin θM sin φM
r cos θL

+
e6φM

k2
φ − φ2

M
· cos σmax tan θM

sin kφ cos θMVM
) · Azm

Cφ = −D̂2σ2 − h2(σ
2
2 + β2|σ2|)

(66)

where let ˙̂D2 = −η2σ2. Likewise, h2 and β2 are also two positive constant values.
Substituting Equations (65) and (66) into (61) yields

V̇6 = e4e5 − c2e2
4 − h2σ2

2 − h2β2|σ2| = −eT
2 Q2e2 − h2β2|σ2| (67)

where e2 = [e4, e5]
T , and also let Q2 be positive definite expressed as:

Q2 =

 c2 + h2k2
2 h2k2 −

1
2

h2k2 −
1
2

h2

 (68)

therefore,

|Q2| = (c2 + h2k2
2)h2 − (h2k2 −

1
2
)2 = h2(c2 + k2)−

1
4
≥ 0 (69)

Finally, the terminal guidance law in yaw plane using Lyapunov stability theory is
designed, and the specific expression is given as follows.

Theorem 2. The loitering munition under the yaw acceleration AyM determined according to the
design of the guidance command in Equations (65) and (66) can guarantee that φL → φLF, φ̇L → 0,
and that the partial leading angle φM satisfies the inequality −kφ < φM < kφ, so that FOV angle
constraint condition |σM| < σmax always holds.

Proof of Theorem 2. As we can see, the Lyapunov function V6 ≤ 0 always holds if the
acceleration command AyM in yaw plane is determined based on Theorem 2, we have that
e4 → 0, e5 → 0, σ2 → 0, and e6 → 0. Therefore, it is concluded as follows:

lim
e4→0

φL = φLF

lim
e4→0
e5→0

φ̇L = φ̇LF = 0

lim
e6→0

φM = lim
sd2→s2F
s2→sd2

g(s2) = lim
s2→s2F

g(s2) = φMF

(70)
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where s2F = s2(φMF), and g denotes the inverse mapping from φM to s2.
Moreover, the Lyapunov function V6 satisfies the stability requirement, indicating

that it is monotonically decreasing. Then, V6 is bounded on t ≥ t0, and e4 and e5 are
also bounded. Thus, we have that s2 is bounded on [t0, t∞). According to the one-to-
one mapping relation between φM and s2, the inequality −kφ < φM < kφ is satisfied.
Furthermore, based on the analysis by Equations (51)–(55), it is verified that FOV angle
constraint condition |σM| < σmax can be guaranteed.

Here, it proves Theorem 2.

4. Numerical Simulation Analysis

This section implements a series of simulation tests in order to validate the effectiveness
of the 3-D adaptive back-stepping sliding mode guidance law based on multiple constraints
proposed in this paper. In these simulations, different motion state targets are considered to
demonstrate the high adaptability of the presented method. During the guidance process, the
loitering munition and target speeds are assumed constant, which are set as VM = 60 m/s
and VT = 15 m/s. The initial positions of loitering munitions and targets are selected as
(xM0, yM0, zM0) = (0, 0, 700) m, (xT0, yT0, zT0) = (500, 600, 0) m. The corresponding LOS
angles are θL0 = −41.9◦, φL0 = 50.2◦. In addition, the initial track angles of loitering
munitions are set as γM0 = 0◦, ϑM0 = 45◦, and those for moving targets are set as γT0 = 0◦,
ϑT0 = 45◦. Considering that the available accelerations in two directions are limited by
the strategy of bank-to-turn limits the available accelerations, the maximum acceleration
value is set as |AyMmax| = |AzMmax| = 25 m/s2 in the simulation process. Given the
FOV limitation, the values of θMmin and σmax are chosen as −10° and 75°. The numerical
simulation is terminated by rF < 1 m.

4.1. Simulations for Constant Maneuvering Targets

Firstly, we implement a series of simulations for attacking a constant maneuvering
target on the ground. The following three desired cases are considered according to the
relationship between terminal impact angles and LOS angles.

(1) Case 1: θLF = −60◦, φLF = 45◦;
(2) Case 2: θLF = −60◦, φLF = 60◦;
(3) Case 3: θLF = −75◦, φLF = 90◦.
Consequently, the results of simulations for the constant maneuvering target are shown

in Figures 2–8 and Table 1. It is adequately illustrated that the proposed terminal guidance
law performs extremely well for attacking constant maneuvering targets. Figures 2 and 3
show the changing curve of LOS angles and LOS rates under the three cases in the process
of terminal guidance. As we can see, all the desired LOS angles can be satisfied using the
proposed method with narrow errors, and the LOS rates converge to the neighborhood of
zero. In Figure 4, it is demonstrated that the acceleration commands of two directions start
with increasing trends for a while and gradually decrease to zero with the convergence
of LOS angles and rates. Figure 5 shows the variations of estimation errors for external
disturbances. It is noted that although initial estimation errors are large, they gradually
converge to zero neighborhoods as the loitering munition approaches the target gradually.
Moreover, it is clearly shown in Figures 6 and 7 that the partial leading angle θM is greater
than 0°, which meets the restriction condition by the seeker. Meanwhile, the maximum
FOV angle in the full-trajectory flight of the munition is 73.96°, which also satisfies the
FOV angle constraint. In addition, the 3-D trajectories of the loitering munition and the
target under the three terminal guidance cases are presented in Figure 8. As shown in
Table 1, we list the specific quantitative performance of the proposed guidance method
under three cases. In conclusion, the above performance fully verifies that the terminal
guidance law algorithm proposed in this paper is effectively suitable for attacks on constant
maneuvering targets.
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(a) (b)

Figure 2. Variations of LOS angles against constant maneuvering targets: (a) LOS angles in pitch
plane; (b) LOS angles in yaw plane.

(a) (b)

Figure 3. Variations of LOS rates against constant maneuvering targets: (a) LOS rates in pitch plane;
(b) LOS rates in yaw plane.

(a) (b)

Figure 4. Variations of acceleration commands against constant maneuvering targets: (a) acceleration
commands in pitch plane; (b) acceleration commands in yaw plane.
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(a) (b)

Figure 5. Variations of estimation errors against constant maneuvering targets: (a) estimation errors
in pitch plane; (b) estimation errors in yaw plane.

(a) (b)

Figure 6. Variations of partial leading angles against constant maneuvering targets: (a) partial leading
angles in pitch plane; (b) partial leading angles in yaw plane.

Figure 7. Variations of overall leading angles against constant maneuvering targets.
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Figure 8. 3-D trajectories of terminal guidance against constant maneuvering targets.

Table 1. Terminal guidance performance for attacking constant maneuvering targets.

Case Pitch LOS Angle Error
∆θL/°

Yaw LOS Angle Error
∆φL/°

Maximum Leading Angle
σMmax/°

Case 1 4.83 × 10−4 2.61 × 10−4 73.79
Case 2 1.24 × 10−3 −1.04 × 10−4 73.96
Case 3 4.80 × 10−4 5.36 × 10−3 70.94

4.2. Simulations for Variable Maneuvering Targets

In this subsection, simulations for attacking a variable maneuvering target on the
ground are performed to verify the effectiveness and flexibility of the proposed guidance
law algorithm. According to the application background of the investigated loitering
munitions in this paper, the variable maneuvering target refers to targets with lateral
acceleration variations in the ground plane, and in these simulations, the acceleration of
targets is given as follows:

AyT = sin(0.5t)m/s2, AzT = 0 m/s2 (71)

In the simulations, the initial conditions and the limitations are the same as the
situations for constant maneuvering targets. Likewise, different desired terminal LOS
angles are described as follows:

(1) Case 1: θLF = −60◦, φLF = 45◦

(2) Case 2: θLF = −60◦, φLF = 90◦

(3) Case 3: θLF = −75◦, φLF = 90◦

The numerical simulations for the terminal guidance process of loitering munitions
against variable maneuvering targets are carried out under above three cases. The obtained
results as shown in Figures 9–15 and Table 2. The above results illustrate that the proposed
guidance law algorithm performs well for attacking variable maneuvering targets. In
Figure 9, terminal LOS angles of the munitions meet the desired requirements, and the
error magnitude is very small. Meanwhile, the variations of LOS rates are presented
in Figure 10, which shows asymptotic convergence to zero. Remarkably, there exists
fluctuation of LOS rates near collision because the violent maneuvering state of targets
is more notable near the settling time. Still, they can converge to zero again in a very
short period.

In Figure 11, it is demonstrated that the munition acceleration commands have trends
of increasing and then converging. Likewise, several fluctuations of accelerations are
created by the variations of LOS rates, but also diminish quickly. It is noted that higher
acceleration towards the end of the engagement is generated, especially in case 3, but it
quickly converges back to zero neighborhoods. As the range between the loitering munition
and target decreases gradually, a small maneuvering change could cause a violent variation
away from desired LOS angles, especially at the end of the ballistic trajectory. Therefore,
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a higher acceleration command is needed to correct fluctuations of LOS angles. On the
contrary, if the guidance law generates still small acceleration in the situation above, the
terminal LOS angles constraints may not be satisfied, which thoroughly validates the
robustness of the proposed guidance method.

In Figure 12, estimation errors for overall disturbances are shown with a gradual
decreasing trend, demonstrating the ability to deal with target maneuvering and external
interference. While considering the FOV constraints of the aircraft during the terminal
guidance process, as shown in Figures 13 and 14, it is clear that the partial leading angles
θM, and the overall leading angles σM both meet their respective constraints, where the
minimum θM is −5.43° and the maximum σM is 72.61°. In addition, Figure 15 presents the
3-D trajectories of loitering munitions and variable maneuvering targets under three cases.
In summary, the above performance adequately verifies the effectiveness and feasibility
of the terminal guidance law algorithm proposed in this paper when attacking variable
maneuvering targets.

(a) (b)

Figure 9. Variations of LOS angles against variable maneuvering targets: (a) LOS angles in pitch
plane; (b) LOS angles in yaw plane.

(a) (b)

Figure 10. Variations of LOS rates against variable maneuvering targets: (a) LOS rates in pitch plane;
(b) LOS rates in yaw plane.
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(a) (b)

Figure 11. Variations of acceleration commands against variable maneuvering targets: (a) acceleration
commands in pitch plane; (b) acceleration commands in yaw plane.

(a) (b)

Figure 12. Variations of estimation errors against variable maneuvering targets: (a) estimation errors
in pitch plane; (b) estimation errors in yaw plane.

(a) (b)

Figure 13. Variations of partial leading angles against variable maneuvering targets: (a) partial
leading angles in pitch plane; (b) partial leading angles in yaw plane.
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Figure 14. Variations of overall leading angles against variable maneuvering targets.

Figure 15. 3-D trajectories of terminal guidance against variable maneuvering targets.

Table 2. Terminal guidance performance for attacking variable maneuvering targets.

Case Pitch LOS Angle Error
∆θL/°

Yaw LOS Angle Error
∆φL/°

Maximum Leading Angle
σMmax/°

Case 1 2.69 × 10−3 1.30 × 10−4 72.61
Case 2 7.84 × 10−3 1.43 × 10−4 71.15
Case 3 2.07 × 10−2 −6.06 × 10−3 70.42

5. Conclusions

In this paper, a novel terminal guidance design method against maneuvering targets is
presented while considering multiple constraints, including TIA (LOS) constraints and FOV
limitations, for the purpose that loitering munitions can capture maneuvering targets and
effectively improve damage efficiency. Given various terminal restrictions, a 3-D guidance
model with a high coupling relationship disturbed by complex motion of maneuvering tar-
gets is investigated, which has highly practical application significance. The novel guidance
law is developed by integrating TIA (LOS) constraints and FOV limitation components into
a 3-D adaptive back-stepping sliding mode control algorithm using the Lyapunov stability
analysis method to adapt to different maneuvering targets. The motion information of
targets is regarded as external disturbances, which are estimated and compensated by
the design of adaptive laws. Moreover, the FOV angle represented by the overall leading
angle is decoupled into two partial leading angles in pitch and yaw directions based on
a specific transformation method, which can guarantee the FOV limitation. Finally, the
effectiveness and universality of the proposed guidance law algorithm are verified by
numerical simulation experiments against different maneuvering targets under various
terminal LOS angle constraints.
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In our following research, the velocity and attitude variations of loitering munitions
will be considered during the terminal guidance process.
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