
Citation: Liu, Zhenya, and Yuhao

Mu. 2022. Optimal Stopping

Methods for Investment Decisions: A

Literature Review. International

Journal of Financial Studies 10: 96.

https://doi.org/10.3390/ijfs

10040096

Academic Editor: Muhammad Ali

Nasir

Received: 31 August 2022

Accepted: 9 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International Journal of 

Financial Studies

Article

Optimal Stopping Methods for Investment Decisions:
A Literature Review
Zhenya Liu 1,2,3,* and Yuhao Mu 1

1 School of Finance, Renmin University of China, Beijing 100872, China
2 China Financial Policy Research Center, Renmin University of China, Beijing 100872, China
3 CERGAM, Aix-Marseille University, CEDEX 07, 13284 Aix-en-Provence, France
* Correspondence: zhenya.liu@ruc.edu.cn

Abstract: Investors decide the best time to take a given action by maximizing their utility function
while taking into account current information and the underlying process in the optimal stopping
model. Option pricing, sequential analysis, disorder problems, and other problems requiring time
decision-making are all examples of this type of problem. A lot of literature has studied optimal
stopping models and put forward the corresponding solutions. Investors in financial markets must
also know when to buy and sell, so timing is crucial. This paper presents a classified review of the
literature on optimal stopping models, followed by a summary of the strategies that can be used in
financial markets to make investment decisions using optimal stopping methods.

Keywords: optimal stopping; sequential analysis; disorder problem; regime-switching

1. Introduction

The financial market is fraught with uncertainty, and a lot of literature studies how
to identify and control risks when uncertainty exists, for example, Kou et al. (2014) and
Locurcio et al. (2021). Uncertainty causes investors to hesitatingly make investment deci-
sions, or even to make erroneous ones, such as the well-known disposal effect. Here we
introduce the optimal stopping method to help investors make rational decisions when
facing uncertainty.

The optimal stopping method is important in investment. This method uses the
stochastic model to describe the stock market’s trend and set up an analytical framework
for observing and understanding the logic behind stock market changes in a scientific way.
After using real market data to describe how the market changes in a stochastic model,
investors would predict the market movement in the future and make relative investment
decisions based on the model. Such methods include Merton’s model (Merton 1969) and
the optimal stopping models to be discussed in this article. The optimal stopping models
suggest when investors should buy and sell, and Merton’s model solves the problem of
how much investors should buy and sell.

As a special dynamic programming model, the optimal stopping model consists of
an objective function and constraints. The objective function can be the utility or return
function of investors, and the constraints are the underlying stochastic process. Take an
infinite American put option with strike price K as an example. Suppose that the stock
price X obeys geometric Brownian motion: dXt = rXtdt + σXtdBt, X0 = x, which is a
constraint. Investors hold the option and look for the optimal time τ to execute to maximize
the discounted yield of maturity (objective function):

V(x) = sup
τ≥0

E
[
e−rτ(K− Xτ)

+
]

(1)

The solution of the problem is: τ∗ = min
{

τ : Xτ ≤ 2rK
2r+σ2

}
. In other words, it is the

best choice to exercise the option immediately only when the price falls below a critical
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value. The set where the price is higher than the critical value is called the continuation set,
and the area where the price is lower than the critical value is called the stopping set. In an
optimal stopping model, we often obtain a boundary that divides the space into two sets.

The remainder of this paper is organized as follows: Section 2 briefly summarizes
the development and application of optimal stopping models. Section 3 presents the
classification of optimal stopping models, which is classified by the constraint conditions
(underlying processes) and objective functions. Section 4 includes the analytical and
numerical solutions of optimal stopping models used in investment decision making,
which are divided into five strategies: Sequential analysis, disorder problem, optimal
prediction, buy-low and sell-high, and regime-switching. Section 5 introduces the market
performance of some strategies. Finally, Section 6 concludes.

2. Literature Review

The optimal stopping model originated from Wald (1947) and Wald and Wolfowitz
(1948) and was used by Wald for sequential analysis, that is, the sampling was not stopped
until the results were significant enough. Later research focused on the method of solving
the optimal stopping model. A martingale method for studying discrete-time optimal
stopping models is proposed by Snell (1952). On the other hand, applying a dynamic pro-
gramming framework to solve the optimal stopping models is also useful, see Arrow et al.
(1949). Dvoretzky et al. (1953) earlier studied optimal stopping models under continuous
time, and solved the problem of sequential testing, that is, to decide whether the actual
data are more likely to follow which of the two stochastic processes as soon as possible.

A breakthrough of optimal stopping models is to combine them with free boundary
problems. Now, most optimal stopping models in continuous time are solved by this
method. McKean (1965) and Mikhalevich (1958) introduced the smooth fit condition into
optimal stopping models, which began to be associated with the free boundary problems.
The boundary of an optimal stopping model divides the parameter space into two regions:
continue to wait the best time and stop immediately. The boundary and the solution of
a free boundary problem are determined at the same time. In this strand of literature,
authors often pre-specify the shape of the boundary in a general form and then solve and
verify it. Shiryaev (1961) and Shiryaev (1963) began to study a disorder problem, that is, to
quickly identify the time when the parameters of the stochastic process changed, and solve
it through the corresponding free boundary problem. Beibel and Lerche (1997) derived the
optimal strategy of selling stocks by maximizing the stock price after discount under the
framework of the disorder problem.

Most of the initial optimal stopping models are one-dimensional, that is, infinite
optimal stopping models. In practice, decisions often need to be made within a period. To
address this issue, some subsequent studies naively added the time dimension into the
model. However, it would increase the difficulty of solving a two-dimensional problem,
because the free boundary problem needs to be solved by a partial differential equation.
It is challenging to obtain an analytical solution for this problem. McKean (1965) firstly
analyzed the pricing of the American option with finite horizon, and transformed it into
a free boundary problem. Myneni (1992) summarized two methods of using the free
boundary problem and variational inequality to price the American option with finite
horizon, and put forward the problem of whether the solution is unique or not. Peskir
(2005a) proved the uniqueness of the solution and gave an analytical solution of the price of
the American option with the finite horizon. This proposed method also can be extended to
other finite horizon problems. In addition to adding the dimension of time, several studies
investigate the impact of the maximum historical price on decision-making. Other studies
consider adding the maximum process to the utility function of the optimal stopping model,
Shepp and Shiryaev (1993) introduced the Russian option, the payment of which is the
highest price of the stock during the option holding period, and obtained an analytical
solution through the free boundary problem and reasonable speculation on the form of the
solution. Peskir (1998) presented the maximum principle, which is used to solve a class of
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optimal stopping models with the maximum process. Egami and Oryu (2017) provided
a canonical process to solve a more extensive class of optimal stopping models involving
maximum process through dimension reduction.

The most commonly used stochastic process for continuous-time optimal stopping
models is geometric Brownian motion or one-dimensional diffusion process. Geometric
Brownian motion has limitations in characterizing stock price movement, and the param-
eters of it do not vary with time. To better characterize stock price movement, complex
stochastic processes are considered, such as the Lévy process, stochastic volatility model,
etc. A regime-switching model where price is modeled by adjoining a hidden Markov
process to the classical geometric Brownian motion is a proper alternative. In such a flexible
model, the parameters in each state are different, and the transformation time between
different states is random. For example, the underlying process in the disorder problem
mentioned above is a kind of regime-switching models. This model can well describe the
transformation between bull and bear markets in the real world. Zhang (2001) and Guo
and Zhang (2005) studied the investment decision-making problem in a regime-switching
framework. Guo (2001), Buffington and Elliott (2002) and Boyle and Draviam (2007) studied
option pricing problems in a regime-switching framework.

The optimal stopping model is widely used in many research fields. For example,
it is used to decide when to stop clinical trials in medical science (Jennison and Turnbull
1999); in engineering, it provides optimal policy for maintenance operation (Machida and
Miyoshi 2017); as for bioeconomics, the optimal stopping model is applied to find the
optimal harvest policy (Sarkar 2009); in finance, the optimal stopping model is widely used
for option pricing and asset-selling/buying problems. This paper focuses on the optimal
stopping methods for investment decisions for two reasons, one is that most people are
more familiar with financial markets, and timing is very important for investment decisions,
the other is that the financial market data are sufficient to estimate the model parameters.

This paper mainly focuses on the optimal stopping models of continuous stochastic
processes. From the practical perspective, this paper aims not only to provide a series
of investment strategies based on optimal stopping, but also investigate the solutions of
various stopping problems related to option pricing and derivatives hedging. Peskir and
Shiryaev (2006) presented a very detailed summary of the solution and classification of
optimal stopping models; however, this book did not go through the relevant applications
of investment decision-making. Inspired by the summary of the basic knowledge of optimal
stopping problems in Peskir and Shiryaev (2006), some new development and application
of optimal stopping problems are summarized as follows.

3. Classification of Optimal Stopping Models
3.1. Constraint Conditions (Underlying Process)

Some commonly used stochastic processes in the optimal stopping models are present
in Table 1. Process 1 is the standard Brownian motion, which is the simplest case. Most
problems are analyzed from the standard Brownian motion or by transforming the stochas-
tic process into the standard Brownian motion through the change of space or change of
time. Standard Brownian motion serves as a benchmark for analyzing sophisticated ran-
dom systems. This is the simplest random process, which can be used to explore complex
optimal stopping models and offer a benchmark for expansion. However, the real world
is far more complex, and the standard Brownian motion rarely describes it. Process 2 is
the geometric Brownian motion, the most commonly used in the literature. Geometric
Brownian motion is nonnegative, thus it is widely used to model asset prices and it is easy
to analyze and somewhat realistic. However, geometric Brownian motion’s parameters are
time-invariant, thus subsequent stochastic processes add time-varying parameters. Process
3 is a one-dimensional diffusion process, and almost all the stochastic processes in the table
are of this type. Process 3 generally appears in the general solution of a class of optimal
stopping models. However, as Process 3 represents a vast class of stochastic processes, its
general solution is hard to find, especially for complex issues. Process 4 is usually applied



Int. J. Financial Stud. 2022, 10, 96 4 of 23

for sequential analysis, that is, the drift term of the stochastic process is unknown, and the
actual data is used to test and identify the drift term from two alternative parameters.

Table 1. Stochastic processes used in optimal stopping models.

Label Underlying Process Note References
(Part)

1 Xt = Bt
Bt: Standard Brownian motion, same as

below
Graversen et al.

(2001)

2 dXt = µXtdt + σXtdBt X0 = x, same as below Shiryaev et al.
(2008)

3 dXt = µ(Xt)dt + σ(Xt)dBt
Most are of this type or variations of this

type

Dayanik and
Karatzas (2003),

Egami and
Oryu (2017)

4 dXt = atXtdt + σXtdBt
at ∈ {ah, al}, P(a0 = ah) = π0

P(a0 = al) = 1− π0

Van Khanh
(2012)

5 dXt = µ(t)Xtdt + σXtdBt
The drift changes from µ1 to µ2 at θ

P(θ > t) = (1− p)e−λt

Beibel and
Lerche (1997),

Karatzas (2003)

6 dXt = Xtµε(t)dt + Xtσε(t)dBt

(µε(t), σε(t)) =

{
(µ1, σ1), ε(t) = 1
(µ2, σ2), ε(t) = 2

τi is the time leaving state i:
P(τi > t) = e−λit, i = 1, 2

Zhang (2001),
Guo (2001)

7 dXt = (r− δ(St, Yt))Xt dt + σ(St, Yt)Xt dBt
St = s ∨max0≤u≤t Xu

Yt = y ∨max0≤u≤t(Su − Xu)

Gapeev and
Rodosthenous

(2014, 2016)

8 dXt = Atµdt + dBt At can be 1 or −1 by human intervention
Dalang and

Vinckenbosch
(2014)

9 dXt = µ(Xt)dt + Bt µ(x) =

{
µ1, for x < 0
µ2, for x ≥ 0

Mordecki and
Salminen
(2019a)

10 dXt = σ(Xt)dBt σ(x) =

{
σ1, x < 0
σ2, x ≥ 0

Mordecki and
Salminen
(2019b)

Process 5 is a special case of regime-switching and is used for disorder problems.
Process 4 and Process 5 seem to be similar to one another. The specific forms of the
stochastic processes are unknown and need to be inferred from the realized data. While the
parameters of Process 4 are time-invariant, those of Process 5 are time-varying. Process 6 is
a two-dimensional regime-switching model. In Section 3, the definition of N-dimension
will be given, that is, the parameters switch in different states. Process 6 is more realistic
and involved. It shows, for instance, how the stock market’s bull and bear cycles occur in
alternating fashion. Unfortunately, this process is usually difficult to deal with. Process 7
is a stochastic process used to construct a new option. The drift term and diffusion term
are related to the maximum drawdown and maximum process. This design makes the
stochastic process path dependent, which may be associated with behavioral finance, such
as anchoring effect. When it comes to Process 8, timing is decided to intervene in a stochastic
process, and parameters are artificially selected to maximize the objective function. The
parameters of the previous processes cannot be controlled. Process 6 describes a case where
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the stochastic process can be controlled. As for Processes 9 and 10, the reference gives the
analytical solution to the corresponding optimal stopping model but the corresponding
financial application is not given.

3.2. Problems and the Corresponding Objective Functions

The objective function of the optimal stopping model is closely related to the problem
to be studied and the choice of the utility function is essential in formulating the problem.
A good objective function can not only describe the problem appropriately but also simplify
the solution steps. The optimal stopping models are designed for problems which can be
classified into six categories: the classical sequential analysis problem, disorder problem,
optimal prediction problem, buy-low and sell-high problem, option pricing problem,
and others.

3.2.1. Sequential Analysis

Assume that the actual data are generated by a stochastic process, the parameters
of which are binary random variables, and the prior distribution of parameters is known.
As time goes on, the number of observations increases and the posterior distribution
of parameters keeps updating. The sequential analysis problem is to quickly as well as
accurately judge the parameters from the alternatives. Take Process 4 as an example (for
details, see Peskir and Shiryaev (2006)):

V(π0) = inf
(τ,d)

Eπ [(τ + a1{d=0,at=ah} + b1{d=1,at=al})] (2)

where 1 is an indicator function, which is 1 if the condition is satisfied, otherwise 0. d = 0
when at = al is accepted, whereas similar. a and b represent the penalty for each type of
error, and τ indicates that the quicker the stochastic process is identified, the better. In this
problem, we generally define a new stochastic process πt to depict a posterior probability
process, and the problem can be transformed into a problem about πt.

3.2.2. Disorder Problem

This problem is analyzed under the setting of Process 5. Take the financial market as
an example. Assume that it is a bull market at present, and the time when the bull market
turns into a bear market is a random variable. The problem for investors is to quickly
identify the moment of bull and bear markets transitions and make timely decisions. Here
are two objective functions that measure the quickest detection:

Shiryaev (2002)

V(p) = inf
τ

{
P(τ < θ) + cE[(τ − θ)+]

}
(3)

Karatzas (2003)
V(p) = min

τ
E|θ − τ| (4)

where E|θ − τ| = E[(τ − θ)+ + (θ − τ)+] = E[(τ − θ)+] + E[θ]− E[τ ∧ θ]
From the perspective of investors, they aim to maximize their utility function instead of

identifying the market transition time as soon as possible. The utility function is shown as:

V(x) = sup
τ≥0

E[U(Xτ)] (5)

Gapeev and Peskir (2006) gave the solution of the disorder problem when the utility
function is U(x) = ln(x) and U(x) = x, respectively.
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3.2.3. Optimal Prediction

Take selling stocks as an example, investors aim to sell at the highest point, and the
problem is to predict the time of reaching the highest point. Take Process 1 as an example
below, the decision maker needs to decide before time 1:

V = inf
τ∈[0,1]

E

(
Bτ − max

05t51
Bt

)2

(6)

The solution to the optimal prediction of a drifted Brownian motion is given by
du Toit and Peskir (2007). Investors who prefer technical analysis make decisions based on
resistance and support levels. The proposed optimal prediction model is applied not only
for predicting the highest point, but also for predicting the resistance and support levels
(for details, see Angelis and Peskir (2016)):

V = inf
τ∈[0,T]

E|Bτ −L| (7)

where L is a random variable representing a support line or a resistance line with a given
distribution.

3.2.4. Buy-Low and Sell-High

Assume that an investor is holding an asset, and a simple target is to find the time
when the discounted asset payoff reaches the highest point to sell. Following Van Khanh
(2012), the utility function is shown as:

V(x) = sup
0≤τ≤T

E
[
e−rτXτ

]
(8)

Oppositely, if an investor intends to buy an asset, a simple target is to estimate the time
when the discounted asset payoff reaches the lowest point to buy. Following Van Khanh
(2014), the utility function is shown as:

V(x) = inf
0≤τ≤T

E
[
e−rτXτ

]
(9)

In a market with trading costs, the investors may need to pay the cost K to sell the
stock, which is the problem solved in Guo and Zhang (2005):

V(x) = sup
0≤τ≤T

E
[
e−rτ(Xτ − K)

]
(10)

Shiryaev et al. (2008) considered the problem when investors aim to sell at the relative
highest price, and the comparison benchmark is the maximum value of price process before
selling:

V(x) = inf
τ∈[0,T]

E[1− Xτ

ST
] (11)

The objective function of du Toit and Peskir (2009) is similar:

V(x) = inf
0≤τ≤T

E[
ST
Xτ

] (12)

Dai and Zhong (2012) replaced the above benchmark ST with the average of price AT :

AT =

{
exp

(
1
T
∫ T

0 log Xvdv
)

, Geometric average
1
T
∫ T

0 Xvdv, Arithmetic average
(13)
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3.2.5. Option Pricing

Table 2 shows different types of options. The American option is the most common;
the holder of the option can sell/buy the asset at the agreed price at any time before the
expiration of the option. The Russian option buyer receives the maximum price of the
stock before the strike, reducing the regret of missing the sale peak. The Asian option takes
the average of the pre-strike price as the strike price. The British option is similar to the
American option of the European option, and the holder can re-price the European option
according to the new drift term during the holding period. A bottleneck option can be
considered a broader form of Russian option, which is named because its unexercised area
resembles a bottleneck. Option 6 is a lookback option, which is designed for hedging the
investor’s drawdown risk. Option 7 is created for fund managers whose performance fees
are linked with the value of the fund exceeding a “high watermark” (historical maximum
price). Option 9 is designed to reduce the loss of investors who pursue rises and kill falls.
The last option is that the return of the option is related to the state, which is closely related
to the regime-switching model.

Table 2. Different types of options.

Label Objective Function Note References (Part)

1 V(x) = sup0≤τ≤T E
[
e−rτ(Xτ − K)+

]
American Option Peskir (2005a)

2 V(x, s) = sup0≤τ≤T E
(
e−rτSτ

)
Russian Option Shepp and Shiryaev (1993), Peskir (2005b)

3
V(x, t) =

supτ∈[t,T] EQ
t

{
e−r(τ−t)[±(Xτ − Aτ)]+

} Asian Option Hansen and Jørgensen (2000)

4
V(x, t) =

sup0≤τ≤T E
[
e−rτEµc

(
(K− XT)

+ | Fτ

)] British Option Peskir and Samee (2011)

5 V(x, s) = supτ≥0 E[e−rτ(Sτ ∧ C− KXτ)+] Bottleneck option Ott (2014)

6

V(x, s, y) =
supτ≥0 Ex,s,y

[
e−rτ(K− Sτ + Yτ)+

]
V(x, s, y) =

supτ≥0 Ex,s,y
[
e−rτ(KXτ − Sτ + Yτ)+

] Lookback option Gapeev and Rodosthenous (2016)

7

V(x, s) =

supτ≥0 E
[

e−rτ
(

Sb
τ

Xa
τ
− K

)+
1{τ<∞}

]
V(x, s) =

supτ≥0 E
[

e−rτ
(

Sb
τ − KXa

τ

)+
1{τ<∞}

] Watermark option Rodosthenous and Zervos (2017)

8
V(x, m; K) = supτ≥0 E

[
e−rτ(K−mτ)

+
]

(mt = (inf0≤u≤t Xu) ∧m)
Lookback option Woo and Choe (2020)

9 V(x, m, s) = supτ≥0 E
[
e−rτ(Sτ −mτ)

+
]

Lookback option Woo and Choe (2020)

10
Vi(x, s) =

supτ≥0 E[e−rτ((1−Θτ)(L0Sτ − K0)+
Θτ(L1Sτ − K1))]

Θτ stands for 0-1 two states Gapeev et al. (2021)

3.2.6. Other Problems

Battauz et al. (2012) discussed the problem of real options, assuming (Xt, It) is a two-
dimensional geometric Brownian motion, representing the costs and benefits of the project:

V = sup
τ≥0

E
[
e−ρτ(Xτ − Iτ)

+ | F0

]
(14)
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De Angelis and Stabile (2019) studied when investors convert financial assets into
annuity insurance. Before the conversion, the income comes from the financial market, and
after the conversion, it comes from a fixed amount of annuity every year until death:

Vt = sup
τ∈[t,T]

E[
∫ ΓD∧τ

t
e−ρsαXsds + 1{ΓD≤τ}e

−ρΓD XΓD + Pη+τ

∫ ΓD

ΓD∧τ
e−ρsds | Ft ∩ {ΓD > t}] (15)

Three classical objective functions are summarized in Guerra et al. (2021):

V1(x) = sup
τ≥0

Ex

[∫ τ

0
e−rsR(X(s))ds− e−rτK

]
(16)

V2(x) = sup
τ≥0

Ex

[∫ +∞

τ
e−rsR(X(s))ds− e−rτK

]
(17)

V3(x) = sup
τ≥0

Ex

[∫ τ

0
e−rsR1(Xs)ds− e−rτK +

∫ ∞

τ
e−rsR2(Xs)ds

]
(18)

The three types of functions all consider the case of continuous income. The first
function is to solve the problem of when to close a company whose debt is K and cash flow
is R, the second one is to solve the problem of when to invest in a new company or project,
and the third one is the combination of the two types, which is to solve the problem of
when to replace the old one with a new one. Xu (2021) applied the third objective function
to investigate the optimal time to intervene to prevent the extinction of endangered species.

4. Strategies Based on the Optimal Stopping Method
4.1. Sequential Analysis

The drift term of the price process has two alternative values. Investors need to
identify which drift term the price process conforms to according to the historical price
observed. The solution is given by Van Khanh (2012). The price process Xt obeys the
geometric Brownian motion, where Bt is a standard Brownian motion:

dXt = atXt dt + σXt dBt, at ∈ {ah, al}, ah > r > al (19)

In this situation, the investor’s goal is to sell the asset as high as possible, and the
investor has a time limit, that is, to sell the asset before T, and the investor’s problem is:

V1 = sup
0≤τ≤T

E
[
e−rτXτ

]
(20)

The initial and posterior distributions of at are as follows:

P(a = ah) = π0; P(a = al) = 1− π0

πt = P
{

a = ah | FX
t

} (21)

The price process Xt and the posterior probability πt satisfy the following system of
stochastic differential equations (SDE):{

dXt
Xt

= (al + πt(ah − al)) + dt + σdB̄t

dπt =
ah−al

σ πt(1− πt)dB̄t
(22)

where B̄ is a standard Brownian motion under the probability measure P, which is
defined as:

B̄t =
∫ t

0

dXu − [(1− πt)al − πtah]Xudu
σXu

(23)
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Here define a new probability measure Q, under which
{

B̃t
}

is a standard Brownian
motion:

dB̃t = (ωπt − σ)dt + dB̄t (24)

Define πt =
Φt

Φt+1 ; ω = ah−al
σ , then:

ηt = exp
{
−1

2

∫ t

0
(σ−ωπs)

2 ds +
∫ t

0
(ωπs − σ)dB̃s

}
is the likelihood process

In order to link the objective function with the prior probability, we have the following
transformation:

EP[e−rτXτ

]
= EQ[e−τrητXτ ] =

X0

1 + Φ0
EQ
[
e(al−r)τ(1 + Φτ)

]
(25)

Recall Equation (20), we have the expectation of the discounted payoff under the
risk-neutral measure as:

V(t, x) = sup
t≤τ≤T

E
[
e−r(τ−t)Xτ |Xt = x

]
= sup

t≤τ≤T

Xt

1 + Φt
EQ
[
e(al−r)(τ−t)(1 + Φτ)|Ft

]
(26)

Φt satisfies the following stochastic differential equation:

dΦt

Φt
= ωσdt + ωdB̃t (27)

The optimal time (t = 0) for investors to sell is given by:

τ∗ = inf{0 ≤ u ≤ T : Φu ≤ b(u)} (28)

where b(t) satisfies:

1 + b(t) =e(al−r)(T−t) + b(t) · e(ah−r)(T−t) −
∫ T−t

0

{
(al − r)e(al−r)uF

(
1

ω
√

u

[
ln

(t + u)
b(t)

−ωσu +
ω2u

2

])
+b(t)(ah − r)e(ah−r)uF

(
1

ω
√

u

[
ln

b(t + u)
b(t)

−ωσu− ω2u
2

])}
du

(29)

where F(x) = 1√
2π

∫ x
−∞ e−y2/2 dy

The boundary can be converted to the function of Xt using the following formula:

Xt = X0eεt
(

Φt

Φ0

)α

where α =
σ

ω
=

σ2

ah − al
and ε =

ah + al − σ2

2

(30)

The ultimate investment strategy is to sell the stock when the price drops to the
boundary:

τ∗ = inf
{

t : Xt ≤
X0

Φα
0

eεt · bα(t)
}
∧ T (31)

4.2. Disorder Problem
4.2.1. Case 1: The ‘Alarm’ Time

The price of an asset is characterized by a geometric Brownian motion, and the drift
term of the price process at the beginning is µ1, at an unobservable random time θ, the drift
goes from µ1 to µ2,

dXt = Xt

(
µ2 + (µ1 − µ2)1{t6θ}

)
dt + σXt dBt (32)
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The prior distribution of τ is:

P[θ > t] = (1− p)e−λt, ∀0 ≤ t < ∞ (33)

where P[θ = 0] = p. When the drift term of the price process changes, the market moves
from one state to another, such as from bull to bear (µ1 > µ2), investors need to recognize
market changes as quickly as possible and sell assets in time.

Define the posterior distribution of τ:

πt = P
{

θ ≤ t | FX
t

}
(34)

Define exponential likelihood-ratio process Lt as:

Lt =
πt

1− πt
=

(
Xt

X0

) µ2−µ1
σ2

exp
{
− 1

2σ2

(
(µ2 − µ1)

2 + 2(µ2 − µ1)

(
µ1 −

σ2

2

))
t
}

(35)

According to the maximum likelihood estimation: πt =
pLt+(1−p)

∫ t
0 λe−λs(Lt/Ls)ds

pLt+(1−p)
∫ t

0 λe−λs(Lt/Ls)ds+(1−p)e−λt

Equation (32) is transformed as follows:{ dXt
Xt

= (µ1 + πt(µ2 − µ1))dt + σdB̄t

dπt = λ(1− πt)dt + πt(1− πt)
(

µ2−µ1
σ

)
dB̄t

(36)

dB̄t =
dXt − [(1− πt)µ1 + πtµ2]Xt dt

σXt
(37)

Blanchet-Scalliet et al. (2007) referred to two kinds of objective functions used for
testing: one is given by Karatzas, another is given by Shiryaev.

For the objective function given by Karatzas:

R(p) = inf
τ≥0

E|θ − τ| (38)

R(τ) = E
[
(τ − θ)+ + (θ − τ)+

]
= E[(τ − θ)+] + E[θ]− E[τ ∧ θ] (39)

which is equivalent to:

R(τ)− E(θ) = E
[∫ τ

0
1{θ≤t}dt−

∫ τ

0
1{θ>t}dt

]
= E

∫ ∞

0

(
2 · 1{θ≤t} − 1

)
1{θ>t}dt = 2 · E

∫ τ

0

(
πt −

1
2

)
dt,

(40)

The optimal stopping time of Equation (38) is solved as:

τ∗ = inf{t > 0 | πt > p∗} (41)

p∗ is the unique solution of the following equation in
(

1
2 , 1
)

.

∫ 1/2

0

(1− 2s)e−β/s

(1− s)2+β
s−2+βds =

∫ p∗

1/2

(2s− 1)e−β/s

(1− s)2+β
s−2+βds (42)

where β = 2λσ2/(µ2 − µ1)
2

As for the objective function given by Shiryaev:

V(p) = inf
τ≥0

{
P(τ < θ) + cE[(τ − θ)+]

}
= inf

τ≥0
E[1− πτ + c

∫ τ

0
πtdt] (43)
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The optimal stopping time is given by:

τ∗ = inf{t > 0 | πt > A} (44)

A is the solution of the following equation:

∫ A

0
exp

(
− 2λσ2

(µ2 − µ1)
2

1
y

)
1

y(1− y)2

(
y

1− y

) 2λσ2

(µ2−µ1)
2

dy

=
(µ2 − µ1)

2

2σ2c
exp

(
− 2λσ2

(µ2 − µ1)
2

1
A

)(
A

1− A

) 2λσ2

(µ2−µ1)
2

(45)

Although the forms of these two objective functions are different, the optimal strategies
obtained are similar. Both of them make decisions when the posterior probability that the
change takes palace at the current time is greater than the critical value. The posterior
probability is calculated according to the likelihood ratio process Lt, which is obtained
from the observed stock price and other parameters. This strategy does not involve the
investor’s utility function, but only tells the investor when the market changes.

4.2.2. Case 2: Utility Maximization

In Van Khanh (2014), Khanh analyzed the optimal time to sell assets under the frame-
work of the disorder problem according to the maximization of investors’ utility.

Consider that at, t ≥ 0 is a Markov chain with two states: 0 and 1. P(a = ah) = π0;
P(a = al) = 1−π0, assume that at can only go from state 0 to state 1. The transition density

function of at is: Q =

[
−λ λ
0 0

]
(λ > 0), the price satisfies the following SDE:

dXt = atXt dt + σXt dBt, (46)

In this case, the investor’s goal is to sell the asset as high as possible without a time
limit and the investor’s problem is

V = sup
τ≥0

E
[
e−rτXτ

]
(47)

For t > 0, define the posterior distribution πt = P
{

a = ah | FX
t
}

. Recall Equation (36),
Equation (46) is similarly transformed:{ dXt

Xt
= (al + πt(ah − al))dt + σdB̄t

dπt = λ1(1− πt)dt + πt(1− πt)
(

ah−al
σ

)
dB̄t

(48)

The definitions of Φt, ω, (B̄t, P), (B̃t, Q) and ηt are the same as in the case of sequential
analysis (see Equation (23) and the subsequent notations), then the following equations
hold:

EP[e−rτXτ ] = EQ[ητe−rτXτ ] =
X0

1 + Φ0
EQ[e(al−λ−r)τ(1 + Φτ)] (49)

Recall Equation (47), now we have:

V = sup
τ≥0

X0

1 + Φ0
EQ[e(al−λ−r)τ(1 + Φτ)] (50)

where Φt satisfies:
dΦt = (λ + (λ + σω)Φt)dt + ωΦt dB̃t (51)
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The optimal stopping time of investors is given by:

τ∗ = inf{t ≥ 0 : Φt ≥ A} = inf
{

t ≥ 0 : πt ≥
A

A + 1

}
(52)

where A is the solution of the following equation:

2
∫ ∞

0
e−αuu(β+γ−3)/2(1 + Au)(γ−β+1)/2 du = (1 + A)(γ− β + 1)

∫ ∞

0
e−αuu(β+γ−1)/2(1 + Au)(γ−β−1)/2 dt (53)

α =
2λ

ω2 > 0, β = α +
2σ

ω
> 0, γ =

√
(β− 1)2 +

8(λ + r− al)

ω2 > |β− 1| (54)

As before, the best time for investors to sell is when they have enough confidence that
the market has turned from bull to bear, i.e., the posteriori probability is greater than the
critical value.

4.3. Optimal Prediction

An important question in the asset pricing area is to find their resistance and support
levels when investors conduct the technical analysis. The game between buyers (demand)
and sellers (supply) often leads to an upward or downward trend in asset prices. The
resistance (support) line is the level at which most traders are willing to sell (or buy) an
asset. When the levels are reached, prices either fall for a while (reaching the resistance
line) or rise (reaching the support line). Therefore, the resistance and support levels can be
used to construct effective trading strategies and gain extra earnings. Angelis and Peskir
(2016) presents a prediction method of the support level and resistance level based on the
optimal stopping model, which is shown as follows:

Suppose that the price of assets follows geometric Brownian motion: dXt = µXtdt +
σXtdBt, X0 = x, the support line/resistance line ` is a random variable with a distribution
function of F. Assume that F and Xt are independent, this assumption is very reasonable
because both the support line and the resistance line depend on the information of the past
(before time 0) and have nothing to do with the future. When µ > 0, investors look for the
resistance line to determine the best time to sell assets. When µ < 0, investors look for the
support line to determine the best time to buy assets. The investment decision is completed
before t. The objective function of the investor is:

V(x) = inf
0≤τ≤T

E[|Xx
τ − `|] (55)

E[|x− `|] = 2
∫ x

0

(
F(y)− 1

2

)
dy + E` (56)

Set G(x) =
∫ x

0

(
F(y)− 1

2

)
dy, the problem can be converted to finding τ so that:

V(x) = inf
0≤τ≤T

E[G(Xx
τ)] (57)

To describe the solution of the problem, first define the following equation:

J(t, x) = Ex[G(XT−t)] =
∫ ∞

0
G(z) f (T − t, x, z)dz

H(x) = µx
(

F(x)− 1
2

)
+

σ2

2
x2F′(x)

K(s, x, y) = Ex

[
H(Xs)1{Xs>y}

]
=
∫ ∞

y
H(z) f (s, x, z)dz

L(s, x, y) = Ex

[
H(Ys)1{Xs<y}

]
=
∫ y

0
H(z) f (s, x, z)dz

(58)
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The optimal stopping time is:

τ∗ =


inf{t ∈ [0, T] | Xt ≥ b1(t)}, when µ > 0
0, when µ = 0,
inf{t ∈ [0, T] | Xt ≤ b2(t)}, when µ < 0,

(59)

b1(t) and b2(t) are solutions to the following equations, respectively:

J(t, b1(t)) = G(b1(t)) +
∫ T

t
K(s− t, b1(t), b1(s))ds (60)

J(t, b2(t)) = G(b2(t)) +
∫ T

t
L(s− t, b2(t), b2(s))ds (61)

As for the distribution F of the support line and resistance line, two examples are
given:

1© Both the support line and the resistance line follow an exponential distribution, that
is for x > 0, then F′(x) = λe−λx; for x ≤ 0 then F′(x) = 0.

2© The distribution F of the support line is the same as the maximum process of Xt,
that is

S = sup
t≥0

[
y exp

(
σBt +

(
µ−

(
σ2/2

))
t
)]

(62)

The analytic form of the distribution function of S can be solved:

F(x) = 1−
( y

x

)1−µ/(σ2/2)
(63)

du Toit and Peskir (2007) is concerned with the prediction of the drifted Brownian
motion in the finite time: Bµ =

(
Bµ

t

)
0≤t≤T

is a drifted Brownian motion with a drift µ ∈ R,

Sµ
t = max0≤s≤t Bµ

s . Consider the optimal prediction problem in the finite period:

V = inf
0≤τ≤T

E[
(

Bµ
τ − Sµ

T

)2
(64)

By transforming the above problem into a free boundary problem, we can obtain:

τ∗ = inf
{

t∗ ≤ t ≤ T | b1(t) ≤ Sµ
t − Bµ

t ≤ b2(t)
}

(65)

In the case of µ > 0, when t is in [t∗,T](t∗ ∈ [0, T]), b1(t) is a decreasing function, b2(t)
an increasing function. In the case of µ ≤ 0, b2(t) is infinite, b1(t) first increases and then
decreases at [0,T]. For more details of b1(t) and b2(t), see du Toit and Peskir (2007).

4.4. Buy-Low and Sell-High
4.4.1. Case 1: Sell-High

The asset price follows the geometric Brownian motion: dXt = µXtdt + σXtdBt,
according to Shiryaev et al. (2008), consider the discounted asset price dPt = (µ− r)Ptdt +
σPtdBt. The investor buys the stock at time 0, and for some reason, they have to sell the
stock by a pre-specified date T. The problem for the investor is to sell the stock as high as
possible.

V1 = max
τ∈[0,T]

E[U(
Pτ

MT
)] Mt = max

s∈[0,t]
Ps (66)

When U(x) = xγ, the problem is equivalent to infτ∈[0,T] E[1 − Pτ
MT

], which means
that the investor wishes to minimize the expected relative error between the (discounted)
selling price and the (discounted) highest price on [0, T]. The above problem can be further
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simplified as supτ∈[0,T] E[ Pτ
Mτ

]. The solution to the problem is a sample bang–bang solution,
which is:

τ∗ =


T, if µ− r− σ2

2 > 0
any time between [0, T], if µ− r− σ2

2 = 0
0, if µ− r− σ2

2 < 0

(67)

du Toit and Peskir (2009) presented another description of the problem; recall that St
is the maximum process of Xt:

V2 = inf
0≤τ≤T

E
(

ST
Xτ

)
= inf

0≤τ≤T
E
(

eσ(Sλ
T−Bλ

τ )
)

(68)

Bλ
t = Bt + λt, λ = (µ− r− σ2

2
)/σ2, Sλ

t = max
s∈[0,t]

Bλ
s (69)

Defining Zt = Sλ
t − Bλ

t , the two-dimensional problem of (Sλ
t , Bλ

t ) is transformed into
a one-dimensional problem of Zt.

Define G(t, z) = E[eσ(z
∨

Sλ
T−t)]; H(t, z) = Gt − λGz + 1/2Gzz

J(t, z) = Et,z[G(T, ZT)]; K(t, z, r, y) = Et,z[H(t + r, Zt+r)1{Zt+r>y}]
Recalling Equation (68), the optimal stopping model becomes:

V(t, z) = inf
0≤τ≤T−t

E[(G(t + τ, Zt+τ)|Zt = z)] (70)

The optimal stopping time is given by:

τ∗ =


0, when µ− r ≤ 0
infτ∈[0,T](Sλ

τ − Bλ
τ ≥ b(τ)), when µ− r ∈

(
0, σ2)

T, when µ− r ≥ σ2
(71)

where b(t) is the unique solution of the following nonlinear Volterra integral equation.

J(t, b(t)) = G(t, b(t)) +
∫ T−t

0
K(t, b(t), s, b(t + s))ds (72)

V2 = V(0, 0) (73)

4.4.2. Case 2: Buy-Low

Liu et al. (2020) considered a more complex utility function to describe the asset
purchase by investors where the optimal stopping model is firstly simplified and then
solved by numerical method. The asset price follows the geometric Brownian motion:
dXt = µXtdt + σXtdBt; consider such a optimal stopping model:

V(t, x) := sup
t≤τ≤T

E
[
(K− Xτ)1{Sτ,T>K} | Xt = x

]
(74)

Sr,s := sup
r≤v≤s

Xv (75)

The objective function describes a scenario in which the investor aims to determine an
optimal time to buy in to enlarge the profits and to ensure the deal closed by hitting the
take-profit level before time T. Because the investor thinks that the profitable level K is



Int. J. Financial Stud. 2022, 10, 96 15 of 23

only possible before the time T, and after time T the price is unpredictable and riskier, so
the deal is closed before T. Equation (74) is simplified as follows:

V(t, x) = sup
t≤τ≤T

E
[
E
[
(K− Xτ)1{Sτ,T>K} | Xτ , Xt = x

]
| Xt = x

]
= sup

t≤τ≤T
E
[
(K− Xτ)E

[
1{Sτ,T>K} | Xτ

]
| Xt = x

]
= sup

t≤τ≤T
E[G(τ, Xτ) | Xt = x]

(76)

G(t, x) = (K− x)P
(

Sλ
T−t >

1
σ

log
(

K
x

))
(77)

where
λ :=

µ

σ
− σ

2
, Bλ

s := Bs + λs, Sλ
t := max

0≤s≤t
Bλ

s (78)

In the case of µ > 0, it is proved that the best strategy is to buy immediately, that
is τ∗ = t; in the case of µ < 0, due to the complexity of this case, an iterative numerical
algorithm is presented without an analytical solution, and examples are given.

4.5. Regime-Switching

In the real financial market, the asset price would not always stay in a fixed upward
or downward trend, but would appear alternately in the combined form of the bull market,
bear market, and consolidation period. therefore, the asset process cannot be well described
by a simple geometric Brownian motion. The regime-switching model introduces a Markov
chain that takes values in several states. The drift parameter and diffusion parameter of
the price process take different values in different states, which can better describe the real
financial market.

Assume that the price of the asset is Xt, a regime-switching model is described as
follows:

dXt = Xtµε(t)dt + Xtσε(t)dBt, X0 = x (79)

where ε(t) ∈ {1, 2, . . . , S} is a finite-state continuous-time Markov chain, ε(t) is generated
by A.

A =


a1,1 a1,2 · · · a1,S
a2,1 a2,2 · · · a2,S
...

...
. . .

...
aS,1 aS,2 · · · aS,S

 (80)

where ai,i = −∑S
k=0,k 6=i ai,k, i = 1, 2, . . . , S. The parameters ai,k, i 6= k which are positive,

define the probability of the jump process of ε(t) in a small interval of time. If at time t,
ε(t) = i, then with probability ai,j∆t, ε(t) will transit from state i to state j at t + ∆t, and the
probability of remaining in the state i is 1−∑S

k=1,k 6=i ai,k∆t = 1 + ai,i∆t.
Consider a two-dimensional case in which the market has two states, corresponding

to a bear market and a bull market.

µε(t) =

{
µ1, ε(t) = 1,
µ2, ε(t) = 2

σε(t) =

{
σ1, ε(t) = 1
σ2, ε(t) = 2

A =

(
−λ1 λ1
λ2 −λ2

)
(81)

Let τi denote the time to leave the state i, then:

P(τi > t) = e−λit, i = 1, 2 (82)
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4.5.1. An Optimal Solution

Consider an investor who holds a share of stock with the price Xt at time t. The
investor’s goal is to maximize the discounted expected payoff with the amount K to be
paid back when the investor sells the stock

V∗i (x) = sup
τ≥0

E
[
e−rτ(Xτ − K) | X0 = x, ε(0) = i

]
(83)

The problem is solved by Guo and Zhang (2005). To better describe the solution, here,
define B1 > B2 are two roots of the following equation:

x2 − (µ1 − λ1 + µ2 − λ2)x + (µ1 − λ1)(µ2 − λ2)− λ1λ2 = 0 (84)

1© In the case of r ≤ B1, τ∗ = ∞.
2© In the case of r > max(µ1, µ2) ≥ B1. Suppose that xi is the critical value at which

the price process stops immediately at the state i is the optimal decision, when x ≥ xi, it is
optimal to sell immediately, xi satisfies:

H j(x1, x2, F1(x1, φ(x1)), F2(x2, φ(x2))) = 0 (85)

when x1 < x2, then j = 1; when x1 > x2, then j = 2. Some other parameters are needed:

g1(β)g2(β) = λ1λ2 β1 > β2 > 0 > β3 > β4 are the roots to the equation (86)

where gi(β) = λi + r−
(

µi − (1/2)σ2
i

)
β− (1/2)σ2

i β2, (i = 1, 2) (87)

l1
i = g1(βi)/λ1 = λ2/g2(βi), l2

i = 1/l1
i for i = 1, 2, 3, 4. (88)

γ1
i (i = 1, 2) are the real roots to the equation:

µ2γ +
1
2

σ2
2 γ(γ− 1) = r + λ2 (89)

γ2
i (i = 1, 2) are the real roots to the equation:

µ1γ +
1
2

σ2
1 γ(γ− 1) = r + λ1 (90)

Based on the above notations, the functions used in Equation (85) are defined as
follows:

φ(x) = − λ2K
r + λ2

+
λ2x

r + λ2 − µ2
(91)

Fj
1(x, g(x)) =

(
1 1

γ1 γ2

)−1
[(

l j
1 l j

2
l j
1β1 l j

2β2

)(
1 1
β1 β2

)−1

×
(

x− K
x

)
−
(

g(x)
xg′(x)

)] (92)

Fj
2(x, g(x)) =

(
1 1

γ
j
1 γ

j
2

)−1(
x− K− g(x)

x− xg′(x)

)
. (93)

H j(x1, x2, Y1, Y2) =

 x
−γ

j
1

1 0

0 x−γ
j
2

1

Y1 −

 x
−γ

j
1

2 0

0 x−γ
j
2

2

Y2 (94)

3© As for max(µ1, µ2) > r > B1, the problem is not solved.
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The above analytical solution does not include the case where r is between the drift
terms of the two states. The unsolved case is common in the real world, so the solution is
not very practical.

4.5.2. A Suboptimal Solution

To solve the problem in a real world, we consider a suboptimal solution. Zhang
(2001) considered a suboptimal solution of the optimal stopping problem under the regime-
switching model. Here is a simple strategy where investors implement a stop loss level and
a profit level, such as selling the asset when it falls 10%(z1) or rise 20%(z2), let Xt = X0eZt ,
Zt ∈ [−z1, z2], Bt is a standard Brownian motion:

dZt = αε(t)dt + σε(t)dBt (95)

where αi = µi − σ2
i /2, i ∈ {1, 2, . . . , S}

Let:
τ = inf{t ≥ 0 : Zt /∈ (−z1, z2)} (96)

Given ε(t) = i and X0 = x, ρ (can be estimated) is the discount factor, let v(x, i) denote
the objective function:

v(i) = E
[
Φ(Zt)e−ρτ | ε(0) = i

]
(97)

The problem for the investor is to choose the best z1 and z2 to maximize the objective
function:

V = V(z1, z2) =
m

∑
i=1

piv(i) (98)

where pi is the probability that ε(0) = i. Take Φ(z) = ez − 1 as an example:

v(i) = E
[(

X(τ)− X0

X0

)
e−ρτ | ε(0) = i

]
= E

[
Φ(Zt)e−ρτ | ε(0) = i

]
(99)

In the case of two states, S = 2, let ηi for i = 1, 2, 3, 4 be the four real roots to make the
following function equal to 0:

ψ(η) =
σ2

1 σ2
2

4

{(
η2 +

2α1

σ2
1

η − 2(ρ + λ1)

σ2
1

) (
η2 +

2α2

σ2
2

η − 2(ρ + λ2)

σ2
2

)
− 4λ1λ2

σ2
1 σ2

2

}
(100)

Let κi =
1

λ1

(
−

σ2
1

2
η2

i − α1ηi + ρ + λ1

)
(101)

(c1, c2, c3, c4) can be solved from
1 1 1 1
κ1 κ2 κ3 κ4

eη1(z1+z2) eη2(z1+z2) eη3(z1+z2) eη4(z1+z2)

κ1eη1(z1+z2) κ2eη2(z1+z2) κ3eη3(z1+z2) κ4eη4(z1+z2)




c1
c2
c3
c4

 =


Φ(−z1)
Φ(−z1)
Φ(z2)
Φ(z2)

 (102)

The investor chooses (z1, z2) to maximize (This process is achieved by numerical
methods)

V = p1v(1) + p2v(2) =
4

∑
i=1

ci(p1 + κi p2)eηiz1 (103)

4.5.3. Parameter Estimation

As we mention in the introduction, we focus on the application in financial market
because the financial market data are sufficient to estimate the model parameters. Here, we
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give an example, which is given by Zhang (2001). Let Xi, i = 0, 1, . . . , n be the closing price
of the stock.

ζi = log Xi − log Xi−1, i = 1, 2, . . . , n (104)

Let ti = i/N0, N0 = 252 is the number of trading days in a year.

ζi = α(ti − ti−1) + σ
(

Bti − Bti−1

)
∼ N

(
α

N0
,

σ2

N0

)
(105)

σ =
√

N0 ·
√

1
n− 1

n

∑
i=1

(
ζi − ζ̄

)2 (106)

The range of asset price in a year is divided into several parts. Each part of assets has
a clear upward (state 1) or downward (state 2) trend. Use Xup

i and Xdown
i to represent the

asset price in the upward and downward parts, respectively, nup and ndown to represent
the days of the total upward and downward parts, respectively, kup and kdown represent
the number of rising and falling regimes, respectively, Nup and Ndown represent total
magnitudes of increase and decrease in the two regimes, respectively. The estimate of σ1 is
obtained by replacing the Xi in ζi with Xup

i ; σ2 is estimated similarly. The estimates of αi
and λi are as follows:

α1 = N0

 log
(

Xup
0 + Nup

)
− log Xup

0

nup

,

α2 = N0

(
log
(
Xdown

0 − Ndown )− log Xdown
0

ndown

)
.

(107)

1
λ1

=
nup

N0

1
kup ;

1
λ2

=
ndown

N0

1
kdown (108)

4.6. Numerical Solutions

The above focuses on the analytical solutions of optimal stopping, as the numerical
solutions are less elegant or general than closed form solutions; as such, economists try to
avoid numerical methods. However, due to the complexities in the real-world, analytically
insoluble models are common in finance, deriving economic insights from a realistic
numerical model of an economic system is preferable to deriving irrelevant answers from an
unrealistic but solvable model. Relevant papers on numerical solutions are provided here.

Optimal stopping problems are often transformed into variational inequalities. Con-
sider the continuous d-dimensional state process X:

dX = µ(X)dt + σ(X)dB (109)

where µ is a d× 1 drift vector, σ is a d× d diffusion matrix and B is the d-dimensional vector
of independent Wiener processes. Balikcioglu et al. (2011) consider the optimal stopping
problem:

V(X) = max
τ≥0

E
[∫ τ

0
e−rt f (Xt)dt + e−rτU(Xτ) | X0 = X

]
(110)

which can be transformed to:

0 = min[rV(X)−LV(X)− f (X), V(X)−U(X)] (111)
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where L is the infinitesimal generator of X:

L =
d

∑
i=1

µi(X)
∂

∂Xi
+

1
2

d

∑
i=1

d

∑
j=1

Σij(X)
∂2

∂Xi∂Xj
; Σij(X) = ∑

k
σik(X)σik(X) (112)

Balikcioglu et al. (2011) provided a numerical method for soving the variational
inequality. The value function V is approximated by piecewise linear functions φ(X)c,
where φ is a set of n basis functions and c is an n-vector of coefficients.

Sims et al. (2018) considered the resource population with demographic and environ-
mental stochasticities, an analytic solution is not possible for the optimal timber rotation
problem as the underlying process is complicated. The numerical method used in Balik-
cioglu et al. (2011) is applied for direct implications.

5. Strategy Performance

The previous part summarizes the construction process of the optimal stopping strat-
egy from the theoretical aspect. Practically, a strand of literature applies the optimal
stopping method to the financial markets and evaluate how the optimal stopping strategies
perform.

Boubaker et al. (2021) incorporate the maximum drawdown into the objective function,
and investors weigh the trade-off between tolerating the current drawdown in the hope of
a new high price level and selling immediately:

g(Xt, St) = φ1
√

St − φ2(St − Xt) (113)

The optimal strategy is given by a boundary X of the drawdown, it is optimal to sell
immediately when the current drawdown is greater than X. The strategy can provide an
efficient stop-loss signal in several specific periods, such as the 2008 financial crisis and the
European debt crisis. In some emerging markets, for example the Chinese stock market, by
following the optimal stopping strategy, investors are able to stop their losses when the
stock market crashed in the financial crisis. Compared with the maximum drawdown of
71.8%, investors who employ the optimal stopping models only lost 8.7% at the stop-loss
point. In the Indian market, the optimal stopping strategy limited the losses under 9.68%
and 4.67% during the financial crisis and European debt crisis, respectively. In the Brazilian
stock market, investors can use the optimal stopping strategy to stop their losses before the
crash of the financial crisis. The drawdown of the stock at the selling time suggested by the
strategy was only 3.7% compared with the 60% maximum drawdown. In the Russian stock
market, this strategy limited losses to 11.59% during the financial crisis, with the maximum
drawdown during that period being 77.91%.

The optimal prediction method is adopted in Boubaker et al. (2021) to carry out risk
management of crude oil futures, and the two periods of sharp rise and fall of crude oil
market from January 2007 to December 2008 and from February 2009 to October 2011 are
selected. Although the selling time suggested by the optimal prediction method lags behind
the peak of the price, it can effectively reduce losses. For example, during the financial
crisis, the crude oil futures are sold when the drawdown is 28%, followed by a maximum
drawdown of 77%.

In Shiryaev et al. (2014), the optimal stopping method which is similar to Case 2 of
the disorder problem in Section 4, is applied in two situations: the Apple price bubble,
which began on 6 March 2009 at a local low of $82.33, and the Internet technology bubble,
which began around 2000 and was measured by the NASDAQ (NDX100), on which futures
contracts were sold. The model attempts to predict an exit point near the price peak (or
valley, for a short position) and performs well in both situations. In the first situation, the
model works equally well for both early and late entering dates, giving nearly 90% of the
maximum price on the exiting date. In the second situation, the exit yielded about 75% of
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the maximum price, with investor gains of about 40% to 60% a year (about 25% to 45% a
year), depending on the long-position(short-position) entry point suggested by the model.

In Liu and Zhan (2022), a filter rule strategy is considered. They assume that the
investor’s utility function is influenced by both the positive utility of returns and the
aversion to drawdown, myopic loss aversion is persistent and can lead to the most profitable
opportunities. With the application of the filter rule, the drawdown of investors in the
S&P 500 during the 2008 financial crisis can be reduced to −21.2% and the drawdown of
investors in the Chinese stock market in 2015 can be reduced to −24.8%.

6. Conclusions

This paper introduces the analysis framework about the optimal stopping model as
well as the investment decision-making strategy based on the optimal stopping model. It
can be seen that research on the optimal stopping model mainly focuses on three aspects:
the first is the selection of the underlying process, from the simple geometric Brownian
motion to the regime-switching model, etc. Second, according to a specific problem, choose
the appropriate objective function to optimize, which calls for consideration about all
factors affecting the objective function, such as the historical maximum, time limit, and
others. The specific form of the function and the dimension of the optimal stopping model
needs to be seriously considered. Finally, it is about the study of the solution of the optimal
stopping model. It is more challenging to obtain the analytical solution given a relatively
complex utility function. Relevant literature studies the existence, uniqueness, and general
solution of the optimal stopping models.

It can also be found from the previous summary that under the five stop-investing
strategies, the strategy of simply buy-low and sell-high is not very practical, but it can
be used to explain the view of value investing, that is, to buy good stocks and hold on
to them. It is easy to obtain valuable analytical solutions for sequential analysis and
disorder problems where the Bayesian approach is used to update beliefs according to
new information. As the regime-switching model is very complex, the existing analytical
solution of this type of optimal stopping model can not provide a practical strategy, and a
practical suboptimal solution is given in the reference. The optimal prediction problem can
obtain valuable analytical solutions, but it is not suitable for long-term investment because
the stochastic process that the problem is based on is relatively simple. As for the form of a
solution, an optimal stopping strategy provides a boundary beyond which an asset needs
to be bought/sold immediately.

However, several relevant research problems remain unexplored by the current litera-
ture. One potential problem with the existing optimal stopping strategies is that they cannot
be used for multi-asset decision-making. The high-dimensional optimal stopping models
are too complex to be well solved. Generally speaking, the most commonly used method
for high-dimensional problems is to reduce dimension through the change of measure,
space, and time. In the case of multi-asset, the dimension can not be reduced. There are
few studies on multi-asset decision-making in the existing literature, so this problem needs
further consideration.

Another natural extension could be the choice of the objective function in investment
decision-making. Objective function needs to be combined with practical problems. Various
new options using the optimal stopping method to price will provide ideas for selecting
the appropriate objective function of the optimal stopping model. New options include
risks such as maximum retracement into the hedging scope, while investors should not
only maximize returns but also reduce drawdown risk when making decisions. It is
possible to find an appropriate objective function by transforming the pricing of options
into investment problems.

Research in behavioral finance tries to improve the psychological realism of the tra-
ditional model through more realistic assumptions about individual beliefs, such as the
extrapolation framework and the overconfidence framework, and individual preferences,
such as the gain–loss utility framework inspired by prospect theory. For optimal stopping
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models, individual beliefs are reflected by the underlying processes and individual pref-
erences are reflected by the utility functions. Irrational considerations may improve the
performance of the optimal stopping strategy and produce some new implications.

Finally, as a kind of less concerned investment strategy, the investment strategy based
on the optimal stopping method provides a new idea for investors to decide their optimal
investment time. It has a solid theoretical foundation and provides investors with a
reference standard. With the substantial development in the optimization of numerical
algorithms and the optimal stopping theory, researchers and practitioners can combine
different objective functions with different stochastic processes. Thus, they can put forward
new investment strategies based on the proposed optimal stopping methods.
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