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Abstract: Laminated composite structures suffer from failure because of concentrations of gradient
fields on interfaces due to discontinuity of material properties. The rapid development of material
science enables designers to replace classical laminated plate elements in aerospace structures with
more advanced ones made of functionally graded materials (FGM), which are microscopic composite
materials with continuous variation of material coefficients according to the contents of their micro-
constituents. Utilization of FGM eliminates the inconvenience of laminated structures but gives rise to
substantial changes in structural design This paper deals with the presentation of a strong formulation
meshless method for the solution of FGM composite plates. Recall that the fourth-order derivatives
of deflections are involved in the governing equations for plate structures. However, the high-order
derivatives of field variables in partial differential equations (PDE) lead to increasing inaccuracy
of approximations. For that reason, the decomposition of the high-order governing equations into
the second-order PDE is proposed. For the spatial approximation of field variables, the meshless
moving least square (MLS) approximation technique is employed. The reliability (numerical stability,
convergence, and accuracy) as well as computational efficiency of the developed method is illustrated
by several numerical investigations of the response of FGM plates with the transversal gradation of
material coefficients under stationary and/or transient mechanical and thermal loadings.

Keywords: strong form; FGM plates; meshless method; moving least square approximation; static
and transient load; elasticity; classical thermoelasticity

1. Introduction

With the development of advanced composite materials, their application within
aerospace engineering has become more widespread, and laminated composite plates are
used as fundamental structural elements [1–8]. However, the discontinuities of material
coefficients on the interfaces between two or more layers with different material properties
can lead to concentrations of gradient fields and also to catastrophic failure of aerospace
structures [9–11]. To overcome the problem of the delamination of laminated composite
plates the functionally graded materials (FGM) are looking like promising alternatives
of laminated structures. Due to the great potential in several branches of engineering
applications, the FGMs are in the focus of researchers, which can be confirmed by a huge
number of papers devoted to analyses with using various plate bending theories for FGM
plates under static and/or dynamic loadings [12–27]. FGM structure can be characterized as
a composite fabricated by mixing two or more different material micro-constituents [28,29].
In continuum models, the effective material properties, such as elastic modulus, Poisson’s
ratio, mass density, etc., of the functionally graded composites are determined by the
volume fraction distribution of the dispersed phases. In the literature several approaches are
available for FGM modeling, such as the Mori–Tanaka scheme [30,31], composite cylindrical
assemblage model [32,33], the simplified strength of materials method [34,35], and one of
the most frequently used approach the rule of mixture where the material coefficients of
multiphase materials are related directly to the volume fractions and individual coefficients
of the constituents [36,37].
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Despite FGMs being microscopically highly non-homogeneous structures, they exhibit
continuous properties changing smoothly with respect to the spatial coordinates in macro-
structural elements. The continuum models of FGM have been widely used in many
engineering applications, for instance, the static behavior of FG rectangular plates was
studied by Reddy [16], and also an axisymmetric formulation for circular and annular FG
plate bending was observed [38] within the third-order shear deformation plate theory. Xu
and Zhou [39] studied rectangular FG plates with variable plate thickness and exponential
gradation of elastic modulus in the lateral direction as a 3D problem.

In the last three decades, the meshless formulations have become an attractive alterna-
tive to classical mesh-based discretization methods (such as FEM, BEM, etc.), because of
various advantages [40] resulting from the fact that only nodes are used for approximation
instead of elements and no elements are needed for background integration like in the
element-free Galerkin (EFG) method [41,42]. Additional advantages of the meshless for-
mulations arise in numerical solutions of boundary value problems for partial differential
equations (PDE) with variable coefficients like in the case of functionally graded materials
(FGM), since the complexity is not increased as compared with the case of homogeneous
media. The maximum order of spatial derivatives in weak formulations is lower by one
than the order of governing PDE.

The main drawback of meshless methods is the worse computational efficiency than
that in mesh-based methods because the shape functions are not expressed as elementary
function. This handicap is solved in the present paper by decreasing the number of eval-
uations of shape functions by using the strong formulation, which can be shown to be a
limit case of local weak formulations with approaching the size of the local subdomain
to zero. The decrease in the accuracy of approximation of high-order derivatives in plate
bending problems is overcome by decomposition of governing equations into governing
equations with lower-order derivatives. This is performed at the price of an increase in
nodal unknowns. The moving least square (MLS) approximation scheme [43] with using
the so-called central approximation node (CAN) concept [44,45] is employed for approx-
imation of field variables. In regards to the numerical evaluation of the derivatives of
field variables, we shall use the standard as well as the modified differentiation [46,47]
with using not higher than first-order derivatives of shape functions even for higher-order
derivatives of field variables. Numerical tests for accuracy and computational efficiency
of these approaches are presented in this paper. Moreover, the modified evaluation of
the shape functions and their derivatives will be employed [46,47] in order to obey cor-
rectly the requirement of completeness of the used set of shape functions. The accuracy
and convergence study is accomplished on boundary value problems for bending of thin
rectangular FGM plate, where the exact solutions are available and can be used as the
benchmark solutions. The attention is paid also to numerical parametric study with respect
to various parameters of gradations of the material coefficients of the FGM plates. Several
numerical examples are presented to investigate the static and transient response of elastic
FGM plates, and thermomechanical response of the FGM plates with transversal and/or
in-plane gradation of material properties under stationary and/or transient mechanical
and thermal loadings. The main goal of this paper is to present a well-developed compu-
tational method (with attributes mentioned in the previous paragraph) for a broad class
of plate bending problems. The functional dependence of material coefficients (such as
Young modulus, mass density, specific heat capacity, thermal expansion, heat conduction
coefficient) gives rise to coupling effects among the field variables including the interaction
between the in-plane deformation and bending modes. The unified formulation covers
three different kinds of deformation assumptions known as the classical Kirchhoff–Love
theory for thin plate bending, the first-order shear deformation theory and the third-order
shear deformation theory. The governing equations and possible boundary conditions
are developed from the variation principles. In Section 2.1, the formulation is derived
for FGM elastic plates under static and/or dynamic loadings. The coupled thermoelastic
problems are considered in Section 2.2. Section 3 is devoted to numerical implementation
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of meshless discretization with using strong formulation and the MLS approximation for
spatial dependence of field variables. Finally, in Section 4, we present illustrative examples
in order to demonstrate the reliability of the computational method, its universality and
discuss the coupling phenomena within three various plate bending theories.

2. Governing Equations
2.1. Governing Equation for Elastic FGM Plates

In this chapter, we shall derive the unified formulation for all three plate bending
theories, such as the Kirchhoff–Love theory (KLT), the first-order shear deformation plate
theory (FSDPT), and the third-order shear deformation plate theory (TSDPT), in which
the displacement field vi(x, x3,t) can be expressed in terms of the in-plane displacements
uα(x, t), transversal deflections w(x, t) and rotations of the normal to the mid-surface
ϕα(x, t) by

vi(x, x3, t) = δiα{uα(x, t) + [c1φ(x3)− x3]w,α(x, t) + c1φ(x3)ϕα(x, t)}+ δi3w(x, t) (1)

where i = 1, 2, 3, α = 1, 2, φ(x3) := x3 − c2ψ(x3), ψ(x3) := 4
3
( x3

h
)2x3, x3 ∈ [−h/2, h/2],

x ∈ Ω, with Ω being the plate area in the mid-surface (Figure 1).

Figure 1. Sketch of a square plate.

The key factors c1 and c2 in Equation (1) were introduced for the proper selection
among various plate bending theories within the unified formulation, and are specified as:

(i) for KLT: c1 = 0, c2 = 0,
(ii) for FSDPT: c1 = 1, c2 = 0,
(iii) for TSDPT: c1 = 1, c2 = 1.

According to the Hooke law, the 3D stresses in the linear elastic and isotropic contin-
uum are given as

σij(x, x3, t) =
E

1− ν2
1− ν

H
[
Heij(x, x3, t) + νδijekk(x, x3, t)

]
(2)

where E, ν stand for the elastic modulus and Poisson’s ratio, respectively. The total strains
are expressed as eij =

(
vi,j + vj,i

)
/2, while

H = 1− χν, χ =

{
1, for plane stress problems
2, for 3D problems or plane strain

(3)

By substitution of Equation (1) into Equation (2), the stresses inside an elastic plate
considered within three plate bending theories are obtained

σαβ(x, x3, t) =
E

1− ν2
1− ν

H

[
τ
(u)
αβ (x, t) + c1φ(x3)τ

(ϕ)
αβ (x, t) + (c1φ(x3)− x3)τ

(w)
αβ (x, t)

]
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σα3(x, x3, t) =
E

1 + ν

c1

2
φ′(x3)[w,α(x, t) + ϕα(x, t)], φ′(x3) = ∂3φ(x3) (4)

σ33(x, x3, t) =
Eν

1− ν2
1− ν

H
[uγ,γ(x, t) + c1φ(x3)ϕγ,γ(x, t) + (c1φ(x3)− x3)w,γγ(x, t)]

in which the strain contributions associated with in-plane displacements, rotations, and
transversal displacements (deflections) are

τ
(u)
αβ (x, t) := Hεαβ(x, t) + νδαβεγγ(x, t), τ

(ϕ)
αβ (x, t) := Hηαβ(x, t) + νδαβηγγ(x, t)

τ
(w)
αβ (x, t) := Hw,αβ(x, t) + νδαβw,γγ(x, t) (5)

with εαβ =
(
uα,β + uβ,α

)
/2,ηαβ =

(
ϕα,β + ϕβ,α

)
/2.

Within this paper, we utilize the Einstein summation rule with respect to repeated
subscripts, and the comma preceding a subscript denotes the derivative with respect to the
corresponding coordinate. Thus,

w(x),γγ = w,11(x) + w,22(x) =
∂2w(x)
∂x1∂x1

+
∂2w(x)
∂x2∂x2

(6)

Making use of the rule of mixture for micro-composites with two constituents, one
can obtain material properties for FGM plates with power law gradation in the transversal
direction as

E(x, x3) = E0EH(x)EV(x3), EV(x3) = 1 + ζ

(
1
2
± x3

h

)p

ρ(x, x3) = ρ0ρH(x)ρV(x3), ρV(x3) = 1 + ε

(
1
2
± x3

h

)g
(7)

where the Young modulus E, and mass density ρ are factorized using the subscript 0,
H, V for the reference values, factors responsible for in-plane (horizontal) gradation and
transversal gradation, respectively. The levels of gradation are determined by ζ and ε, while
p and g are exponents of the power law gradations. In addition, the thickness of the FGM
plate is allowed to be variable, h(x).

For the derivation of the equations of motion together with the boundary and initial
conditions for mechanical fields, Hamilton’s principle is utilized

δU − δWe − δK = 0 (8)

where the variations of the elastic deformation energy, the kinetic energy, and the energy of
external transversal forces are expressed as

δU =

T∫
0

∫
Ω

 h/2∫
−h/2

σij(x, x3, t)δeij(x, x3, t)dx3

dΩdt

δK =

T∫
0

∫
Ω

 h/2∫
−h/2

ρ
.
viδ

.
vidx3

dΩ dt (9)

δWe =

T∫
0

∫
Ω

t3(x, t)δw(x, t)dΩdt

in which T is the considered time period.
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The time derivative of field variables is marked by a dot over the variable. Performing
the integrations in a transversal direction, we obtain

δU =
T∫
0

∫
Ω

{
Tαβ(x, t)δuα,β(x, t)−M(w)

αβ (x, t)δw,αβ(x, t) + M(ϕ)
αβ (x, t)δϕα,β(x, t)+

+T(wϕ)
3β (x, t)

[
δw,β(x, t) + δϕβ(x, t)

]}
dΩdt

(10)

δK =

T∫
0

∫
Ω

{[
Ĩ(uu)(x)

..
uβ(x, t) + Ĩ(uϕ)(x)

..
ϕβ(x, t) + Ĩ(uw)(x)

..
w,β(x, t)

]
δuβ(x, t)+

+
[

Ĩ(ϕu)(x)
..
uβ(x, t) + Ĩ(ϕϕ)(x)

..
ϕβ(x, t) + Ĩ(ϕw)(x)

..
w,β(x, t)

]
δϕβ(x, t)+

+
[

Ĩ(wu)(x)
..
uβ(x, t) + Ĩ(wϕ)(x)

..
ϕβ(x, t) + Ĩ(ww)

2 (x)
..
w,β(x, t)

]
δw,β(x, t)+

+ Ĩ(ww)
1 (x)

..
w(x, t)δw(x, t)

}
dΩdt

(11)

where the following integral quantities for in-plane stresses

Tαβ(x, t) :=
h/2∫
−h/2

σαβ(x, x3, t)dx3 (12)

stress couples

M(ϕ)
αβ (x, t) := c1

h/2∫
−h/2

φ(x3)σαβ(x, x3, t)dx3, M(w)
αβ (x, t) :=

h/2∫
−h/2

x3σαβ(x, x3, t)dx3 −M(ϕ)
αβ (x, t) (13)

and shear stresses

T(wϕ)
3β (x, t) := c1

h/2∫
−h/2

{
[(1− c2)κ + c2]− c2ψ′(x3)

}
σ3β(x, x3, t)dx3 (14)

represent the considered fields averaged through the plate thickness.
The mass inertia terms are defined as

{
Ĩ(uu), Ĩ(uϕ), Ĩ(uw)

}
=

h/2∫
−h/2

{1, c1φ(x3), (c1φ(x3)− x3)}ρ(x3)dx3

{
Ĩ(ϕu), Ĩ(ϕϕ), Ĩ(ϕw)

}
=

h/2∫
−h/2

{
c1φ(x3), c1φ2(x3), c1

(
φ2(x3)− x3φ(x3)

)}
ρ(x3)dx3 (15)

{
Ĩ(wu), Ĩ(wϕ), Ĩ(ww)

1 , Ĩ(ww)
2

}
=

=
h/2∫
−h/2

{
(c1φ(x3)− x3), c1

(
φ2(x3)− x3φ(x3)

)
, 1, (c1φ(x3)− x3)

2
}

ρ(x3)dx3

The shear correction factor, κ, represents the Reissner modification of the shear stresses
in the case of the FSDPT. During the derivation of Equation (11), we were keeping in mind
that the variations δuβ, δϕβ, δw are vanishing at t = 0 and t = T, hence δw,β(x, t = 0) = 0
and δw,β(x, t = T) = 0 as well. The explicit expressions for the averaged fields defined by
Equations (12)–(14) and mass inertia terms defined by Equation (15) can be found in [48].



Aerospace 2022, 9, 425 6 of 22

Certain rearrangements [48,49] in δU − δW can lead to expression without derivatives
of variations of field variables. Then, the set of governing equations at x ∈ Ω, t ∈ [0, T]
and restrictions on the boundary edge ∂Ω at t ∈ [0, T] are obtained:

governing equations

Tαβ,β(x, t) + Ĩ(uu)(x)
..
uα(x, t) + Ĩ(uϕ)(x)

..
ϕα(x, t) + Ĩ(uw)(x)

..
w,α(x, t) = 0

M(w)
αβ,αβ(x, t) + T(wϕ)

3β,β (x, t)+

+ Ĩ(ww)
1 (x)

..
w(x, t)−

[
Ĩ(wu)(x)

..
uβ(x, t) + Ĩ(wϕ)(x)

..
ϕβ(x, t) + Ĩ(ww)

2 (x)
..
w,β(x, t)

]
,β
= −t3(x, t)

(16)

M(ϕ)
αβ,β(x, t)− T(wϕ)

3α (x, t) + Ĩ(ϕu)(x)
..
uα(x, t) + Ĩ(ϕϕ)(x)

..
ϕα(x, t) + Ĩ(ϕw)(x)

..
w,α(x, t) = 0

boundary restrictions
nβ(x)Tαβ(x, t)δuα(x, t) = 0

nα(x)nβ(x)M(w)
αβ (x, t)δ

(
∂w
∂n

(x, t)
)
= 0 (17)

nβ(x)M(ϕ)
αβ (x, t)δϕα(x, t) = 0{

V(x, t)− nβ(x)
[

Ĩ(wu)(x)
..
uβ(x, t) + Ĩ(wϕ)(x)

..
ϕβ(x, t) + Ĩ(ww)

2 (x)
..
w,β(x, t)

]}
δw(x, t) = 0

where

V(x, t) := nα(x)
(

M(w)
αβ,β(x, t) + T(wϕ)

3α (x, t)
)
+

∂

∂t
T(w)(x, t)−∑

c
δ(x− xc)

[[
T(w)(xc, t)

]]
is the generalized shear force, T(w)(x, t) := tα(x)nβ(x)M(w)

αβ (x, t) is the twisting moment
defined on the plate edge ∂Ω. Furthermore, the jump at a corner on the oriented boundary
edge ∂Ω is defined as

[[A(xc)]] := A(xc − 0)− A(xc + 0)

It is appropriate to introduce the dimensionless fields

u∗β(x, t) :=
uβ(x, t)

h0
, ϕ∗β(x, t) := ϕβ(x, t), w∗(x, t) :=

w(x, t)
h0

(18)

in which the dimensionless variables are defined as

x∗β :=
xβ

L
, x∗3 :=

x3

h0
= h∗(x)z, h(x) = h0h∗(x), t∗ :=

t
T

(19)

where L is the characteristic length for the in-plane dimensions and h0 is the thickness of
the plate.

In what follows, for simplicity, we shall write g∗(x, t) instead of g∗(x∗, t∗).
Substituting Equations (18) and (19) into Equation (16), one can obtain the governing

equation in sense of dimensionless formulation

T∗αβ,β(x, t) + I(uu)(x)
..
u∗α(x, t) + I(uϕ)(x)

..
ϕ
∗
α(x, t) + I(uw)(x)

..
w∗,α(x, t) = 0

M∗(w)
αβ,αβ(x, t) +

(
L
h0

)2
T∗(wϕ)

3β,β (x, t) + I(ww)
1 (x)

..
w∗(x, t)−

−
[

I(wu)(x)
..
u∗β(x, t) + I(wϕ)(x)

..
ϕ
∗
β(x, t) + I(ww)

2 (x)
..
w∗,β(x, t)

]
,β
= −t∗3(x, t)

(20)

M∗(ϕ)
αβ,β (x, t)−

(
L
h0

)2
T∗(wϕ)

3α (x, t) + I(ϕu)(x)
..
u∗α(x, t) + I(ϕϕ)(x)

..
ϕ
∗
α(x, t) + I(ϕw)(x)

..
w∗,α(x, t) = 0
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The dimensionless transversal mechanical loading is defined as t∗3(x, t) :=
(

L4/D0h0
)
t3(x, t),

where D0 = E0(h0)
3

12(1−ν2)
is the bending stiffness. For elastodynamic plate bending prob-

lems, the explicit expressions for the semi-integral fields (12)–(14) and the mass inertia
coefficients (15) are given in [48]. The boundary restrictions are obtained from (17) by
replacing all fields and mass inertia coefficients by their dimensionless counterparts.

In Equation (20) the fourth-order derivatives of transversal deflections and third-order
derivatives of in-plane displacements and rotations are included, which can lead to a
reduction in the accuracy of approximations of high-order derivatives of field variables. To
overcome this shortcoming, we employ the decomposition technique on the derived set of
the partial differential equations (PDE) by introducing additional field variables

m∗(x, t) := ∇2w∗(x, t), s∗α(x, t) := ∇2u∗α(x, t), f ∗α (x, t) := ∇2 ϕ∗α(x, t) (21)

Then, the final set of governing equations for primary field variables {w∗(x, t), m∗(x, t),
u∗β(x, t), s∗β(x, t), ϕ∗β(x, t), f ∗β (x, t)} is given by Equations (20) and (21), which include deriva-
tives not higher than second-order [47].

2.2. Governing Equation for Thermoelastic FGM Plates

Similarly, like in the previous chapter, we shall derive the governing equation for the
FGM plates under thermal loadings. Within the linear thermoelastic and isotropic media,
the 3D stresses are given as

σij(x, x3, t) =
E

1− ν2
1− ν

H
[
Heij(x, x3, t) + νδijekk(x, x3, t)− α(1 + ν)(θ(x, x3, t)− θ0)δij

]
(22)

where E, ν, α denote the elastic modulus, Poisson’s ratio, and the linear thermal expansion
coefficient, respectively.

Furthermore, θ, θ0 and eij stand for the temperature, reference temperature, and total
strains, respectively.

By substitution of Equation (1) into Equation (22), the stresses inside an elastic plate
considered within three plate bending theories are obtained as

σαβ(x, x3, t) =
E

1− ν2
1− ν

H

[
τ
(u)
αβ (x, t) + c1φ(x3)τ

(ϕ)
αβ (x, t) + (c1φ(x3)− x3)τ

(w)
αβ (x, t)− αδαβτ(θ)(x, x3, t)

]
σα3(x, x3, t) =

E
1 + ν

c1

2
φ′(x3)[w,α(x, t) + ϕα(x, t)] (23)

σ33(x, x3, t) =
Eν

1− ν2
1− ν

H

[
uγ,γ(x, t) + c1φ(x3)ϕγ,γ(x, t) + (c1φ(x3)− x3)w,γγ(x, t)− α

ν
τ(θ)(x, x3, t)

]
in which the strain contributions associated with in-plane displacements, rotations, and
transversal deflections τ

(u)
αβ (x, t), τ

(ϕ)
αβ (x, t), τ

(w)
αβ (x, t) are defined by Equation (5) and the

temperature contribution is

τ(θ)(x, x3, t) := (1 + ν)(θ(x, x3, t)− θ0) (24)

The power law gradation in the transversal direction for material coefficients such as
elastic modulus, thermal expansion coefficient, heat conduction coefficients, specific heat
capacity, and mass density is defined by the following relations:

E(x, x3) = E0EH(x)EV(x3), EV(x3) = 1 + ζ

(
1
2
± x3

h

)p

α(x, x3) = α0αH(x)αV(x3), αV(x3) = 1 + ξ

(
1
2
± x3

h

)r
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k(x, x3) = k0kH(x)kV(x3), kV(x3) = 1 + ω

(
1
2
± x3

h

)s
,

c(x, x3) = c0cH(x)cV(x3), cV(x3) = 1 + χ

(
1
2
± x3

h

)q
,

ρ(x, x3) = ρ0ρH(x)ρV(x3), ρV(x3) = 1 + ε

(
1
2
± x3

h

)g
(25)

The parameters ζ, ξ, ω, χε stand for the levels of power law gradations in transversal
direction, while p, r, s, q, g are exponents of these gradations.

In order to develop the formulation consistent with elastic deformation assumptions
(with the known x3-dependence), we approximate the temperature field by the second-
order power series expansion with respect to the x3-coordinate as

θ(x, x3, t) ≈ θ0 + ϑ0(x, t) + zϑ1(x, t) + z2ϑ2(x, t), z =
x3

h
∈ [−0.5, 0.5] (26)

where ϑs(x, t) are a new field variables with s = 0, 1, 2. Then, one can write

τ(θ)(x, x3, t) =
2

∑
s=0

zsτ(ϑs)(x, t), τ(ϑs)(x, t) := (1 + ν)ϑs(x, t) (27)

The governing equations and the boundary restrictions for mechanical fields are for-
mally given by Equations (16) and (17), respectively. Recall that in case of thermoelasticity,
the semi-integral fields (12)–(14) include also thermal contributions [49] in contrast to
case of elastodynamics. In the governing Equation (16), we have only five PDEs for eight
independent field variables, which means we need three more equations to complete the
set of governing equations for FGM plate bending problems in classical thermoelasticity.

The heat conduction equation within coupled classical thermoelasticity is given by

(
kθ,j
)

,j − ρc
.
θ − Eα

H
θ0

.
vj,j = 0 (28)

in which k, ρ, and c is the heat conduction coefficient, mass density, and the specific heat
capacity, respectively.

In view of the previously introduced three field variables ϑs(x, t), the heat conduction
equation is still dependent on x3 as[

kH(x)kV(x3)

(
2
∑

s=0
zsϑs(x, t)

)
,j

]
,j

− ρ0c0
k0

ρH(x)ρV(x3)cH(x)cV(x3)

[
2
∑

s=0
zs

.
ϑs(x, t)

]
−

− E0α0
k0 H EH(x)EV(x3)αH(x)αV(x3)θ0

.
vβ,β(x, x3, t) = 0

(29)

In order to accomplish the 2D formulation, we propose to integrate Equation (29) through
the thickness of the plate with getting the heat conduction equation in an averaged sense

2
∑

s=1
C(θϑs)(x)ϑ∗s (x, t) +

2
∑

s=0
G(θϑs)

β (x)ϑ∗s,β(x, t) +
2
∑

s=0
G(θϑs)(x)ϑ∗s,ββ(x, t)+

+
2
∑

s=0
I(θϑs)(x)

.
ϑ
∗
s (x, t) + C(θu)(x)

.
u∗β,β(x, t) + C(θw)(x)

.
w∗,ββ(x, t) + C(θϕ)(x)

.
ϕ
∗
β,β(x, t) = 0

(30)

For the details on coefficients C(··), G(··), and I(··) see [50].
The dimensionless fields

u∗β(x, t) :=
uβ(x, t)

h0
, ϕ∗β(x, t) := ϕβ(x, t), w∗(x, t) :=

w(x, t)
h0

, ϑ∗s (x, t) :=
ϑs(x, t)

θ0
(31)

are introduced by using the dimensionless variables as
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x∗β :=
xβ

L
, x∗3 :=

x3

h0
= h∗(x)z, h(x) = h0h∗(x), t∗ :=

t
T

(32)

Furthermore, it is written g∗(x, t) instead of g∗(x∗, t∗) for the reason of simplicity.
The other two equations result from the 3D boundary conditions considered on the

top and bottom surfaces of the plate. These BCs can be given by an arbitrary combination
of the following boundary conditions

(i) Dirichlet type:

ϑ∗0(x, t)± 1
2

ϑ∗1(x, t) +
1
4

ϑ∗2(x, t) =
θ(x,±h/2, t)

θ0
− 1 (33)

(ii) Neumann type:

± k0kH(x)kV(±1/2)[ϑ∗1(x, t)± ϑ∗2(x, t)] = q(x,±h/2, t)/θ0 (34)

(iii) Robin type:

A
[

1 + ϑ∗0(x, t)± 1
2

ϑ∗1(x, t) +
1
4

ϑ∗2(x, t)
]
± Bk0kH(x)kV(±h/2)[ϑ∗1(x, t)± ϑ∗2(x, t)] = 0 (35)

The q(x,±h/2, t) and θ(x,±h/2, t) are the prescribed values of the heat flux and
temperature on the top and bottom surfaces of the plate, respectively. Taking into account
that, θ(x, x3 = 0, t) = θ0 + ϑ0(x, t), the boundary conditions on ∂Ω can be given as

(i) Dirichlet type:
ϑ∗0(x, t)|∂Ω = θ(x, x3 = 0, t)/θ0 − 1 (36)

(ii) Neumann type:

−k0kH(x)kV(0)nβ(x)ϑ∗0,β(x, t)
∣∣∣
∂Ω

= (L/θ0)q(x, 0, t) (37)

(iii) Robin type:

Aϑ∗0(x, t)|∂Ω + Bk0kH(x)kV(0)nβ(x)ϑ∗0,β(x, t)
∣∣∣
∂Ω

= 0 (38)

with θ(x, x3 = 0, t) and q(x, 0, t) being the prescribed values of the temperature and
heat flux on the boundary edge of the plate.

Substituting Equations (31) and (32) into Equation (16), one can obtain the dimen-
sionless form of the governing equations which are formally the same as (20), but the
semi-integral fields include also the thermal contributions [49].

Thus, the complete set of governing equations for field variables describing the process
of plate bending in classical thermoelasticity is given by Equations (20) and (30) plus two
equations properly selected from (33)–(35) according to prescribed thermal boundary
conditions on the top and bottom of the plate. The possible boundary conditions result
form (17) and (36)–(38).

To overcome the shortcoming of decreasing the accuracy of approximation due to
high-order derivatives in governing equations we utilize the decomposition formulation
introduced in Section 2.1.

Then, the final setofgoverningequations forprimaryfieldvariables {w∗(x, t), m∗(x, t), u∗β(x, t),
s∗β(x, t), ϕ∗β(x, t), f ∗β (x, t), ϑ∗0(x, t), ϑ∗1(x, t), ϑ∗2(x, t)} is given by Equations (21), (30) and (35),
which include derivatives not higher than the second-order [47].

3. Meshless Approximations of Field Variables by Moving Least Square Approximation

In this paper, we shall employ the central approximation node (CAN) concept of the
standard MLS approximation. By considering xq as the CAN for the approximation at a
point x the number of nodes implied into the approximation at x is reduced a-priori from
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N to Nq, where N is the number of all nodes and Nq is the number of nodes supporting
the approximation at xq, i.e., the number of nodes in the setMq = {∀xa; wa(xq) > 0}N

a=1,
where wa(x) is the weight function associated with the node xa and taken at the field point x.
In this paper, we employ the Gaussian weights. The MLS-CAN approximation is given as

u(x) ≈
Nq

∑
a=1

ûaφ(q,a)(x), a = n(q, a) (39)

where a is the global number of the a-th node from the Nq nodal points, ûa is a nodal
unknown different from the nodal value u(xa), and φa(x) is the shape function associated
with the nodal point xa. Generally, the nearest node to the field point x is selected as the
CAN node.

In this paper, we shall utilize two types for differentiation: (a) the standard approach
(D0), and (b) the modified approach (D1) for the evaluation of derivatives of field variables.

Within the standard approach, the derivative of u(x) can be approximated by differen-
tiating Equation (39), i.e.,

u,i(x) ≈
Nq

∑
a=1

ûaφ
(q,a)
,i (x), u,ij(x) ≈

Nq

∑
a=1

ûaφ
(q,a)
,ij (x), u,ijk(x) ≈

Nq

∑
a=1

ûaφ
(q,a)
,ijk (x) (40)

For the details on the shape functions and their derivatives see [47].
In the modified approach, the derivatives are approximated by using the MLS shape

functions φa(x) and nodal values ûh and the first-order derivatives of the MLS shape
functions. So,

u,i(x) ≈
Nq

∑
a=1

ûa
i φ(q,a)(x), u,ij(x) ≈

Nq

∑
a=1

ûa
ijφ

(q,a)(x), u,ijk(x) ≈
Nq

∑
a=1

ûa
ijkφ(q,a)(x). (41)

From (401), we have

u,i(xc) ≈
Nc

∑
h=1

ûhφ
(c,h)
,i (xc) =

Nc

∑
h=1

f ch
i ûh, with h = n(c, h), f ch

i = φ
(c,h)
,i (xc) (42)

while from (411), we have

u,i(xc) ≈
Nc

∑
a=1

ûa
i φ(c,a)(xc) =

Nc

∑
h=1

ecaûa
i , with a = n(c, a), eca = φ(c,a)(xc) (43)

Extending the definitions of matrices f ch
i and eca to all nodes as

Ecd :=
{

eca , d = a
0 , d 6= a

, Fcg
i :=

{
f ca
i , g = a

0 , g 6= a
, with a = n(c, a), a ∈ {1, 2, . . . , Nc} (44)

The Equations (42) and (43) are rewritten as

u,i(xc) =
N

∑
d=1

Ecdûd
i =

N

∑
g=1

Fcg
i ûg

hence,

ûd
i =

N

∑
g=1

N

∑
c=1

(E−1)
dc

Fcg
i ûg =

N

∑
g=1

Gdg
i ûg, Gdg

i :=
N

∑
c=1

(E−1)
dc

Fcg
i (45)
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Differentiating (411), one can obtain

u,ij(x) ≈
Nq

∑
a=1

ûa
i φ

(q,a)
,j (x)⇒ u,ij(xc) ≈

Nc

∑
a=1

ûa
i φ

(c,a)
,j (xc) =

N

∑
g=1

Fcg
j ûg

i (46)

From (412), we have

u,ij(xc) ≈
Nc

∑
a=1

ûa
ijφ

(c,a)(xc) =
N

∑
d=1

Ecdûd
ij (47)

and by comparison to (46) and (47), one can receive

ûd
ij =

N

∑
g=1

N

∑
c=1

(E−1)
dc

Fcg
j ûg

i =
N

∑
g=1

Gdg
j ûg

i =
N

∑
g,h=1

Gdg
j Ggh

i ûh (48)

where we employed the expression for ûg
i by Equation (45).

In a similar way,

ûd
ijk =

N

∑
g,b,h=1

Gdg
k Ggb

j Gbh
i ûh (49)

Substituting Equations (45), (48) and (49), into Equation (41), one can obtain the
relationship for modified evaluation of derivatives of primary field variables. In this D1
approach, only the first-order derivatives of the MLS shape function φa(x) and nodal
values ûh are utilized for the evaluation of higher-order derivatives of the approximated
function. The evaluation of Gdg

i , due to the necessity of inversion of Ecd can lead to the
lower computational efficiency of the modified differentiation approach as compared with
the standard differentiation approach. This is the cost, what we have to pay for better
accuracy given by the modified differentiation approach.

4. Numerical Examples

In this chapter, we shall present the results for FGM elastic and/or thermoelastic
square plates with the power law gradation of material coefficients. The main geometrical
parameter is the length of all sides of the plate L = 1 m. The length to thickness ratio
is L/h0 = 50. The sides of the FG plates are considered to be clamped. The material
coefficients are graded according to Equation (6) and/or Equation (25), while Poisson’s
ratio is considered to be constant ν = 0.3.

The nodes utilized for the discretization of the analyzed domain are distributed
uniformly. The distance between neighbour nodes is marked by δ. The other parameters
in the MLS-CAN approximation technique are the radius of the interpolation domain
ρa = 3.001 δ and shape function parameter ca = δ. In all numerical experiments the cubic
polynomial basis m = 10 is used.

4.1. Verification of Presented Numerical Method

In the literature, we can easily find the analytical solution for clamped elastic square
plates with constant bending stiffness [51]. For the study of the accuracy and convergence
of the proposed computational method, the above-mentioned analytical solution will be
utilized as benchmark solution. The error norm characterizing the accuracy of numerical
solutions of BVP is given by

error =

(
N
∑

a=1
[w(xa)− wex(xa)]2

)1/2

(
N
∑

a=1
[wex(xa)]2

)1/2 100(%) (50)
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where N represents the number of all nodes within the discretized domain, w(xa) is the
computed value of the field variable by the present method, while wex(xa) is the exact
value of the field variable at the nodal point xa.

First of all, to verify the proposed computational method, we shall present the compar-
ison of results by the proposed method and the analytical solution by [51] for elastic plate
bending problems. The homogeneous, as well as FGM square plates, are considered. The
plates in all computations are subjected to uniform, stationary transversal loading q∗ = 1.
The power law transversal gradation of elastic modulus follows Equation (6), while elastic
modulus at the bottom surface of the plate is E(0) = 120× 109Pa, the level of power law
gradation ζ = 0 for the plate with constant bending stiffness, while ζ = 1 and ζ = 3 for the
FGM plate with linear p = 1 and/or non-linear p = 2 transversal gradation, respectively.
In Figure 2. it is seen that the results for the deflections by the present computational
method are in excellent agreement with the analytical results [51].

Figure 2. Dimensionless deflections of homogeneous and/or FGM square plates with various
parameters of gradation of Young modulus.

A study on the accuracy, convergence, and computational efficiency of the present
method was carried out too. The results of such investigation are shown in Figure 3.
Good convergence rates are achieved by both employed differentiation techniques with
increasing the number of nodes, i.e., with decreasing parameter δ. In regards to the
computational efficiency, from Figure 3b it is clearly seen that in the case of the modified
differentiation (D1) the computational time is not increased significantly, as compared to
standard differentiation (D0).
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Figure 3. (a) Comparison of convergence rates in the homogeneous elastic plate; (b) computational
efficiency of proposed meshless method for both the differentiation techniques.

As regards the comparison of the computational efficiency of the strong vs. weak
formulations using the same number of nodes, it depends also on the amount of discretized
equations [46,52]. The total computational time is composed of the time needed for creation
of the system matrix (tsm) and the time needed for solution of the system of discretized equa-
tions (tsol). Both the tsm and tsol are increasing with increasing the amount of nodes, and tsm
is approximately 10 times smaller in strong formulation than in case of weak formulation,
while tsol is independent on the kind of discretization. Thus, the computational efficiency of
the strong formulation is ever better than that of the weak formulation, but the differences
are diminishing with increasing the number of nodes when tsol is becoming dominant.

4.2. Study of w− ui Coupling in FGM Plates under Static Mechanical Loading

Now, we shall consider the FGM plate under static mechanical loading q∗ = 1,
t = 0(the acceleration terms of Equation (20) are equal to zero).

First, we shall investigate the FGM plate with the transversal power law gradation of
elastic modulus, focusing on the effect of w− ui coupling. According to [49], it is evident
that the coefficients C(uw), C(uϕ), C(wu), C(wϕ), responsible for coupling between in-plane
displacements uα and bending measures (transversal deflections w and rotations ϕα), are
proportional to the parameter ζ and vanish in homogeneous plates, where ζ = 0. In
order to assess the effect of material gradation on the w− ui coupling, we introduce the
multiplication factor c in the above coupling coefficients by replacing C(··) with cC(··). Then,
the value c = 1 corresponds to the real physical FGM plate, while c = 0 corresponds to the
artificial situation when the w− ui coupling in the FGM plate is switched off. Furthermore,
the plane stress (χ = 1) and the 3D stress assumption are considered (χ = 2) due to the
questionability of plane stress formulation in FG plates with the transversal gradation of
elastic modulus. Figures 4 and 5 present the three-dimensional map of variation of the
deflection and in-plane deformation fields with in-plane coordinates within homogeneous
as well as FGM plates. Figure 6a shows the effect of power law gradation of elastic modulus
on the reduction of deflections compared to the deflections of homogeneous, as well as
the influence of two factors c and χ on deflections. Figure 6b illustrates that the in-plane
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displacements are induced only if the coupling factor is not switched off (c= 1), and the
effect of χ-factor on in-plane displacements is shown too. The reduction of the maximum
deflection is around 20% lower in the case of plane stress formulation (χ = 1) than in the
case of 3D stress formulation (χ = 2).

Figure 4. Three-dimensional map of deflections for (a) homogeneous plate and (b) transversally
graded FGM plate with gradation parameters ζ = 1, p = 1.

Figure 5. Three-dimensional map of in-plane deformations for (a) homogeneous plate and
(b) transversally graded FGM plate with gradation parameters ζ = 1, p = 1.
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Figure 6. (a) Deflections and (b) in-plane deformations in homogeneous as well as FGM plates.

In Figure 7a we can see that the reduction of the maximum value of deflection with
respect to the w∗re f = w∗(ζ = 0, χ = 1) is increasing with increasing the level of gradation
under keeping the volume contents of the constituents to be constant (p = const). In
Figure 7b we can see that the increasing value of the exponent p is leading to the decreasing
reduction in the maximum deflections. This can be explained by the fact that the volume
content of the constituent with higher elastic modulus is decreasing with increasing the
exponent p.

Figure 7. Dependence of the reduction of maximal deflections on (a) parameter ζ and (b) on exponent p.
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4.3. Response of FGM Plates under Transient Mechanical Loading

In this chapter, we shall present numerical experiments for the considered FGM plates
with clamped edges, and transversally graded elastic modulus and mass density, sub-
jected to Heaviside impact load. The initial conditions of IBVP are vanishing. Various
combinations of the power law gradation exponents (p, g) and levels of gradation (ε, ζ) are
considered. We consider also damping of the plate vibrations in view of the Rayleigh pro-
portional damping model [C] = α[M] + β[K] [53], with choosing the parameters α = 0.001
and β = 0.0001. To a numerical solution of the second-order ordinary differential equa-
tions (ODE) we apply the Newmark method [54] which is the implicit one-step time
integration method.

Firstly, we shall present the time variation of central deflection and in-plane defor-
mations for various combinations of gradations of the elastic modulus and mass density
(Figure 8):

Figure 8. Comparison of influences of the various combinations of the level of gradation of the mass
density (ε) and/or the elastic modulus (ζ) on the time variation of: (a) the dimensionless central
deflection, (b) the dimensionless in-plane deformation.

a. Without gradation of material coefficients (ε = 0, ζ = 0).
b. With transversal gradation of mass density only (ε = 1, ζ = 0).
c. With transversal gradation of elastic modulus only (ε = 0, ζ = 1).
d. With transversal gradation of elastic modulus and mass density (ε = 1, ζ = 1).

From Figure 8, one can see that both the amplitudes and frequencies of transversal
deflection and the in-plane displacements are affected by the transversal gradation of the
elastic modulus and/or mass density. The effect of the pure gradation of mass density
on amplitudes is negligible as compared with the effect of the gradation of elastic modu-
lus. However, the influence of each of the gradation coefficients (ζ, ε) on frequencies of
vibrations is almost the same in magnitude but opposite in sign.

In what follows, we pay attention to the investigation of the role of higher values of
the parameters ζ and ε and/or the gradation exponents p and g on the changes within
the dynamic response of FGM plates with the transversal gradation of elastic modulus
and mass density. From Figure 9 one can observe a significant influence of the level of
gradation of each of the material coefficients on the frequencies of the vibrations of the
central deflections and in-plane displacements. On the other hand, the amplitudes of
vibrations are affected significantly only by the level of gradation of the elastic modulus.



Aerospace 2022, 9, 425 17 of 22

Since the frequency of oscillations is decreasing with the increasing value of ε and increases
with the increasing value of ζ, one can tune the frequency rather sensitively by choosing
the levels of gradations.

Figure 9. Effect of the level of gradation of the mass density (ε) and/or the elastic modulus (ζ) on the
time variation of: (a) the dimensionless central deflection, (b) the dimensionless in-plane deformation.

Figure 10 illustrates the study of the influence of the gradation exponents (p, g) on
the dynamic response of the FGM plate. From Figure 10a we can see that the higher value
of exponent p leads to a lower reduction in deflection, while the exponent g affected the
frequency of vibrations remarkably, but the amplitudes are almost unaffected.

Figure 10. Influences of the gradation exponent of the mass density (g) and/or the elastic mod-
ulus (p) on the time variation of: (a) the dimensionless central deflection, (b) the dimensionless
in-plane deformation.
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4.4. Response of FGM Plates under Transient Thermal Loading

The main focus of this chapter is on the investigation of the transient response of
thermoelastic FGM plates subjected to thermal loadings defined as: θ

∗
(0, x2, x3, t) =

0, θ
∗
(1, x2, x3, t) = 20H(t), q∗(x1, 0, x3, t) = 0, q∗(x1, 1, x3, t) = 0, q∗(x,±h/2, t) = 0,

θ
∗
(x, x3, t = 0) = 0, where H(t) is standing for the Heaviside’s unit step function.

We shall present the results for temperature, in-plane deformation, and deflection
fields for the case of pure transversal gradation of material coefficients. In Figure 11, it
is illustrated that the transversal gradation of elastic modulus and/or thermal expansion
coefficient has no influence on the time variation of temperature neither in the case of
linear nor non-linear power law gradation. However, the power law gradation of material
coefficients associated with heat conduction Equation (31), i.e., gradation parameters
ω, χ, ε(the gradation levels for heat conduction coefficients, specific heat capacity, and
mass density) results in remarkable changes in the time evolution of temperature fields. It
is seen that the linear and/or non-linear case of gradation of the heat conduction coefficient
accelerates the time evolution of temperature fields, while the gradation of the mass density
and/or specific heat capacity decelerates the time evolution of temperature fields.

Figure 11. Time variation of the temperature in the homogeneous as well as FGM plates.

The time variation of in-plane displacements is presented in Figure 12. In contrast to
the temperature fields, the in-plane displacements are clearly affected by the power law
gradation of the thermal expansion coefficient (α); however, the impact of the gradation
of elastic modulus (E) is negligible. The effect of the power law gradation of the heat
conduction coefficients, specific heat capacity, and mass density on the time variation of
in-plane displacements is similar to that on temperature fields.
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Figure 12. Time variation of the in-plane displacements in homogeneous as well as FGM plates.

From Figure 13. it is obvious that the power law gradation of elastic modulus and
thermal expansion coefficient plays an important role in the deflection response of FGM
thermoelastic plates subjected to transient thermal loadings. It can be seen that the transver-
sal gradation of other material properties associated with the heat conduction equation has
no influence on the deflection response of the FGM plate.
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Figure 13. Time variations of the deflections in homogeneous as well as FGM plates.

5. Conclusions

Three main conclusions can be drawn from the research presented in this paper:

(i) The proposed unified formulation for plate bending problems allows:

• A unique treatment of plate bending problems with simple switching among
three plate bending theories (classical Kirchhoff–Love theory, first-order shear
deformation theory, third-order shear deformation theory), differing in various
deformation assumptions;

• Physically correct derivation of governing equations and possible boundary
conditions using variation principles;

• To study the response of linear elastic plates with functionally graded material
properties to static as well as dynamic mechanical and thermal loadings;

• Comparison of results by three various theories using the same mathemati-
cal treatment.

(ii) The developed advanced meshless method is characterized by:

• Efficient solution of systems of partial differential equations with variable co-
efficients (due to functional gradation of material coefficients) with the same
demands as in the case of homogeneous media;

• Decomposition of the original fourth-order PDE to the system of the second-
order PDE;

• Enhanced accuracy of approximation of higher-order derivatives;
• Improvement of computational efficiency by using the strong formulation;
• Overcoming shortcomings of the standard finite element method with preserving

its universality.

(iii) A study of coupling effects by numerical simulations revealed:

• The reliability (convergence and accuracy) and computational efficiency of devel-
oped numerical techniques;

• The functional dependence of material coefficients gives rise to coupling ef-
fects among the field variables including the interaction between the in-plane
deformation and bending modes;

• To assess the influence of functional gradation parameters on the response of
FGM plates to external loadings.
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The proposed treatment of FGM plates could become a useful tool for designers
because of the unified formulation including the assumptions of three various plate bending
theories and owing to the wide, universal advanced numerical method for multi-physical
plate bending problems.
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