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Abstract: This paper investigates the predictability of exchange rate changes by extracting the factors
from the three-, four-, and five-factor model of the relative Nelson–Siegel class. Our empirical analysis
shows that the relative spread factors are important for predicting future exchange rate changes,
and our extended model improves the model fitting statistically. The regression model based on
the three-factor relative Nelson–Siegel model is the superior model of the extended models for
three-month-ahead out-of-sample predictions, and the prediction accuracy is statistically significant
from the perspective of the Clark and West statistic. For 6- and 12-month-ahead predictions,
although the five-factor model is superior to the other models, the prediction accuracy is not
statistically significant.
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1. Introduction

Analyzing the predictability of exchange rate changes is one of the concerns that market
participants, policy makers, and academic scholars recognize. Many studies have analyzed the
dynamics of the exchange rate and the predictability of exchange rate changes. Mussa (1976) and
Frankel (1979) are well-known works of classical literature that analyze the exchange rate.

This paper investigates the predictability of future exchange rate changes, applying the yield
curve model to uncovered interest rate parity in the method of the Chen and Tsang (2013) study.

The term structure model of interest rates has the information to predict the future economic
activity and inflation. In particular, as Estrella and Hardouvelis (1991) and Estrella and Mishkin
(1998) show, the slope factor of the term structure has the information to predict future economic
changes. There are three types of term structure of interest rate models (De Rezende and Ferreira
(2013)). The first type is affine equilibrium models, as proposed by Vasicek (1977) and Cox et al. (1985),
and generalized later by Duffie and Kan (1996). The second type is the no-arbitrage model proposed
by Christensen et al. (2009, 2011). The last type is the statistical and parametric models proposed by
Nelson and Siegel (1987), Svensson (1994), and Diebold and Li (2006). As in De Rezende and Ferreira
(2013), this paper focuses on the class of the Nelson–Siegel model that has the slope factor.

Chen and Tsang (2013) apply the dynamic Nelson–Siegel model to the term structure of domestic
and foreign interest rate differentials. The factor in this model is called the “relative Nelson–Siegel
factor”. They show that the factors predict exchange rate movements and excess currency returns.
The methodological differences between Chen and Tsang (2013) and this study are as follows:

First, as in De Rezende and Ferreira (2013), the three-factor dynamic Nelson–Siegel model of Chen
and Tsang (2013) is extended to a four- and -five-factor model. In the four-factor model, the model has
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one relative level factor, one relative spread factor, and two relative curvature factors. The five-factor
model has one more relative spread factor. This paper extracts the relative Nelson–Siegel factors from
these two extended models and investigates the predictability of the relative factors.

Second, we estimate the decaying parameter to which Chen and Tsang (2013) give ad hoc, the value
of 0.0609, by using the method of minimizing the root mean squared errors (RMSE) of the regression
model, as used by De Rezende and Ferreira (2013). Chen and Tsang (2013) use the value proposed
by Diebold and Li (2006). The decaying parameter plays an important role in the Nelson–Siegel
model. The smaller the parameter value becomes, the slower the decay becomes in factor loading of
the Nelson–Siegel model. Diebold and Li (2006) show that the value of 0.0609 maximizes the factor
loading of the spread factor at 30 months. However, as Diebold and Li (2006) mention, determining
the appropriate decaying parameter is still an issue, so this paper estimates the optimal parameter by
minimizing the root mean square error (RMSE), following De Rezende and Ferreira (2013).

The main results of this paper are as follows: First, the four- and five-factor models improve the
re-scaled t values when we regress the relative Nelson–Siegel factors on the exchange rate changes.
In addition, not only the first relative spread factor, but also the second spread factor is important for
predictability. Second, the five-factor model outperforms the three- and four-factor models in sample
fit. Finally, these models outperform the random walk model in out-of-sample prediction and the
results are statistically significant at a 1% significance level. For the three-month-ahead prediction,
the three-factor model is superior relative to the other models; on the other hand, the five-factor
model is superior relative to the other models, from the perspective of comparing root square mean
prediction errors.

This study contributes to the literature as follows: By extending the model proposed by Chen and
Tsang (2013) three-factor relative Nelson–Siegel model to the four- and five-factor models, this paper
succeeds in improving the model fit of the future exchange rate changes in sample-fit. In addition
to evaluating model accuracy in sample-fit as Chen and Tsang (2013) do, this paper investigates the
prediction accuracy out-of-sample. To evaluate the out-of-sample prediction, this paper uses root mean
squared prediction errors (RMSPE) and compares the RMSPE of each mode (random walk model and
three-, four-, and five-factor relative Nelson–Siegel mode).

Related Literature

Concluding the Introduction, we mention the development of research on exchange rate models
and Nelson–Siegel models.

The classical researches on the exchange rate are Mussa (1976) and Frankel (1979). They show
that the present value of the exchange rate is determined by its expected future value and economic
fundamental factor; for instance, the money stock, output, interest rate, and inflation of two countries.
Engel and West (2006), Molodtsova et al. (2008), and Molodtsova and Papell (2009) emphasize the
importance of monetary policy rules and extend the Taylor rule to the models for two countries.
They associate domestic and foreign short interest rate differentials with future exchange rate changes.
Rossi (2013) is a survey paper of the exchange rate model. Nelson and Siegel (1987) propose
the parametric term structure of the interest rate model. However, since the original model was
cross-sectional, Diebold and Li (2006) suggest a time-series version of the original model. In this
model, called the dynamic Nelson–Siegel model, there are three factors: level, slope, and curvature
factors. Svensson (1994) proposes a four-factor Nelson–Siegel model by adding a second curvature
factor. The Svensson model is also a cross-sectional model. De Rezende and Ferreira (2013) extend
the dynamic Svensson model by adding second slope factor, to the five-factor model. Increasing the
number of factors raises the flexibility of in-sample fit, but it causes the over-parameterization problem,
as Diebold and Li (2006)1 and De Rezende and Ferreira (2013) argue.

1 Christensen et al. (2009, 2011) impose arbitrage-free pricing theory on the dynamic Nelson–Siegel model.
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The remainder of the paper is organized as follows. In Section 2, we describe four relative
Nelson–Siegel class models: the dynamic relative Nelson–Siegel model, dynamic relative Svensson
model, and the relative De Rezende and Ferreira (2013) model. In Section 3, we extract the relative
factors from each model. Section 4 shows the results, and Section 5 concludes.

2. Model

2.1. The Present Value Model

In the asset approach, the determination of nominal exchange rate was represented as the
model depending on the discounted present value of its expected future fundamentals; for example,
differences in monetary variable, output, and inflation. Mussa (1976) and Frankel (1979) show the
log–linear relationship between the nominal exchange rate and the fundamentals; Mussa (1976)
and Frankel (1979) derive the monetary model of the nominal exchange rate based on the money
market equilibrium, uncovered interest rate parity, and purchasing power parity, and the model is
represented as:

st = γ ft + ψEtst+1, (1)

where st is a log nominal exchange rate at a time t, ft is a vector of the fundamentals,2 and Et denotes
a mathematical expectation at time t. Solving Equation (1) forward and imposing the appropriate
transversality condition based on the information set Ωt at time t, the nominal exchange rate is
written as:

st = δ
∞

∑
j=0

ψjEt( ft+1|Ωt), (2)

where ψ and δ are parameters.
Following Chen and Tsang (2013), empirically, the nominal exchange rate was best approximated

by a unit root process, so we rewrote Equation (1) in a first-differenced form:

∆st+1 = δ
∞

∑
j=0

ψjEt
(
∆ ft+j

∣∣Ωt
)
+ εt+1, (3)

where εt+1 is an expectation error.
In this paper, we used the information in the yield curves of two cross section countries, U.S.

and Japan, to proxy the expected discounted sum on the right-hand side of Equation (3). As the term
structure of interest rates includes the information of future economic activity, Chen and Tsang (2013)
adopt the factors extracted from the relative Nelson–Siegel model for the fundamental ft, which we
explain shortly.

2.2. The Relative Nelson–Siegel Model

This section explains the three Relative Nelson–Siegel models: the original Chen and Tsang (2013)
model, and two extended models.

2.2.1. The Original Chen and Tsang (2013) Model

To explain the Chen and Tsang (2013) model, hereafter abbreviated as the CH model, we first
introduced the dynamic Nelson–Siegel model of Diebold and Li (2006) represented as:

2 In Mussa (1976), ft = (mt −m∗t )− βy(yt − y∗t ), where mt is stock money and yt is output. The subscript “∗” stands for
foreign variable. In Frankel (1979), the paper records ft = (mt −m∗t )− βy(yt − y∗t )− βi(it − i∗t ) + βπ(πt − π∗t ). βy, βi , and
βπ are parameters.
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im
t = Lt + St

(
1− e−λm

λm

)
+ Ct

(
1− e−λm

λm
− e−λm

)
+ εm

t , (4)

where im
t is a zero-coupon yield of m-month maturity at time t. Lt, St and Ct are factors, which are

often referred to as the level, slope, and curvature factors,3 respectively. The symbol λ is a decaying
parameter. The smaller value corresponds to the slower decay in factor loading.

The CH model that we estimated is a model for domestic and foreign interest rate differential
based on the dynamic Nelson–Siegel model, which is represented as:

im
t − im∗

t = LR,CH
t + SR,CH

t

(
1− e−λR,CHm

λR,CHm

)
+ CR,CH

t

(
1− e−λR,CHm

λR,CHm
− e−λR,CHm

)
+ εm

t , (5)

where the subscript “R” denotes the relative factor, where “relative” means that it measures a relative
impact appropriate for interest rate differentials between two countries. The subscript ”CH” refers to
the CH model.

2.2.2. Extended Model 1: Four-Factor Model Based on Svensson (1994)

The second model that we estimated is a four-factor model based on Svensson (1994), which
extends the Nelson–Siegel model to a four-factor model by adding a second curvature factor.
The original model of Svensson (1994) is given by:

im
t = LSV

t + SSV
t

(
1−e−λSV

1 m

λSV
1 m

)
+ CSV

1,t

(
1−e−λSV

1 m

λSV
1 m

−e−λSV
1 m
)

+CSV
2,t

(
1−e−λSV

2 m

λSV
2 m

−e−λSV
2 m
)
+ εm

t ,
(6)

where the subscript ”SV” refers to the Svensson model, C1 is the first curvature factor and C2 is the
second curvature factor.

Our four-factor model based on Svensson (1994), hereafter abbreviated as the SV model, extends
the above equation to the context of the interest rate differential, which is represented as:

im
t − im∗

t = LR,SV
t + SR,SV

t

(
1−e−λR,SV

1 m

λR,SV
1 m

)
+ CR,SV

1,t

(
1−e−λR,SV

1 m

λR,SV
1 m

−e−λR,SV
1 m

)
+CR,SV

2,t

(
1−e−λR,SV

2 m

λR,SV
2 m

−e−λR,SV
2 m

)
+ εm

t ,
(7)

Compared to Equation (5), the second curvature factor CR,SV
2,t is added in this equation. λR

1 and
λR

2 are two different decaying parameters.

2.2.3. Extended Model 2: Five-Factor Model Based on De Rezende and Ferreira (2013)

The third model that we considered is based on the five-factor model of De Rezende and Ferreira
(2013), which is an extended version of the Svensson (1994) model that has one level factor, two slope
factors, and two curvature factors. The model is represented as:

im
t = LFF

t + SFF
1,t

(
1−e−λFF

1 m

λFF
1 m

)
+ SFF

2,t

(
1−e−λFF

2 m

λFF
2 m

)
+ CFF

1,t

(
1−e−λFF

1 m

λFF
1 m

− e−λFF
1 m
)

+CFF
2,t

(
1−e−λFF

2 m

λFF
2 m

− e−λFF
2 m
)
+ εm

t ,
(8)

3 Litterman and Scheinkman (1991) show that the dynamics of the yield curve are explained well by the first three principal
components. Moreover, the first, second, and third components are specified as level, slope, and curvature of the yield curve.
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The subscript “FF” denotes the five-factor model. S1 is the first spread factor and S2 is the second
spread factor.

The extended model for the domestic and foreign interest rate differential becomes:

im
t − im∗

t = LR,FF
t + SR,FF

1,t

(
1−e−λR,FF

1 m

λR,FF
1 m

)
+ SR,FF

2,t

(
1−e−λR,FF

2 m

λR,FF
2 m

)
+CR,FF

1,t

(
1−e−λR,FF

1 m

λR,FF
1 m

− e−λR,FF
1 m

)
+CR,FF

2,t
1−e−λR,FF

2 m

λR,FF
2 m

− e−λR,FF
2 m + εm

t ,

(9)

which we called the five-factor model, hereafter abbreviated as the FF model. The second slope factor
was added to Equation (7) in this equation.

3. Estimation of Decaying Parameter λ and Relative Factors

In this section, we estimated the decaying parameters λ in the above model using the method
of non-linear least squares. This paper used the yield curve data of U.S. and Japan. We obtained U.S.
zero coupon yield data from the U.S. Federal Reserve Data Release, and estimated4 Japanese zero
coupon yields from the prevailing interest rate data, which is published by the Ministry of Finance.
Exchange rate data of USD/JPY were obtained from the database of the Bank of Japan. The period was
from August 1992 to December 2016. We used the yields of 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, and
120 months maturity.

Diebold and Li (2006) and Chen and Tsang (2013) use the parameter value of λ = 0.0609.
According to the former, this value maximizes the curvature factor at 30-month maturity. However,
the value is not an optimal value, since they focus on simplicity and convenience, as Diebold and
Li (2006) mention; this paper estimates that the optimal parameter λ (λ1, λ2) minimizes the average
of the root mean squared errors (RMSE). In this paper, we initially constrained the range of the
value

(
λR (λR

1 , λR
2
))

between 0.01 and 0.30, and we constructed the set λ̂R ∈ Ω = {0.01 + 0.001k}298
k=1

and the set Λ =
{

λR
1,k, λR

2,k

∣∣∣λR
1 ∈ Ω, λR

2 ∈ Ω
}

. Given that λR ∈ Ω
(
λR

1 , λR
2 ∈ Λ

)
, we estimated the

unobservable relative Nelson–Siegel factors
(

LR
t , SR

t , CR
t
)

by using ordinary least square (OLS), and
then we searched for the optimal decaying parameter which minimize RMSE as follows:

λ̂ = arg min
λ∈Ω

 1
N

N

∑
n=1

√√√√ 1
T

T

∑
t=1

(
yt(mn)− ŷt

(
mn, λ, L̂R,CH

t , ŜR,CH
t ĈR,CH

t

))
where yt(mn) ≡ im

t − im∗
t and n denotes the index of the number of maturities. In the SV model and FF

model, there are two decaying parameters λ1 and λ2, so we solved the problems as follows:

(
λ̂1, λ̂2

)
= arg min

(λ1,λ2)∈Λ

 1
N

N

∑
n=1

√√√√ 1
T

T

∑
t=1

(
yt(mn)− ŷt

(
mn, λ1, λ2, X̂R

t
))

where X̂R
t =

[
LR,SV

t , SR,SV
t , CR,SV

1,t , CR,SV
2,t

]
in the SV model and X̂R

t =
[

LR,FF
t , SR,FF

1,t , SR,FF
2,t , CR,SV

1,t , CR,SV
2,t

]
in the FF model.

Table 1 shows the estimated optimal parameter. λ2 is smaller than λ1 in the SV model and
the FF model. Figure 1 shows the factor loadings of each relative Nelson–Siegel model in the
optimal parameters.

4 We regard the prevailing interest rates published by the Ministry of Finance as the per yields, and estimate the Japanese
zero coupon yield from those of the data by using MATLAB financial toolbox and financial instrument toolbox.
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Figure 2 shows the time-series of the estimated unobservable relative Nelson–Siegel factor in each
model and Table 2 reports the descriptive statistics of the estimated factors. All of the factors were
persistent in one lag. The persistence of the first curvature factor of the SV model and FF model in
twelve lags was weaker than the other factors. The mean of the first spread factor was only negative in
the factors of each model. The volatility of the second curvature factor was larger than the volatility of
the other factors.
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Table 2. Descriptive statistics of the estimated factors.

Mean Volatility 1-Lag Coefficient 12-Lag Coefficient

3-factor model
L1,t 0.028 0.008 0.928 0.580
S1,t −0.010 0.019 0.977 0.625
C1,t 0.006 0.006 0.962 0.728

4-factor model
L1,t 0.017 0.048 0.936 0.589
S1,t −0.0002 0.035 0.895 0.357
C1,t 0.016 0.030 0.856 0.184
C2,t 0.033 0.127 0.929 0.522

5-factor model
L1,t 0.015 0.107 0.933 0.766
S1,t −0.005 0.030 0.916 0.610
S2,t 0.006 0.071 0.909 0.702
C1,t 0.012 0.023 0.818 0.237
C2,t 0.031 0.215 0.938 0.753

4. Modeling and Estimation Results

4.1. Uncovered Interest Rate Parity

We forecast the movement of exchange rate by using the factors affecting the interest rate
differential between two countries. The relationship between the exchange rate change and the
interest rate differential is specified as follows:

∆st+m = im
t − im∗

t + εt+m, (10)

where εt+m is a forecast error. Equation (10) is uncovered interest rate parity (UIRP). The previous
empirical literature investigates the UIRP regression model:

∆st+m = α1,m + α2,m(im
t − im∗

t ) + ut+m.

where ut+m denotes the error term.
Substituting the relative dynamic Nelson–Siegel model (for example, CH model in Equation (5))

into the UIRP regression model, we can rewrite the UIRP regression model as:

∆st+m = α1,m + α2,mLR,CH
1,t + α2,m

(
1−e−λR,CH m

λR,CH m

)
SR,CH

1,t

+α2,m

(
1−e−λR,CH m

λR,CH m − e−λR,CHm
)

CR,CH
1,t + uR,CH

t+m .

Defining α1,m = βCH
0 , α2,m = βCH

1 ,
βCH

2,m
βCH

1,m
=
(

1−e−λm

λm

)
, and

βCH
3,m

βCH
1,m

=
(

1−e−λm

λm − e−λm
)

, we have the

linear regression model of Chen and Tsang (2013) as follows:

∆st+m = βCH
0 + βCH

1 LR,CH
1,t + βCH

2 SR,CH
1,t + βCH

3 CR,CH
1,t + uR,CH

t+m . (11)

This equation is called the CH-UIRP model (or three-factor UIRP model).
We had similar linear regression models for the SV and FF model given by Equations (7) and (9)

as follows:

∆st+m = βSV
0,m + βSV

1,mLR,SV
1,t + βSV

2,mSR,SV
1,t + βSV

3,mCR,SV
1,t + βSV

4,mCR,SV
2,t + uR,SV

t+m , (12)



Int. J. Financial Stud. 2018, 6, 68 9 of 15

∆st+m = βFF
0,m + βFF

1,mLR,FF
1,t + βFF

2,mSR,FF
1,t + βFF

3,mSR,FF
2,t + βFF

4,mCR,FF
1,t + βFF

5,mCR,FF
2,t + ut+m, (13)

where ut+m denotes the error term. Defining
βSV

2,m
βSV

1,m
=

(
1−e−λR,SV

1 m

λR,SV
1 m

)
,

βSV
3,m

βSV
1,m

=

(
1−e−λR,SV

1 m

λR,SV
1 m

− e−λR,SV
1 m

)
,

βSV
4,m

βSV
1,m

=

(
1−e−λR,SV

2 m

λR,SV
2 m

− e−λR,SV
2 m

)
,

βFF
2,m

βFF
1,m

=

(
1−e−λR,FF

1 m

λR,FF
1 m

)
,

βFF
3,m

βFF
1,m

=

(
1−e−λR,FF

2 m

λR,FF
2 m

)
βFF

4,m
βFF

1,m
=(

1−e−λR,FF
1 m

λR,FF
1 m

− e−λR,FF
1 m

)
, and

βFF
5,m

βFF
1,m

=

(
1−e−λR,FF

2 m

λR,FF
2 m

− e−λR,FF
2 m

)
. The former equation was called the

SV-UIRP regression model and the latter the FF-UIRP regression model.

4.2. In-Sample-Fit Forecast Estimation

Now, we report the estimation results on the explanatory power of the future exchange rate
prediction of our three models.5

The forecasting periods were 3, 6, and 12 months ahead.
Table 3 shows the estimation results of the regression model of Equations (11)–(13). The null

hypothesis is βCH,SV,FF
i = 0. It was clear that the level factor and the spread factors had significant

explanatory power for the future exchange rate change predictions of three and six months ahead.
Moreover, the SV-UIRP and FF-UIRP regression models improved the re-scaled6 t-value, compared to
the three-factor model.

Table 3. Estimation results of the predictability of the relative factors.

3-Month-Ahead (st+3)

β1 β2 β3 β4 β5

CH −0.962 0.646 — −0.169 —
t-value −1.426 1.454 — −0.699 —

SV −1.813 1.137 — −0.677 −0.952
t-value −2.598 *** 2.229 ** — −2.483 ** −3.499 ***

FF −1.866 1.185 −0.259 −0.683 −0.989
t-value −2.603 *** 2.240 ** −0.647 −2.107 ** −3.435 ***

6-Month-Ahead (st+6)

β1 β2 β3 β4 β5

CH −1.590 1.516 — −0.460 —
t-value −1.176 1.706 * — −0.951 —

SV −2.739 2.251 — −0.995 −1.569
t-value −1.951 * 2.188 ** — −1.812 * −2.866 ***

FF −2.873 2.297 −0.293 −0.908 0.116
t-value −1.992 ** 2.160 ** −0.367 −1.392 2.527 **

12-Month-Ahead (st+12)

β1 β2 β3 β4 β5

CH −2.715 1.774 — −0.261 —
t-value −1.059 1.054 — −0.286 —

SV −3.882 2.408 — −0.729 −2.134
t-value −1.432 1.212 — −0.687 −2.018 **

FF −4.083 2.407 −0.568 −0.580 −2.21
t-value −1.466 1.172 −0.367 −0.459 −1.980 **

Note: ***, **, and * denote the statistical significant level of 1%, 5%, and 10%. t-value is re-scaled as Chen and Tsang
(2013). We except the estimated results of the constant term.

5 These models are the restricted model of ∆st+m = α + β(it − i∗t ).
6 Following Chen and Tsang (2013), Valkanov (2003), and Moon et al. (2004), we use the rescaled t statistic value t/

√
m.
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We investigated the adjusted R2 of the three UIRP regression models (Equations (11)–(13)). In this
analysis, following Chen and Tsang (2013), we generated artificial exchange rate changes using Monte
Carlo experiments.7 The procedure was as follows:

(1) We created error terms that affected one-month-ahead exchange rate movement. To do so, we
first regressed one-month exchange rate changes on a constant term and kept the standard error
of the regression as σ̂. Then, a 1× (t + m) vector of error terms εt of the mean zero, and the
volatility σ̂ was generated from the standard normal random variable.

(2) We created error terms εm
t (m = 3, 6, 12) that generated m-month-ahead exchange rate movements

at given time t. As Chen and Tsang (2013) mention, there was a problem with inference bias
when we analyzed the longer-horizon predictability using the overlapping data. If we used
3-, 6-, and 12-month exchange rate changes, the variables overlap across observations, and the
error term in Equations (11)–(13) became a moving average process of order m− 1. To solve
this issue of inference bias, we constructed an error term εm

t as a moving average, i.e., εm
t ≡

(εt+m−1 + · · ·+ εm)/m. The generated data were the same length as the actual data.
(3) We estimated the mean return of m-month-ahead exchange rate movement. To do so, we regressed

the actual m-month (m = 3, 6, 12) exchange rate changes on a constant and kept the constant term
α̂m, respectively.

(4) We created the artificial exchange rate changes to be ∆ŝt+m = α̂m + εm
t . Then, we estimated

the CH-UIRP, SV-UIRP, and FF-UIRP regression model (Equations (11)–(13)) using the
artificial exchange rate changes ∆ŝt+m as the dependent variable in rolling regressions for a
five-year window.

Trials (1)–(4) were iterated 500 times.
Figure 3 plots the time-series of the adjusted R2 for each 3, 6, and 12 months ahead. The plotted

value was the average of the 500 artificial adjusted R2s. The adjusted-R2 values of the relative factors
of the SV model and FF model were superior to the CH model.

Table 4 shows the results of t-test on the equality of the R-squares. Hypothesis I is that the adjusted
R2 of the CH model (ad-R2(CH)) is equal to the adjusted R2 of the SV model (ad-R2(SV)). For example,
H0 : ad-R2(CH) = ad-R2(SV). The alternative hypothesis is that R2 of the CH model (ad-R2(CH)) is
smaller than ad-R2(SV). For example, Ha : ad-R2(CH) < ad-R2(SV). This means that the difference is
negative. Hypothesis II is that ad-R2(CH) = ad-R2(FF). Hypothesis III is that ad-R2(SV) = ad-R2(FF).

Table 4. Statistical test.

a b c

3-month 0.000 0.000 0.000
6-month 0.000 0.000 0.000
12-month 0.000 0.000 0.000

Note: Columns a, b, and c show the t statistic values. The null hypothesis of a is ad-R2(CH) = ad-R2(SV), that is,
the difference is zero, and the alternative hypothesis is ad-R2(CH) < ad-R2(SV). This means that the difference
is negative. The null hypothesis of b is ad-R2(CH) = ad-R2(FF), and the alternative hypothesis is ad-R2(CH)
< ad-R2(FF). The null hypothesis of c is ad-R2(SV) = ad-R2(FF), and the alternative hypothesis is ad-R2(SV) <
ad-R2(FF).

In Table 4, it is clear that the regression model based on FF factors was statistically superior to the
model based on CH factors and SV factors, in terms of the adjusted R2.

7 Mark (1995) uses a similar method.
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4.3. Out-of-Sample Prediction

We investigated the predictability of each model in out-of-sample by comparing root mean
squared prediction errors (RMSPE). Chen and Tsang (2013) do not investigate the out-of-sample
prediction accuracy of the model. This subsection presents the RMSPE of each model, while the next
subsection presents the statistically significant difference by using the Clark and West test.

The RMSPE of the i-th model with h-month ahead predictions is defined as:

RSMPEi
h =

√√√√1
h

h

∑
j=1

(
∆sT+j|T − ∆ŝT+j|T

)2
, (14)

where T denotes the last month of the estimation period, and ∆sT+j represents the actual exchange
rate changes at time T + j, and ∆ŝT+j represents the predicted value of the out-of-sample exchange
rate changes at time T + j.

Table 5 shows the RMSPE of each model, and we report the results of h = 3, 6, and 12.

Table 5. Root mean square prediction error (RMSPE).

RW CH SV FF

3-month 0.1643 0.1073 0.1076 0.1079
6-month 0.3647 0.1886 0.1886 0.1882

12-month 0.5941 0.1668 0.1667 0.1659

Note: Table 5 shows the root mean square prediction error (RMSPE) of random walk and the three models. RW, CH,
SV, and FF represent random walk, three-, four-, and five-factor models, respectively.

Table 5 provides evidence that the three-, four-, and five-factor models outperformed the random
walk model for 3-, 6-, and 12-month-ahead forecasts from comparison of each RMSPE. The CH model
was the most superior model for the three-month-ahead prediction, and the FF model was the most
superior model for 6- and 12-month-ahead predictions.

4.4. Clark and West Test

We investigated whether the mean squared prediction errors (MSPEs) between two models had
statistically significant differences. There are many statistical tests for testing out-of-sample prediction,
such as the Diebold and Mariano test (Diebold and Mariano (1995)), the West test (West 1996), and
the Clark and West test (Clark and West 2006). The models in this study were the nested model of
random walk, following Engel et al. (2007), and we used the Clark and West test proposed by Clark
and West (2006). This test investigated whether the MSPEs of two models (Model 1 and Model 2) were
equivalent or not. The null hypothesis of the Clark and West test is that MSPEs of Model 1 and MSPEs
of Model 2 are equivalent. For example, H0 : MSPEs(CH) = MSPEs (SV). The alternative hypothesis is
MSPEs of Model 1 is larger than Model 2. For example, H1 : MSPEs(CH) > MSPEs (SV).

Table 6 shows the statistic values and p-values of the Clark and West test.
As shown in Table 5, the RMSPEs of the CH, SV, and FF models were smaller than one of the

random walk models. The null hypothesis was that the MSPEs of the random walk were equal to the
MSPEs of the CH (SV, FF) model. In Table 6, each null hypothesis could be rejected at a 1% statistical
significance level, so the CH, SV, and FF models were also superior to the random walk model from
the perspective of the Clark and West test. For three-month-ahead predictions, although the RMSPE of
the CH model was the smallest out of the three models, the Clark and West test could not reject the
null hypothesis at statistically significant levels. For the 6- and 12-month-ahead predictions, although
the RSMPE of the FF model was the smallest of the three models, the MSPEs of the FF model were
statistically equal to the MSPEs of the CH model, from the results of the Clark and West test.
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Table 6. Clark and West test for out-of-sample prediction.

3-Month CH SV FF

RW 4.94 3.1 3.28
p-value 0.000 0.001 0.001

CH — −1.29 −1.3
p-value — 0.901 0.903

SV — — 1.46
p-value — — 0.072

6-month

RW 11.78 12.19 13.63
p-value 0.000 0.000 0.000

CH — −2.79 −1.91
p-value — 0.997 0.971

SV — — 2.71
p-value — — 0.003

12-month

RW 2.73 2.63 2.64
p-value 0.003 0.004 0.004

CH — -2.12 -1.42
p-value — 0.983 0.922

SV — — 2.91
p-value — — 0.002

Note: Table 6 shows the Clark–West test (Clark and West (2006)) p-values. The left-hand side is Model 1, which is
the null model, and the upper-side is Model 2, which is the alternative model. This test evaluates the differences of
the mean squared prediction errors (MSPEs) between Model 1 and Model 2. The null hypothesis is that MSPEs of
model 1 = MSPEs of Model 2. The alternative hypothesis is MSPEs of Model 1 > MSPE of Model 2.

From these results, for the 3-, 6-, and 12-ahead predictions, all of the models outperformed the
random walk model and were statistically significant at a 1% significance level. The CH model was
the most statistically superior model to the SV and FF models for three-month-ahead predictions.
Although the RSMPE of the FF model was the smallest of the three models for 6- and 12-ahead
predictions, the MSPEs of the FF model were equal to the MSPEs of the CH model from the perspective
of the Clark and West statistical test.

5. Conclusions

In this paper, we constructed a regression model to predict exchange rate changes. Chen and
Tsang (2013) analyzed only the three-factor model. This paper extends their three-factor model to four
(SV)- and five (FF)-factor models based on Svensson (1994), and De Rezende and Ferreira (2013).

This study provides evidence that SV and FF models improve the re-scaled t statistic value of the
CH model when we regress the relative Nelson–Siegel factors on exchange rate changes. Moreover,
as Chen and Tsang (2013) previously show, the relative spread factors of the SV and FF models are
important factors for predicting exchange rate changes.

Using the artificial exchange rate changes based on Monte Carlo experiments, we calculate the
adjusted R2 of each model in rolling regression for a five-year window. The analysis shows that the
regression model based on the relative factors of the FF model is superior to the other two models.
The average of the adjusted R2 of the FF model is largest out of the three models for 3-, 6-, and
12-month-ahead predictions, and it is statistically significant from the perspective of the t test.

Finally, this paper investigates the out-of-sample prediction, comparing each RMSPE and the
Clark and West statistical test. We employ the random walk model as the benchmark model. The
CH model, SV model, and the FF model outperform the random walk model and the results are
statistically significant at a 1% significance level. The CH model is the most superior model in the
three-month-ahead prediction; on the other hand, the FF model is the most superior model in 6- and
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12- month-ahead predictions. Although the CH model is statistically the superior model to the SV
and FF models for three-month-ahead predictions, the prediction accuracy of the FF model is not
statistically significant for 6- and 12-month-ahead predictions from the perspective of the Clark and
West statistical test.

Although we analyze the predictability of the factors of the extended relative Nelson–Siegel
models, the models have invariant-time parameters. Recently, numerous studies have focused on the
time-varying parameter model. Extending the models in this paper to allow a time-varying parameter
model is a task for future research. Moreover, we did not consider the relationship among the factors
of the term structure of interest rates, macroeconomic activity, and monetary policy. To extend the
models to include a macro finance model is another task for future research.
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