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Abstract: Numerous heavy-tailed distributions are used for modeling financial data and in problems
related to the modeling of economics processes. These distributions have higher peaks and
heavier tails than normal distributions. Moreover, in some situations, we cannot observe complete
information about the data. Employing the efficient estimation method and then choosing the best
model in this situation are very important. Thus, the purpose of this article is to propose a new interval
for comparing the two heavy-tailed candidate models and examine its suitability in the financial data
under complete and censored samples. This interval is equivalent to encapsulating the results of
many hypotheses tests. A maximum likelihood estimator (MLE) is used for evaluating the parameters
of the proposed heavy-tailed distribution. A real dataset representing the top 30 companies of the
Tehran Stock Exchange indices is used to illustrate the derived results.
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1. Introduction

During recent years, heavy-tailed distributions have been considered in the form of an attractive
title for various research and studies. For some works on these distributions, we refer to, among
others, [1–4]. These distributions have good statistical and reliability properties. Due to its practicality,
the heavy-tailed distributions can be used for many applied sciences including economics, finance,
econometrics, statistics, risk management and insurance. The inferential results under financial
modeling have been developed by several authors; see, for example, [5–8]. There are different
heavy-tailed distributions. The question then arises which of them is the best for modeling the
proposed financial data. Thus, in this paper, we want to choose the best distribution using the
new model selection test. There are different model selection tests for discriminating between two
complete models. In almost all of the tests and criteria for model selection, the maximum likelihood
estimator and maximized likelihood function have an essential role. For example, Kundu et al. [9]
compared the log-normal and generalized exponential distribution using maximized likelihood
method, Dey and Kundu [10] considered the problem of discriminating among the log-normal,
Weibull and generalized exponential distributions, Cox [11] modified the classical hypothesis testing
to compare the non-nested hypothesis and Vuong [12] tested the two models using the log-likelihood
ratio of the models. The results in Vuong [12] have been extended and applied in a number of ways,
including [13–18]. Moreover, in experimental study, it is quite common that complete data are not
observed. Data obtained from such experiments are called censored data. Based on the studies of the
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real data such as financial data, it is observed that some of the first data may not always be available.
This incomplete data is called left censored data. Some of the work on left censoring was conducted
by [19–22]. Based on the censored data, two heavy-tailed distributions may provide very similar data
fit to a given data set. In other words, the distance between the two fitted distributions can be very
small, and it may be very difficult to discriminate between them. Therefore, the main aim of this
paper is to propose a new model selection test for comparing the heavy-tailed distribution under
censored data. Although several articles have been done on the heavy-tailed distribution, we have
not come across any articles under the model selection test for the heavy-tailed distributions under
censored samples (HTDC). Thus, the main objective of this paper is the determination the best model
for the financial data. In Section 2, we first provide the main definitions and assumptions. Section 3
provides an interval as a new model selection test (NMST) under censored sample. The heavy tail
properties and the method for determining the heavy-tailed distribution are presented in Section 4.
The application of the NMST of the Tehran Stock Exchange is presented in Section 5, which provides
a comparison of different heavy-tailed rival models as well as different censoring schemes, and we
finally conclude the paper in Section 6.

2. Main Definitions and Assumptions

In this section, we present the definitions and assumptions that are necessary for the proposed
model selection test. Consider a sample of random variables X1, ..., Xn having probability density
function h(.). Let us consider two rival models:

Fα = { f α(.), α ∈ M ⊂ Rp} = ( f ) and Gβ =
{

gβ(.), β ∈ B ⊂ Rq
}

= (g).

Definition 1. (i) ( f ) and (g) are non overlapping if ( f ) ∩ (g) = φ; (ii) ( f ) is nested in (g) if ( f ) ⊂ (g);
(iii) ( f ) is well-specified if there is a value α0 ∈ M such that f α0 (.) = h; otherwise, it is misspecified.

Definition 2. Given two probability distributions, ν̃ << µ̃, the relative entropy of ν with respect to µ, or the
Kullback-Leibler divergence (KL) of ν̃ from µ̃, is

KL(ν̃, µ̃) = D(µ̃‖ν̃) = −Eµ

(
ln

dν̃

dµ̃

)
.

If ν̃ is not absolutely continuous with respect to µ̃, then KL(ν̃, µ̃) = D(µ̃‖ν̃) = ∞.
The minimum assumptions for non-degenerate interval M are:

<1 : The parameter space M is an open interval in R.
<2 : (∂/∂α) f (x, α) is a strictly monotone function on M for each x.
<3 : For all α ∈ M, the partial derivative (∂/∂α) f (x, α), is integrable on R, and the partial

derivative, (∂/∂α)F(x, α), exists for x ∈ χ, and satisfies

(∂/∂α)F(x, α) =
w x

−∞
(∂/∂α) f (u, α) du.

<4 : For every α, we have,∣∣∣∣ ∂

∂α
f α(x)

∣∣∣∣ ≤ Υ1,
∣∣∣∣ ∂2

∂α2 f α(x)

∣∣∣∣ ≤ Υ2 and
∣∣∣∣ ∂3

∂α3 f α(x)

∣∣∣∣ ≤ Υ3; where,
w

Υidµ(x) < ∞; i = 1, 2, 3

and µ is taken to be a Lebesgue measure.
<5 : For every α, [Fα(x)]−1 is bounded by ℵ(x) respectively, where E(ℵ(X)) ≤ ι; and ι is

a positive constant.

<6 : For every α, we have, ℘ =
∫ (

∂
∂α ln f (x, α)

)2
f (x, α)dµ(x) < ∞.
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3. New Model Selection Test (NMST) For HTDC

Let Xc:n, ..., Xn:n denote the truncated order statistics observed from an experimental test involving
n units taken from an f α(x) distribution. To simplify the notation, we will use Xi in place of Xi:n.
Then, the likelihood function of (Xc, ..., Xn) can be obtained as

l(α) ∝
n

∏
i=c

f α(xi) [Fα(xc)]
c−1, (1)

where f α(x) and Fα(x) are the probability density function and cumulative distribution function of
heavy-tailed distribution respectively. We are interested in testing the following hypotheses set to
discriminate between H0 and Hf or Hg, the NMST for left censored data.

H0 : The two proposed heavy-tailed models (Fα and Gβ) are equivalent, and against, H f : Fα is
better than Gβ in the sense of the closeness to the true model, or Hg: Fα is worse than Gβ.

Theorem 1. (NMST for HTDC): Using the conditions <1–<6 and the asymptotic distribution of the MLE
(see Appendix A), the new interval as a model selection test for HTDC is given by[

ηc( f α̂n , gβ̂n )− n−1/2zα/2ω̂c, ηc( f α̂n , gβ̂n ) + n−1/2zα/2ω̂c

]
, (2)

where ηc( f α̂n , gβ̂n ) = − 1
n

[
L f /g

n (α̂n, β̂n)− (p− q)
]

= − 1
n

[
L f

n(α̂n)− Lg
n(β̂n)− (p− q)

]
. Now, using the

Equation (1), we have

ηc( f α̂n , gβ̂n ) = − 1
n

[(
n

∑
i=c

ln
f α̂n (xi)

gβ̂n (xi)
+ (c− 1)ln

Fα̂n (xc)

Gβ̂n (xc)

)
− (p− q)

]
,

where p and q are the number of parameters in the heavy-tailed models and α̂n and β̂n are the quasi maximum
likelihood estimators under censored sample. In addition, Zα is αth quantile of standard normal distribution and
ω̂2

c satisfies

ω̂2
c = 1

n

n
∑

i=1

(
ln f α̂n (wi)

gβ̂n (wi)

)2
−
(

1
n

n
∑

i=1

(
ln f α̂n (wi)

gβ̂n (wi)

))2
+ ( c−1

n )

[
1

c−1

c−1
∑

i=1

(
ln f α̂n (zi)

gβ̂n (zi)

)2
−
(

1
c−1

c−1
∑

i=1
ln f α̂n (zi)

gβ̂n (zi)

)2
]

. (3)

Proof. Based on Theorem B in Appendix B, it is observed that the difference of the log-likelihood
functions of the two truncated rival models (data are left censored) converges in distribution to the
normal distribution. Thus, it is sufficient to find the empirical form of the ω2

∗c as ω̂2
c .

Using the missing information principle [23], the observed information can be written as

n

∑
i=c

ln f α(xi) =
n

∑
i=1

ln f α(wi)−
c−1

∑
i=1

ln f α(zi|X ), (4)

where w = (w1, ..., wn) = the complete data, z = (z1, ..., zc−1) is the complete data of size from the
right population with density functions:

h∗1 =
f α(z)

Fα(xc)
; z < xc.

For simplicity, we use f α(zi) instead of f α(zi|X ) in what follows. Thus, the Var
(

1
n L f /g

n (α̂n, β̂n)
)

can be expressed as
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Var
[

1
n L f /g

n
(
α̂n, β̂n

)]
= Var

[
1
n

(
n
∑

i=c
ln f α̂n (Xi)

gβ̂n (Xi)
+ (c− 1)ln Fα̂n (Xc)

Gβ̂n (Xc)

)]
= Var

[
1
n

(
n
∑

i=1
ln f α̂n (Wi)

gβ̂n (Wi)
−

c−1
∑

i=1
ln f α̂n (Zi)

gβ̂n (Zi)
+ (c− 1)ln Fα̂n (xc)

Gβ̂n (xc)

)]
.

If c−1
n → p as n→ ∞ such that Xc = ζn → ζ in probability and α̂n

P→ α∗, then

ω2
∗c = Var

(
ln

f α∗(W)

gβ∗(W)

)
+ pVar

(
ln

f α∗(Z)

gβ∗(Z)

)
, (5)

where the empirical form of (5) satisfies

ω̂2
c = 1

n

n
∑

i=1

(
ln f α̂n (wi)

gβ̂n (wi)

)2
−
(

1
n

n
∑

i=1

(
ln f α̂n (wi)

gβ̂n (wi)

))2
+ ( c−1

n )

[
1

c−1

c−1
∑

i=1

(
ln f α̂n (zi)

gβ̂n (zi)

)2
−
(

1
c−1

c−1
∑

i=1
ln f α̂n (zi)

gβ̂n (zi)

)2
]

.

The proposed interval has the property of

Ph

[
An < ∆c( f α̂n , gβ̂n ) < Bn

]
→ 1− α ,

where ∆c( f α̂n , gβ̂n ) is the difference of the expected Kullback-Leibler divergence (KL) of f α̂n and gβ̂n

under censored data and

An = ηc( f α̂n , gβ̂n )− n−1/2zα/2ω̂c; Bn = ηc( f α̂n , gβ̂n ) + n−1/2zα/2ω̂c,

where Ph represents the probability with density h.

Decision Rule

An important problem in statistics concerning a sample of n observations is to test whether
these observations come from a specified distribution. The Vuong test is one of the important tests
for model selection. However, if the rival models are very close (not equivalent) to the true model,
then this test can suffer from distortions. Therefore, this section suggests a simple model selection
procedure based on the likelihood ratio statistic under censored data that is easy to compute and has
an asymptotic standard normal distribution. The proposed interval is easy to compute and interpret as
the following steps:

Step 1: Choose the rival models and calculate the quasi maximum likelihood estimates for the
unknown parameters.

Step 2: Compute the likelihood ratio statistic under censored data (l = ηc( f α̂n , gβ̂n )).
Step 3: Obtain ω̂c and then construct the proposed interval= =

[
l− n−1/2zα/2ω̂c, l + n−1/2zα/2ω̂c

]
using the αth quantile of standard normal distribution (Zα).

Step 4: Interpret the proposed test (=) as

(i) If the calculated interval = includes zero, it can be concluded that both proposed models
(Fα and Gβ) are equivalent.

(ii) If both bounds of = are negative, which indicates that Fα is better than Gβ to estimate the
true model.

(iii) Finally, if both bounds of = are negative, then we conclude that Gβ is better than Fα to
estimate the true model.

Our approach enlightens the variability of any criterion based on log-likelihood function.
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4. Heavy Tail Properties

Heavy-tailed distributions are the important distributions in economics and finance. In this
section, we check the heavy tail properties for different distributions.

Definition 3. The distribution F(.) from the random variable X is considered to be heavy tail if and only if∫
R

e−λxF(x)dx = ∞; f or all λ > 0.

Definition 4. A continuous distribution function is considered to be heavy tail if the generating moment
function is infinite.

Thus, we can check the heaviness using different criteria such as:

i. Based on definition 4, if only some or if none of the moments of distributions exist, then it has the
heavy tail.

ii. If limsupx→∞
}(x)

x = 0, then the distribution has the heavy tail. Here, }(x) is the hazard function.
iii. If } ∗ (t) is the decreasing function for increasing value of t, then the distribution has the heavy

tail, where } ∗ (t) = d
dt}(t).

iv. If the distribution is heavy tail, then = = Var(X)

E(X)2 ≥ 1. Note that the converse does not hold.

v. The distribution has the heavy tail, if

1− F(x) ≤ ae−bx; x ≥ 0, a > 0, b > 0.

Here, we say that F(x) has a light tail.

4.1. Heavy-Tailed Distributions

In this subsection, we consider different heavy-tailed distributions and then check the heaviness
property using the different criteria.

4.1.1. Generalized Extreme Value Distribution (GEVD)

The cumulative distribution function (CDF) of GEVD is given by

F(x) =

e−(1−k x−ξ
α )

1/k

; k 6= 0

e−e−
x−ξ

α ; k = 0
. (6)

Variable X is bounded by (ξ + α)/k from above, if k > 0 and from below if k < 0, where ξ ∈ R and
α > 0. We have three cases of this distribution as

• Weibull distribution (k > 0),
• Ferechet distribution (k < 0),
• Gumbel distribution (k = 0).

We now want to check the heavy tail property. Using the ii and iii criteria, it is observed that the
Ferechet-Weibull distribution and the Weibull distribution with 0 < β < 1 have a heavy tail. However,
based on the v criterion, the Gumbel distribution does not have the heavy tail property.

4.1.2. Pareto Distribution

The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to model the
distribution of incomes. This distributional model is important in applications because many datasets



Int. J. Financial Stud. 2016, 4, 24 6 of 14

are observed to follow a power law probability tail, at least approximately, for large values of x. Stable
distributions with index α are also asymptotically Pareto in their probability tails, and this fact has
been frequently used to develop estimators for those distributions. The CDF of Pareto is given by

F(x) = 1−
(

α

x + α

)k
; x > 0. (7)

The hazard function of the Pareto distribution, k
x+α , is a decreasing function for positive values of

k and α. Thus, using the ii and iii criteria, it has a heavy tail.

4.1.3. Log-Normal Distribution

A log-normal distribution is applied as the standard model for financial data. It is used in
many different fields of study, such as economics, metrology, biology, neuroscience and engineering.
The density function of a log-normal distribution, with shape parameter σ > 0 and scale parameter
µ > 0 is

f (x) =
1√

2πxσ
e−

1
2 (

lnx−lnµ
σ )

2

; x > 0. (8)

The tail heaviness property of the log-normal distribution depends on the variance. In other
words, based on the iv criterion, we can write,

v =
Var(X)

E(X)2 = eσ2 − 1. (9)

The v is longer than 1, if σ > 0.8226 or σ < 0.8226.

4.1.4. Burr Type XII Distribution

Burr [24] introduced twelve cumulative distribution functions with the primary purpose of
fitting distributions to real data. One of the most important of them is the Burr Type XII distribution.
The cumulative distribution function of the Burr Type XII is given by

F(x) = 1− (1 + xβ)
−α

; x > 0. (10)

Here, α > 0 and β > 0 are the two shape parameters. The shape of the hazard rate function
of the Burr Type XII distribution depends only on parameter β. Its capacity to assume various
shapes often permits a good fit when used to describe biological, financial, engineering or other
experimental data. It also approximates the distributional form of normal, log-normal, gamma, logistic,
and several Pearson-type distributions. For instance, the normal density function may be approximated
as a Burr Type XII distribution with β = 4.8544 and α = 6.2266 and the gamma distribution with
shape parameter 16 can be approximated as a Burr Type XII distribution with β = 3 and α = 6, and the
log-logistic distribution is a special case of the Burr Type XII distribution. In addition, using the i, ii
and iii criteria, it is observed that the Burr Type XII has a heavy tail.

4.1.5. Dugum and Singh-Maddala Distribution

The Dugum and Singh-Maddala distributions are the special case of the generalized Beta kind 2
(GB2) distribution. The CDFs of these distributions are given by, respectively:

F(x) =

(
1 + (

β

x
)

α)−γ

; x > 0, (11)

and

F(x) = 1−
(

1 + (
x
β

)
α
)−γ

; x > 0, (12)
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Here, all three of the parameters are positive. In addition, the rth moment of these distributions
can be written as

E(Xr) =
βr

(γ− 1)!
Γ(

r
α

+ 1)Γ(1− r
α

)

and
E(Xr) = βrγB(

r
α

+ γ, 1− r
α

),

where Γ(.) and B(., .) denote the Gamma distribution and the Beta distribution, respectively. Using the
i criterion, it is observed that the moments of these distributions only exist for values of −γα < r < α.
It indicates that these distributions have potentially tail heaviness properties.

5. Application of the NMST of Tehran Stock Exchange

In this section, the data set of daily returns of the top 30 companies from the Tehran Stock
Exchange indices was used to study the performance of the proposed model selection test. All the
programs are written in R. The mean, standard deviation, skewness and kurtosis of this data are
2.937687, 0.261701, 0.273005 and 1.790659, respectively. It is observed that the skewness and kurtosis
are not close to zero and three, respectively. Thus, the data set has a higher peak, fatter tail and
skewness in comparison to the Normal distribution. For more study, we demonstrate how it deviates
from the Normal distribution using the Shapiro-Wilk (S-W) test, Kolmogrov-Smirnov (K-S) test,
Anderson-Darling (A-D) test and Jarque-Bera (J-B) test. For each test, the null hypothesis is that
the data are normally distributed. If the p-value is less than the significant level (0.05) of the given
hypothesis, the null hypothesis will be rejected. For computing the mentioned test, we use the nortest
and tseries in the R package. The results are provided in Table 1. Based on Table 1, we observe that the
data do not follow the Normal distribution. Thus, we use the heavy-tailed distribution for modeling the
data. First, we check the adequacy of the Weibull (We) distribution, Pareto (Pa) distribution, Burr Type
XII (BXII) distribution, log-normal (LN) distribution, Dagum (Da) distribution and Singh-Maddala
(S-M) distribution using three different well-established model selection criteria such as K-S minimum

distance criterion, Akaike information criterion (AIC = −2
n
∑

i=1
log f α̂n (xi) + 2p), Bayesian information

criterion (BIC = −2
n
∑

i=1
log f α̂n (xi) + plogn) and maximum log-likelihood criterion (LL). We select the

best model among all competitive distributions that has the smallest AIC, BIC and K-S distance and the
greatest LL values. We first estimate the unknown parameters using MLEs. The results are presented in
Table 2. It is clear that the Da and LN distributions have comparatively better fitting for the present data
set. The We and S-M distributions also have a good fit. We provide the Probability-Probability (P-P)
plots for different distributions in Figures 1–6. Moreover, the empirical survival function and the fitted
survival functions are presented in Figure 7. Therefore, based on Figures 1–7, it is observed that the
BXII and Pa distributions do not fit the data reasonably well, and hence, they cannot be used to obtain
inferential results from the considered data set. Using different model selection criteria, we can compare
the proposed distributions. However, these criteria have some disadvantages. For example, the LL
criterion assumes that the number of parameters in each competitive model is the same. In addition,
one problem with AIC and BIC are that their values have no intrinsic meaning; in particular, AIC and
BIC are not invariant to a one-to-one transformation of the random variables and values of AIC
and BIC depend on the number of observations. Thus, we consider the NMST for comparing the
heavy-tailed distributions.
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Table 1. Different Normality tests for the proposed data.

S-W K-S A-D J-B

Value of test 0.4659 0.2957 6.0576 953.5819
p-value 9.605 × 10−11 2.493 × 10−9 3.471 × 10−15 <2.2 × 10−16

S-W: Shapiro-Wilk test; K-S: Kolmogrov-Smirnov test; A-D: Anderson-Darling test; J-B: Jarque-Bera test.

Table 2. Estimated parameters, AIC values, BIC values and log-likelihood values for different
distribution functions.

Models Parameters MLE AIC BIC LL

We
α 12.07339

64.83431 71.86922 −30.41716
β 3.059887

Pa
α 5037634

1038.656 1045.691 −517.3281k 1715197

BXII
α 0.071667

1072.124 1079.159 −534.0619
β 12.98343

LN
mean 1.073703

36.6373 43.67221 −16.31865s.d. 0.088294

Da
α 13.39737

36.8876 47.43996 −17.4438β 2.142820
γ 37.14274

S-M
α 12.22984

66.50122 77.05358 −30.25061β 4.134818
γ 40.52715

MLE: maximum likelihood estimator; AIC: Akaike information criterion; BIC: Bayesian information criterion;
LL: maximum log-likelihood criterion.

Now, we check the results using the proposed interval for model selection. We consider four cases
of rival models as:

(1) Da (f ) and LN (g),
(2) Da (f ) and We (g),
(3) We (f ) and S-M (g),
(4) Da (f ) and S-M (g).

Based on the estimated values, we construct the proposed interval. This interval for the above four
cases are (1.9878339, 2.0104310), (−2.748678, −2.614607), (−4.2395868, −4.1287672) and (−172.43378,
−161.83113), respectively. For Case 1, it is observed that both limits of the tracking interval are positive,
which indicates that the LN is better than the Da distribution to estimate the true model for this data.
However, the length of this interval is small, so we can conclude that the two models are similar to
estimate the true model (as expected). For Cases 2–4, both limits of the tracking interval are negative,
so the model (f ) is better than the model (g). It is observed that this interval selects the correct model
well. In addition, computational steps of this interval are simple. Now, we suppose that some of the
data are missed (censored). We generate artificially left censored data from the data set as

• Scheme 1: n = 249, c = 5 (The first 5 pieces of data are not observed).
• Scheme 2: n = 249, c = 20 (The first 20 pieces of data are not observed).
• Scheme 3: n = 249, c = 80 (The first 60 pieces of data are not observed).

Here, n is the complete sample size and c is the number of the left censored data. Based on Case 1,
the proposed intervals for Schemes 1–3 are (1.952583, 2.036342), (1.974464, 2.060377) and (2.141464,
2.212098), respectively. Similarly, for Case 2, the intervals are (−2.757090, −2.620894), (−2.768494,
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−2.623881) and (−2.680060,−2.497014), respectively. For Case 3, the results are (−4.246638,−4.134079),
(−4.264661,−4.145781) and (−4.304638,−4.144865), respectively, and for Case 4, the proposed intervals
are (−171.1225, −160.5491), (−167.1976, −156.6924) and (−148.70633, −139.26066), respectively. It is
observed that the results are similar to the complete data.
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6. Conclusions

The heavy-tailed distributions are the most important distributions in several applied sciences
such as economics, financial engineering and mathematical finance. Moreover, in many situations,
we cannot observe the complete information about the data. In this situation, the problem of choosing
the correct distribution becomes more difficult. There are different criteria such as AIC, BIC, LL and
K-S distance for comparing the models. These criteria have some disadvantages. Thus in this paper,
we have proposed a new model selection test for comparing the heavy-tailed distributions under
complete and censored data. This interval enlightens the unavoidable variability of any criterion based
on log-likelihood ratio such as AIC, BIC and their variants. Based on this test, we can make the best
possible decision based on whatever data are available at hand. The computational steps of NMST are
easy to compute and could be very useful for censored data. We hope that the new model selection
test will attract wider application in all areas of research.
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Appendix A

Theorem A. (Asymptotic distribution of the Maximum Likelihood Estimator): Assume that f α(x) is
a well-specified model satisfying the conditions<1–<6 and (α̂n = max

α∈M
L f

n(α)). Then, as n→ ∞ , the asymptotic

distribution of the MLE,
√

n(α̂n − α0), is, N(0, J−1
f ), where, J f ≡ ℘ + pξ.

Proof. Suppose that Xc, ..., Xn are distributed as the order statistic of a random sample of size n-c + 1
from a truncated distribution at xc by probability density function (pdf) h*. Now, let c

n → p as n→ ∞ ,
such that Xc(= ζn) converges in probability to ζ, the pth percentile of true distribution. Now, based on

the Taylor expansion of n−1 ∂L f
n(α)
∂α around α = α0 as ([25]):

n−1 ∂L f
n(α)
∂α = n−1 ∂L f

n(α)
∂α |α=α0 + n−1(α− α0) ∂2L f

n(α)
∂α ∂α′ |α=α0 + op(1)

= A1 + A2(α− α0) + op(1),
(A1)

where, using the observed information (4), we can write

A1 =
1
n

{
(

n

∑
i=1

∂

∂α0
ln f α(wi))−

c−1

∑
i=1

∂

∂α0
ln f α(zi) − (c− 1)

∂

∂α0
ln(Fα(xc))

}
≡ 1

n
(A∗1 − A∗∗1 ).

Here, ∂
∂α0

ln f α(x) means that ∂
∂α ln f α(x)|α=α0 . Thus, from Cramér [26], 1

n A∗1 = 1
n

n
∑

i=1

∂
∂α0

ln f α(wi)
P→ 0,

we will prove that
1
n

A∗∗1 =
1
n

c−1

∑
i=1

∂

∂α0
ln f α(zi)− (c− 1)

∂

∂α0
ln(Fα(xc))

P→ 0.

We can rewrite A∗∗1 as

A∗∗1 =
c−1
∑

i=1

∂
∂α0

ln f α(zi)−
c−1
∑

i=1
E
(

∂
∂α0

ln f α(Zi)
)

+
c−1
∑

i=1
E
(

∂
∂α0

ln f α(Zi)
)
− (c− 1) ∂

∂α0
ln(Fα(xc)).

From <3, we have

E
(

∂

∂α0
ln f α(Z)

)
=

xc∫
−∞

∂

∂α0
ln f α(z)

f α(z)

Fα(xc)
dµ(z) =

∂
∂α0

Fα(xc)

Fα(xc)
=

∂

∂α0
ln(Fα(xc)). (A2)

Thus, A∗∗1
n

P→ 0. Now, by using Slutsky’s theorem, the result follows (A1
P→ 0). Similarly,

we consider, A2 = 1
n (A∗2 − A∗∗2 ), where

A∗2 =
n

∑
i=1

∂2

∂α0∂α′0
ln f α(wi)

and

A∗∗2 =
c−1

∑
i=1

∂2

∂α0∂α′0
ln f α(zi)− (c− 1)

∂2

∂α0∂α′0
ln(Fα(xc)),

We know that A∗2
n

P→ −℘ and

A∗∗2
n = c−1

n

{
1

c−1

(
c−1
∑

i=1

∂2

∂α0∂α′0
ln f α(zi)−

c−1
∑

i=1
E
(

∂2

∂α0∂α′0
ln f α(Zi)

))}
− 1

n

{
(c− 1) ∂2

∂α0∂α′0
ln(Fα(xc))−

c−1
∑

i=1
E
(

∂2

∂α0∂α′0
ln f α(Zi)

)}
.

(A3)
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The first term in (A3) converges in probability to zero. Thus, based on (A2) and after some
simplifications, we have

1
c−1

c−1
∑

i=1

{
∂2

∂α0∂α′0
ln(Fα(yc))− E

(
∂2

∂α0∂α′0
ln f α(Zi)

)}
= 1

c−1

c−1
∑

i=1
Var
(

∂
∂α0

ln f α(Zi)
)

= =∗,

where =∗ converges to bounded values, ξ; consequently, we can write

A2 =
1
n

(A∗2 − A∗∗2 )
P→ −J f ,

where
J f ≡ ℘ + pξ.

Now, from (A1), we have √
nJ f (α̂n − α0) =

√
nA1/

√
J f

−A2/J f
,

where −A2/J f
P→ 1 and, using the Slutsky theorem, we can show that the numerator is asymptotically

N(0, 1). Thus, we conclude that
n
∑

i=c

∂
∂α0

ln f α(xi) + (c− 1) ∂
∂α0

ln(Fα(xi))
D→ N(0, ℘ + pξ) and the proof

is complete.

Appendix B

Theorem B. If f α∗(.) and gβ∗(.) are the two candidate models ( f α∗(.) 6= gβ∗(.)), we can write

√
n
(

1
n

L f /g
n
(
α̂n, β̂n

)
− pE

[
ln

f α∗(X)

gβ∗(X)

]
− pln

Fα∗(ζ)

Gβ∗(ζ)
)

D→ N(0, ω2
∗c), (B1)

where α∗ = argmaxα∈MEh(L f
n(α)) and β∗ = argmaxβ∈BEh(Lg

n(β)) are the pseudo-true values of the α.
In addition, ω2

∗c is the variance of the difference of log-likelihood functions.

Proof. The proof of this theorem can be obtained by using the multivariate central theorem and by
routine calculations. From the Taylor expansion of L f

n(α∗) around the α̂n, we have

L f
n(α∗) = L f

n(α̂n) +
n
2

Ψ′A f Ψ + op(1),

and we can also write
Lg

n(β∗) = L f
n(β̂n) +

n
2

Ω′AgΩ + op(1),

where Ψ = (α̂n − α∗), Ω = (β̂n − β∗), and A f and Ag are the Fisher information matrix.

Since LRn(α∗, β∗) = L f /g
n (α∗, β∗) = L f

n(α∗)− Lg
n(β∗), we obtain

L f /g
n (α̂n, β̂n) = L f /g

n (α∗, β∗) + n
2 (α̂n − α∗)′A f (α̂n − α∗)− n

2 (β̂n − β∗)′Ag(β̂n − β∗) + op(1).

Using Theorem A, we observed that the distribution of α̂n, and, similarly β̂n, for large n is
approximately normal. Thus, we have that

√
n(α̂n− α∗) and

√
n(β̂n− β∗) are Op(1). Therefore, we have

√
n
(

1
n LRn(α̂n, β̂n)− (1− p)Eh∗

[
ln f α∗ (X)

gβ∗ (X)

]
− pln Fα∗ (ζ)

Gβ∗ (ζ)

)
=
√

n
{

1
n L f /g

n (α∗, β∗) −(1− p)Eh∗
[
ln f α∗ (X)

gβ∗ (X)

]
− pln Fα∗ (ζ)

Gβ∗ (ζ)

}
+ op(1).



Int. J. Financial Stud. 2016, 4, 24 13 of 14

From the central limit theorem, the first term on the right-hand side converges in distribution
to N(0, ω2

∗c).

References

1. Ahna, S.; Kim Joseph, H.T.; Ramaswami, V. A new class of models for heavy tailed distributions in finance
and insurance risk. Insur. Math. Econ. 2012, 51, 43–52. [CrossRef]

2. Burnecki, K.; Wylomanska, A.; Chechkin, A. Discriminating between light- and heavy-tailed distributions
with limit theorem. PLoS ONE 2015, 10, e0145604. [CrossRef] [PubMed]

3. Hao, X.; Tang, Q. Asymptotic ruin probabilities for a bivariate Leavy-driven risk model with heavy-tailed
claims and risky investments. J. Appl. Probab. 2012, 49, 939–953.

4. Pastor, G.; Mora-Jiménez, I.; Caamaño Antonio, J.; Jäntti, R. Asymptotic expansions for heavy-tailed data.
IEEE Signal Process. Lett. 2016, 23, 444–448. [CrossRef]

5. Barndor-Nielsen, O.E. Superposition of Ornstein-Uhlenbeck type processes. Theory Probab. Appl. 2001, 45,
175–194. [CrossRef]

6. Chandra, S.R.; Mukherjee, D.; SenGupta, I. PIDE and solution related to pricing of levy driven arithmetic
type floating Asian options. Stoch. Anal. Appl. 2015, 33, 630–652. [CrossRef]

7. Sen Gupta, I. Generalized BN-S stochastic volatility model for option pricing. Int. J. Theor. Appl. Financ. 2016,
19, 1650014. [CrossRef]

8. Barndor-Nielsen, O.E.; Shephard, N. Non-Gaussian Ornstein-Uhlenbeck based models and some of their
uses in financial economics. J. R. Stat. Soc. Ser B 2001, 63, 167–241. [CrossRef]

9. Kundu, D.; Gupta, R.D.; Manglick, A. Discriminating between the log-normal and generalized exponential
distribution. J. Stat. Plan. Inference 2005, 127, 213–227. [CrossRef]

10. Dey, A.K.; Kundu, D. Discriminating among the Log-Normal, Weibull and Generalized Exponential
distributions. IEEE Trans. Reliab. 2009, 58, 416–424. [CrossRef]

11. Cox, D.R. Test of Separate Families of Hypothesis. In Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Statistical Laboratory of the University of California, Berkeley, CA,
USA, 20 June–30 July 1960; pp. 105–123.

12. Vuong, Q.H. Likelihood ratio tests for model selection and non-nested hypothesis. Econometrica 1989, 57,
307–333. [CrossRef]

13. Vuong, Q.H.; Wang, W. Minimum chi-square estimation and tests for model selection. J. Econom. 1993, 56,
141–168. [CrossRef]

14. Commenges, D.; Liquet, B.; Proust-Lima, C. Choice of prognostic estimators in joint models by estimating
differences of expected conditional Kullback-Leibler risks. Biometrics 2012, 68, 380–387. [CrossRef] [PubMed]

15. Panahi, H.; Asadi, S. A model selection test with application to the censored data of carbon nanotubes
coating. Prog. Color Colorants Coat. 2016, 9, 17–28.

16. Panahi, H.; Sayyareh, A. Parameter estimation and prediction of order statistics for the Burr Type XII
distribution with Type II censoring. J. Appl. Stat. 2014, 41, 215–232. [CrossRef]

17. Panahi, H.; Sayyareh, A. Estimation and prediction for a unified hybrid-censored Burr Type XII distribution.
J. Stat. Comput. Simul. 2016, 86, 55–73. [CrossRef]

18. Panahi, H.; Sayyareh, A. Tracking interval for type II hybrid censoring scheme. JIRSS 2014, 13, 187–208.
19. Cain, K.C.; Harlow, S.D.; Little, R.J.; Nan, B.; Yosef, M.; Taffe, J.R.; Elliott, M.R. Bias due to left truncation and

left censoring in longitudinal studies of developmental and disease processes. Am. J. Epidemiol. 2011, 25, 1–7.
[CrossRef] [PubMed]

20. Mitra, S.; Kundu, D. Analysis of left censored data from the generalized exponential distribution. J. Stat.
Comput. Simul. 2008, 78, 669–679. [CrossRef]

21. Singh, U.; Kumar, A. Bayesian estimation of the exponential parameter under a multiply type-II Censoring
scheme. Aust. J. Stat. 2007, 36, 227–238.

22. Thompson, E.M.; Hewlett, J.B.; Baise, L.G.; Voge, R.M. The Gumbel hypothesis test for left censored
observations using regional earthquake records as an example. Nat. Hazards Earth Syst. Sci. 2011, 11, 115–126.
[CrossRef]

23. Louis, T.A. Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. B
1982, 44, 226–233.

http://dx.doi.org/10.1016/j.insmatheco.2012.02.002
http://dx.doi.org/10.1371/journal.pone.0145604
http://www.ncbi.nlm.nih.gov/pubmed/26698863
http://dx.doi.org/10.1109/LSP.2016.2526625
http://dx.doi.org/10.1137/S0040585X97978166
http://dx.doi.org/10.1080/07362994.2015.1024855
http://dx.doi.org/10.1142/S021902491650014X
http://dx.doi.org/10.1111/1467-9868.00282
http://dx.doi.org/10.1016/j.jspi.2003.08.017
http://dx.doi.org/10.1109/TR.2009.2019494
http://dx.doi.org/10.2307/1912557
http://dx.doi.org/10.1016/0304-4076(93)90104-D
http://dx.doi.org/10.1111/j.1541-0420.2012.01753.x
http://www.ncbi.nlm.nih.gov/pubmed/22578147
http://dx.doi.org/10.1080/02664763.2013.838668
http://dx.doi.org/10.1080/00949655.2014.993985
http://dx.doi.org/10.1093/aje/kwq481
http://www.ncbi.nlm.nih.gov/pubmed/21422059
http://dx.doi.org/10.1080/00949650701344158
http://dx.doi.org/10.5194/nhess-11-115-2011


Int. J. Financial Stud. 2016, 4, 24 14 of 14

24. Burr, I.W. Cumulative frequency functions. Ann. Math. Stat. 1942, 13, 215–232. [CrossRef]
25. Panahi, H.; Sayyareh, A. Tracking interval for doubly censored data with application of plasma droplet

spread samples. J. Stat. Res. Iran 2015, 11, 147–176. [CrossRef]
26. Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/aoms/1177731607
http://dx.doi.org/10.18869/acadpub.jsri.11.2.147
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Main Definitions and Assumptions 
	New Model Selection Test (NMST) For HTDC 
	Heavy Tail Properties 
	Heavy-Tailed Distributions 
	Generalized Extreme Value Distribution (GEVD) 
	Pareto Distribution 
	Log-Normal Distribution 
	Burr Type XII Distribution 
	Dugum and Singh-Maddala Distribution 


	Application of the NMST of Tehran Stock Exchange 
	Conclusions 
	
	

