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1. Introduction

In recent years, principal component analysis (PCA) has been widely applied to the study of
financial markets. PCA (Jolliffe 1986) is a standard method in statistics for extracting an ordered set of
uncorrelated sources of variation in a multivariate system, and is widely used as a dimension reduction
method. The correlation matrix is computed from a finite sample, and it is well-understood that small
sample effects increase the observed correlations. Thus, a PCA can be used to clean a correlation matrix
by removing potentially spurious correlations which are only a consequence of sampling. PCA is an
attractive method to apply, given that financial markets are typically characterised by a high degree of
multicollinearity—implying that there are only a few independent sources of information in a market.

Using random matrix theory (or, more specifically, the spectral decomposition theorem—see
Jolliffe 1986, p. 13), many authorities have divided the eigenvectors into three distinct groups based on
their eigenvalues. For example, Kim and Jeong (2005) decomposed a correlation matrix of 135 stocks
which traded on the New York Stock Exchange (NYSE) into three parts:

1. The first principal component (PC1) with the largest eigenvalue which they asserted represents
a market-wide effect that influences all stocks.

2. A variable number of principal components (PCs) following the market component which
represent synchronized fluctuations affecting groups of stocks.

3. The remaining PCs indicate randomness in the price fluctuations.

Authorities such as Driesson et al. (2003), Kim and Jeong (2005), Pérignon et al. (2007),
Kritzman et al. (2011), Billio et al. (2012), and Zheng et al. (2012) all assumed without any real question
that the PCs of interest were PC1 and—depending on the author’s purposes—some or all of the
PCs in group (2) above. The PCs in group (3) above have the smallest eigenvalues, and hence the
smallest amount of information; it is very likely that they only contain noise. As a consequence of this
well-understood fact, it is likely that if a PCA of a stock market correlation matrix is carried out, the
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analyst or researcher will not bother to examine the high-numbered components because she or he
believes that they contain nothing of interest.

In this paper we show that the highest-numbered PCs may contain useful financial insights,
while at the same time they may contain little or no information in the sense that that word is used in
information science. We explain below how this apparent paradox arises—that a high-numbered PC
can have little or no information yet there may still be useful financial insights to be gleaned from it.

While relatively unknown (and hence unexploited in the finance literature), it is widely
understood in the both the statistical and econometric literatures that within group (3) (the random
or noise PCs), there may be two more sub-categories of PC—both of which may be of interest to a
stock (or other financial) market analyst. The first is the detection of outlier variables (rather than
outlier observations). It is well understood that the presence of an outlier in a sample may dramatically
affect an analysis of that sample. In the context of a stock market, an outlier stock would be one
which behaves in a manner unlike any other individual stock or group of stocks in that market. The
identification of such a stock or stocks would potentially be of considerable interest. However, in
the analysis of our data below, we did not find any PCs of this type, so we are unable to give any
further guidance on how to interpret the presence of such a stock, should one or more be found.
Consequently, will not pursue this further, but see Jolliffe (1986, chp. 10) for details on this type of PC
and Hawkins (1980), Barnett and Lewis (1994), or Aggarwal (2013) for further discussion on outlier
detection and analysis.

The other type of PC is near-constant relationships between variables described in
Jolliffe (1986, sct. 3.4). It is somewhat counter-intuitive that a high-numbered PC—which by definition
contains very little explanatory power—can identify a grouping of stocks or other financial assets
which are of interest to a financial analyst or portfolio manager. To see how these are detected, consider
two stocks which are highly correlated with each other. We will consider the final (nth) PC from the
PCA, although as will be seen below, in our sample the last PC was not the only PC which detected
stocks with a near-constant relationship. Assume the eigenvalue of the final principal component, PCn,
is small and close to zero. This assumption can be justified on the basis that the final PC explains the
least amount of variation within the sample and thus will be the PC with the eigenvalue closest to
zero. The actual amount of variation explained by any given principal component is given by

Variation Explained by Component j =
λj

∑n
i=1 λi

× 100 (1)

where

λi = Eigenvalue of Component i.

The eigenvector of each principal component is a linear combination of all variables (Jolliffe 1986),
which can be written as

α′nx =
n

∑
i=1

αnixi (2)

where α′nx is the eigenvector of component n, and αni is the coefficient (or loading) of variable i (in our
case stock i) in component k. For each principal component (for example, component n),

n

∑
i=1

α2
ni = 1. (3)

If variables x1 and x2 are the two highly correlated variables (stocks) being detected in component
n, these two variables will have large coefficients while the remainder of the variables will have
near-zero coefficients (note that the variation associated with each of the highly correlated variables
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and other variables in the data set will be captured in other principal components). Equation (3) can
then be written

α2
n1 + α2

n2 +
n

∑
i=3

α2
ni = 1 (4)

but where

n

∑
i=3

α2
ni ≈ 0 (5)

so that

α2
n1 + α2

n2 ≈ 1. (6)

As a consequence, the closer αn1 and αn2 are in magnitude, the more correlated are the x1 and
x2 variables (stocks). To see why such a principal component explains so little variation (and hence
contains so little information in the technical sense), it is clear from Equation (5) that the contribution
of variables 3 through n are negligible because their coefficients (loadings) are near zero. If x1 and
x2 are highly positively correlated, then αn1 and αn2 in Equation (6) will have opposite signs so that
variation in variable (stock) 1 is largely cancelled by variation in variable (stock) 2. If x1 and x2 are
negatively correlated, the αn1 and αn2 will have the same sign. Again, however, the variation in x1 will
be cancelled by variation in x2. Thus, the manner in which the information has been eliminated from
the PC to yield a small eigenvalue is of financial interest to us because it allows us to identify stocks
with near-linear relationships, should such stocks exist.

In this illustration, we have used two stocks; however, associations of larger groups may be found
and in the results below, where we report larger associations. In these cases, Equations (4) and (6) need
to be modified to increase the number of stocks with significant loadings.

In any given market, such highly correlated assets may or may not exist. We argue that if a
financial analyst or portfolio manager undertakes a PCA of a stock or other financial market as part
of their routine analysis, then they should examine the last few components for the presence of
highly correlated stocks. If they do exist, finding them is straight-forward, as we will show below
and the implications for stock selection and portfolio management are easily understood. Using
the information available in the PCA may mean the analyst could avoid using a separate clustering
analysis (e.g., K-means) to identify these stocks (Ding and He 2004). However, there is no point in
undertaking a PCA if the only goal is to identify highly correlated stocks, because there are much more
computationally efficient methods of finding them.

It is possible to automate this process of identifying highly correlated stocks in the process of
portfolio selection and management; we gave details of this in an earlier paper (Yang et al. 2016).

The remainder of this paper is structured as follows: Section 2 describes the data and methods,
Section 3 presents our results, and Section 4 concludes.

2. Data and Methods

2.1. Data

Our research is based on the Australian market. The main index for the market is the ASX200,
which is a market capitalization weighted index of the 200 largest shares by capitalization listed on
the Australian Securities Exchange. The index in its current form was created on 31 March 2000.
We investigated the constituents of the ASX200 index from inception to February 2014. The ASX200
index is a capitalization index, and so does not adjust for dividends. In our research, we calculated the
returns for all constituents, which included the dividends paid.
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There was a high frequency of stocks that were added to or deleted from the index over time,
so we identified all stocks which had been in the ASX200 for the whole study period. After adjusting for
mergers, acquisitions, and name changes, we obtained a final data set of 524 unique stocks. We obtained
daily closing prices and dividends for each stock from the SIRCA database (http://www.sirca.org.au/).
All the prices and dividends were adjusted to be based on the AUD. The return was calculated in the
following steps:

1. We created a new variable associated with each stock called the Dividend Factor. We started with
a factor of 1, and every time a dividend was paid we multiplied the Dividend Factor,

Daily Dividend Factori(t) =

{
1 if no dividend
1 + Di(t)

Pi(t)
if dividend

}

Cumulative Dividend Factori(t) =
t

∏
j=1

(Daily Dividend Factori(t))

where Di(t) is the dividend for stock i in time t, and Pi(t) is the price of stock i at time t in units
of one trading day.

2. We adjusted the price series with the Cumulative Dividend Factor , the adjusted price was
calculated by

PNEWi(t) = Pi(t)×Cumulative Dividend Factori(t).

3. The return series for a given stock i was calculated as

Ri(t) =
PNEWi(t + 1)− PNEWi(t)

PNEWi(t)
. (7)

We extracted a set of stocks that had complete return information for the whole study period,
and there were 156 such stocks. The remaining 368 stocks were either listed after April 2000 or delisted
before February 2014.

2.2. Principal Component Analysis

PCA can be applied to either a correlation matrix or a covariance matrix, but there are some
problems associated with using a covariance matrix. If there are large differences between the variances
of variables, then using a covariance matrix will result in low-numbered principal components being
dominated by variables that have a large variance. All PCAs reported in this paper were carried out
on correlation matrices generated from the return series.

Correlation matrices and PCAs were were carried out using functions in R (R Core Team 2014).
The PCs were not rotated. We note that rotation of PCs is common, but should not be carried out in
this type of application.

To determine whether any of the last few PCs provide evidence of either stocks with near-linear
relationships or outlier stocks, we started at the last PC (PC 156) and worked towards the first until
no further PCs of either type were found. To identify such PCs, we made scatter plots of the last
few PCs using plotting functions in the graphics package in base R and examined them for near
constant relationships. In the results below, we present the scatter plots starting with PC151/PC152,
the lowest-numbered PCs which showed evidence of stocks with a near-linear relationship. There is a
more general method of plotting PCs against each other known as biplots, see Jolliffe (1986, sct. 5.3) for
further details.

3. Results

In this section, we present some details on the eigenvalues of the last six PCs: , their values and
variance explained in Table 1, scatter plots of their loadings in Figures 1, 2, and 3, which successfully

http://www.sirca.org.au/
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picked up groups of stocks with highly correlated returns, together with time series plots of their
adjusted price in Figures 4–8. As noted in Equation (6), the αi values (loadings) of the highly correlated
stocks will dominate the principal component and this can be visualised with a scatter plot.

For our own reference, we made more scatter plots than are reported here. For the purpose of
reporting, only the pairs which showed the behaviour of interest are reported. We start with principal
components 151 and 152, which picked up three pairs of near-linear relationships and then discuss the
“big four” banks and two mining firms. Each eigenvector is presented only once, as the vectors are
dominated by just a handful of stocks.

These six low-variance principal components detected stocks with high correlations. In some
applications, the eigenvalues associated with the last few principal components are very close to zero.
In our case, the eigenvalues of the last few principal components were small but clearly different from
zero. Nevertheless, they still picked up near-linear relationships between some stocks—see Table 1 for
a list of their eigenvalues and percentage of variance explained.

Table 1. Eigenvalues and variances explained by the last six principal components. The percent of
variation explained was calculated using Equation (1).

Eigenvalue Variance Explained (%)

PC151 0.398 0.255%
PC152 0.380 0.244%
PC153 0.321 0.206%
PC154 0.304 0.195%
PC155 0.286 0.183%
PC156 0.244 0.157%

In Figure 1, we present scatter plots of PCs 151 and 152. BHP Billiton (BHP) and CFS Retail
Property Trust Group (CFX) in the real estate industry (CFX changed its name to Novion Property
Group after the close of the study period and now has the ticker symbol NVN) clearly form a pair,
they have high loadings of opposite signs on PC151 but low loadings on PC152. Mirvac Group (MGR),
Stockland (SGP), Santos Limited (STO) and Woodside Petroleum Limited (WPL) form a group of
four and have high loadings on both PC151 and PC152. This group of four can be broken into two
pairs based on the signs of their loadings in PC151 and PC152 : STO with WPL, and MGR with SGP.
Both pairs of stocks are positively correlated (see Table 2), accounting for the loading having opposite
signs in these PCs.
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Figure 1. Scatter plots of relative weights of each stock in components 151 and 152 arising from a
principal components analysis (PCA) on a correlation matrix from the whole study period. The lines
join the origin to the point representing the coefficient in the 151th eigenvalue (x-axis) and 152nd
eigenvalue (y-axis). The stocks are colour-coded using the Industry Classification Benchmark Industry
(ICB) classification. Financials are blue (33 stocks), Health Care are red (9 stocks), Industrials are
yellow (24 stocks), Consumer Services are brown (19 stocks), Basic Materials are green (31 stocks),
Oil & Gas are purple (16 stocks), Utilities are orange (5 stocks), Consumer Goods are black (9 stocks),
Telecommunications are orchid (4 stocks), Technology are grey (6 stocks). Stocks with a loading of at
least 0.2 in one of the PCs are labelled with their ticker symbol. From this scatterplot, we can conclude
that there are six highly correlated stocks structured as three pairs: namely, STO and WPL, SGP and
MGR, and BHP and CFX.

Table 2. The correlations of stocks with near-linear relationships in principal components (PCs) 151, 152, and
155. See Figures 1 and 3.

Pair Correlation PCs

MGR-SGP 0.71 151, 152
STO-WLP 0.95 151, 152
BHP-RIO 0.77 155

Curiously, the first pair of stocks are not in the same industry. BHP is in Basic Materials and CFX
in the real estate industry. They tended to move in the same direction from the start of the study period
until 2011. Their price trajectories then began to move in different directions after this time, as can be
seen in Figure 4.

The second pair—MGR and SGP—are both large diversified real estate groups. They had nearly
the same stock price level in the beginning of 2000, and have diverged since then. The similarity in
their price movements can be easily seen over short time frames, but over the longer term, their price
level has diverged, as can be seen in Figure 5.

The third pair of stocks are STO and WPL, which are in the Oil & Gas industry. Both companies
explore for and produce oil and gas from onshore and offshore wells. The high correlations in their
price movements over both the short- and long-term are clearly evident, as can be seen in Figure 6.

The last four components (PC 153–156, Figures 2 and 3) all picked up the four largest banks in
Australia, often referred to as the “four pillars”; their ticker symbols are ANZ, CBA, NAB, and WBC.
The strong relationships in price (and consequently returns) are easily seen in Figure 7; their correlations



Int. J. Financial Stud. 2017, 5, 15 7 of 12

are reported in Table 3. To help in visualizing the price co-movement of the four largest banks, we
used a different scale for CBA. Its dividend-adjusted price changed from $20 in the beginning of our
study period to approximately $150 at the end of study period, while the other three banks had price
levels that ranged from $10 to $70. Obviously, NAB was least correlated with others among the four
banks. However, after the 2008 financial crisis, all four banks converged to move very similarly.

Table 3. Price correlation coefficients of the four largest banks.

ANZ WBC CBA NAB

ANZ 1 0.97 0.96 0.85
WBC 0.97 1 0.98 0.76
CBA 0.96 0.98 1 0.73
NAB 0.85 0.76 0.73 1
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Figure 2. Scatter plots of relative weights of each stock in components 153 and 154 arising from
a PCA on a correlation matrix from the whole study period. The lines join the origin to the point
representing the coefficient in the 153rd eigenvalue (x-axis) and 154th eigenvalue (y-axis). The stocks
are colour-coded using the colour scheme described in Figure 1. Stocks with a loading of at least 0.25
in one of the PCs are labelled with their ticker symbol. From this scatterplot, we can conclude that
there are four highly correlated stocks structured as two pairs: namely, CBA (Commonwealth Bank of
Australia) and ANZ (ANZ), and NAB (National Australia Bank) and WPC (Westpac).
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Figure 3. Scatter plots of relative weights of each stock in components 155 and 156 arising from
a PCA on a correlation matrix from the whole study period. The lines join the origin to the point
representing the coefficient in the 155th eigenvalue (x-axis) and 156th eigenvalue (y-axis). The stocks
are colour-coded using the colour scheme described in Figure 1. Stocks with a loading of at least 0.2 in
one of the PCs are labelled with their ticker symbol. From this scatterplot, we can conclude that there
are six highly correlated stocks structured as three pairs: namely, CBA and WBC, NAB and ANZ, and
BHP and RIO.

Adjusted Price Series for BHP and CFX
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Figure 4. Time series plot of two stocks identified in the scatter plot of components 151 and 152: BHP-Billiton
(BHP) in basic materials and CFS Retail Property Trust Group (CFX) in the real estate industry.
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Adjusted Price Series for MGR and SGP
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Figure 5. Time series plots of near-linear correlated stocks identified in a scatter plot of components
151 and 152: Mirvac Group (MGR) and Stockland Corporation Limited (SGP)—two stocks in the real
estate sector.

Adjusted Price Series for STO and WPL
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Figure 6. Time series plot of two stocks in the Oil & Gas industry identified in the scatter plot of
components 151 and 152: Santos (STO) and Woodside Petroleum (WPL).
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Adjusted Price Series for the Four Major Banks
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Figure 7. Time series plots of near-linear correlated stocks identified in the scatter plots of components
153 to 156: the four big banks in Australia. ANZ (ANZ), Commonwealth Bank of Australia (CBA),
National Australia Bank (NAB) and Westpac (WBC).

In the scatter plot of PC155 and PC156 (Figure 3), Australia’s two biggest mining firms were
also picked up, BHP and Rio Tinto Ltd (RIO). They have a correlation of 0.77 over the sample period
(see Table 2). However, they are clearly different from the four banks because they have high loadings
of opposite signs in PC155 and near-zero loadings in PC156. A plot of their price trajectories is
presented in Figure 8.

Adjusted Price Series for BHP and RIO
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Figure 8. Time series plot of two stocks in Basic Materials identified in component 155: BHP and Rio Tinto (RIO).
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In Figure 3 we have the best illustration of Equation (6), because in PC155, BHP and RIO both
have loadings whose absolute values are greater than 0.6. Combined, they account for somewhat over
72 percent of the variation, and (as discussed in Section 1) because they are highly positively correlated
(see Table 2) their loadings have opposite signs, resulting in a component with only a small amount
of variation.

At the beginning of our study period, the price of RIO was approximately 1.4 times that of BHP.
Before the price collapsed in 2008, both stocks increased significantly; however, RIO increased more
than BHP so that at the end of 2007, the price of RIO was about 2.5 times that of BHP. However, during
the 2008 financial crisis, RIO also declined more than BHP. At the end of our study period, the price
of RIO was about 1.5 times that of BHP, which is almost the same as it was at the beginning of our
study period.

4. Conclusions

As indicated above, our argument is that if a financial analyst undertakes a PCA of a stock or
other financial markets as part of their analysis, then they should examine the last few PCs, beginning
with the final PC, because they may provide financially useful insights. In this sense, our results above
differ from that of other authorities such as Kim and Jeong (2005), who reported that only the market
component (PC1) and the subsequent group PCs contained useful information about the financial
market analysed. Our results illustrate that further financially useful insights may be contained in
the last few principal components because these may identify stocks with near-linear correlations. In
the data we examined, the final six components were of this type. The potential existence of such
components seems to have been overlooked in the finance literature, despite it being well known in
the statistics and econometrics literatures.

The identification of highly correlated stocks (or other assets) can aid in the task of portfolio
selection and management because it identifies pairs or groups of stocks which provide little benefit
for diversification; holding one of the pair or group will provide most of the benefits of diversification
while freeing funds to be invested in other assets. In the data analysed above, holding all four major
banking stocks provides very little diversification to a portfolio because their prices all move in a nearly
identical manner. It is not a given that such associations exist in any particular market. However, if
they do exist, they can be easily detected and that information can be fed into the fund manager’s or
other investor’s task of managing their portfolio well.

Even if, for example, a pair of highly correlated stocks are identified, there may be considerations
other than diversification which mean that an investor may hold both. Figures 4, 5, and 7 show that
high correlations in price movements do not necessarily indicate that the returns over the longer term
will be similar. Thus, depending on how much short-fall risk an investor is willing to take on, he or
she may decide to hold more than one of the stocks identified in each of these groups.

In our analysis of the Australian Stock Market, we did not find any PCs which indicated the
existence of outlier stocks in that market. However, it is possible that other markets may contain such
stocks, so a market analyst should examine the PCs to see if evidence of such outliers can be found.

We applied the PCA to the full sample period to illustrate the value of the method. In practical
applications, a fund manager would apply the PCA on a rolling window basis to a much shorter period
of data. However, our results show that highly correlated stocks tend to remain highly correlated over
long periods of time. Nevertheless, these correlations may break down, as is evident in Figure 4. It is
clear that the strong correlation between them evident in the first 11 years of the sample ceased to hold
in about 2011.

While the method presented here was applied to a stock market, it is general and can be applied
to any set of assets for which a correlation matrix can be generated.

Author Contributions: This paper is drawn from Libin Yang’s Master of Commerce thesis entitled “An Application
of Principal Component Analysis to Stock Portfolio Management”. William Rea and Alethea Rea were, respectively,
the senior and associate supervisors of the thesis. They jointly wrote the paper based on Libin’s work.
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Abbreviations

ANZ ANZ Bank
ASX 200 Australian Stock Exchange 200 Index
BHP BHP Billiton
CBA Commonwealth Bank
CFX CFS Retail Property Group
MGR Mirva Group
NAB National Australia Bank
NVN Novion Property Group
NYSE New York Stock Exchange
PCA Principal Component Analysis
PC Principal Component
RIO Rio Tinto Ltd
SGP Stockland
STO Santos Limited
WBS Westpac Banking Corporation
WPL Woodside Petroleum Limited
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