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Abstract: Predictive modeling is a key technique in auto insurance rate-making and the
decision-making involved in the review of rate filings. Unlike an approach based on hypothesis
testing, the results from predictive modeling not only serve as statistical evidence for decision-making,
they also discover relationships between a response variable and predictors. In this work, we study
the use of predictive modeling in auto insurance rate filings. This is a typical area of actuarial practice
involving decision-making using industry loss data. The aim of this study was to offer some general
guidelines for using predictive modeling in regulating insurance rates. Our study demonstrates
that predictive modeling techniques based on generalized linear models (GLMs) are suitable in auto
insurance rate filings review. The GLM relativities of major risk factors can serve as the benchmark of
the same risk factors considered in auto insurance pricing.

Keywords: rate Filings; auto insurance regulation; generalized linear models; rate-making; predictive
modeling

JEL Classification: G22

1. Introduction

Modeling aggregate loss (Duan 2018; Frees 2014; Meyers 2007; Shi 2016) using insurance risk
factors is a key aspect in the decision-making of rate change review application. In Duan (2018),
a logistic regression model was proposed to classify the loss data of a Chinese company into different
risk levels using the burden index. Multivariate negative binomial models for the insurance claim
counts were proposed by Shi (2014) to capture the potential dependent structure among the different
claim types. In David (2015), the Poisson regression and negative binomial models were applied
to a French auto insurance portfolio to investigate the degree of risk using claim counts data.
In Najafabadi (2017), a k-inflated negative binomial mixture regression model was proposed to
model the frequency and severity of reported claims in an Iranian third-party insurance data set.
Authors in Tang (2014) proposed a new risk factor selection approach based on EM algorithm and
LASSO penalty, for a zero-inflated Poisson regression model. The analysis of car insurance data
from the SAS Enterprise Miner database was then used to show the usefulness of the proposed
method in rate-making. However, all those works focused on the study of the loss experience
of an individual company, rather than on the total loss at the industry level. In auto insurance
regulation, approval of the submitted rate change application by insurance companies requires
significant statistical evidence from a company’s past loss experience Chen (2009). Thus, a study of
total loss behavior at the industry level becomes important in providing a constructive review of a
company’s rate change applications.
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Auto insurance companies often consider various risk factors based on the available
loss experience, such as age, number of years of license, gender, number of years without accidents,
territory, and vehicle rate group. In addition, various socio-demographic factors are used to
differentiate the risk levels of drivers. More recently, usage-based insurance (UBI) programs
have been offered by many major insurance companies. The analysis of data associated
with UBI (e.g., mileages, traffic conditions, and driving habits) are new types of rating factors
(Cripe 2012; Husnjak 2015; Ma 2018). However, this is not the case for insurance regulators because
the detailed individual loss information is not available for the review of a rate change. Of course,
insurance regulators are not interested in reproducing company results when reviewing the rate
change application, but they need an analysis based on the aggregated loss experience from major
insurance companies or the whole industry. A review decision made by a regulator must be supported
by key findings on the rating factors at the industry level. Since insurance companies use many risk
factors in pricing, the question arises as to whether one can focus only on the major rating factors in the
review process. Answering to this question calls for use of suitable predictive modeling techniques that
can be applied in rate filings review, particularly in classification of risk (Hamid 2011; Watson 2004).
The aim of such modeling techniques is to find better understanding of the characteristics of major
risk factors. In Canada, among many other risk factors, Class and Driving Record (DR) are the most
important factors. The DR is a factor that includes levels 0, 1, 2, . . . 6+, where each level represents the
accumulated non-accident years of an insured, while Class represents a combination of driver age,
gender, and use of vehicle. The information that is used for carrying out relativity estimates is either
loss cost or loss ratios. None of the current predictive modeling of insurance loss uses industry
aggregate loss data, and focus on major risk factors. This motivated us to investigate if major risk
factors are able to capture most of the variation of total loss data at an industry level.

In predictive modeling, to better capture the major variation of loss data, considerable effort
has been spent on finding the optimal solution in terms of the minimum overall bias (Zhao 2011;
David 2015; Frees 2015; Garrido 2016). Due to its significant impact on insurance rate regulation, loss
cost or loss ratios modeling became popular (Harrington 1992; Tennyson 2009). When loss cost is
used, the bias is defined as the difference between the predicted loss cost and its actual observed value.
The minimum overall bias considers both the bias of estimating pure premium for each class of insured
and its associated number of exposures. To estimate the risk relativities, minimum bias procedure
(MBP) introduced by Bailey (1963) has often been used, and it has become a traditional approach in
non-life insurance pricing (Feldblum 2003). Recent research on actuarial practice has demonstrated
that generalized linear models (GLMs), an advanced statistical method, have become prevalent in
the field of rate-making, risk modeling, or forecasting in most of the European and Asian countries
(Ohlsson 2010). In Zhao (2011), GLM was used to model the loss frequency and loss severity of
automobile insurance in China to analyze the impacts of automobile, human, and rating territory
on loss frequency and severity. In David (2015), an overview of GLM in the calculation of the pure
premium given the observable characteristics of the policyholders was presented. In Garrido (2016),
GLM was fitted to the marginal frequency and the conditional severity components of the total claim
cost with the introduction of dependence between the number of claims and the average claim size
was studied. The main reason for the prevalence of GLM is that it enables a simultaneous modeling of
all possible risk factors as well as determination of the retention of risk factors in the model.

In the risk classification system of auto insurance companies, rate-making is one of the
most important aspects among many others, such as underwriting and marketing strategies
(Outreville 1990). Its major goal is to develop a set of risk factor relativities that can be further used for
pricing an insurance policy. Also, rate-making that uses industry-level data is a typical task in a rate
filings review. Even though an insurance company has access to the transactional loss and claim data,
it is clear that the rate-making process is based on the aggregate level of the company data. This is
because it is not in the company’s interest to evaluate the risk of a single exposure. The rate-making
is done based on the average loss costs of each combination of the levels of risk factors. The average



Int. J. Financial Stud. 2018, 6, 84 3 of 14

loss cost (or simply the loss cost in the following discussion) is defined as the total loss divided by
the total exposures within each possible combination of the levels of risk factors, where the total
loss and the total exposures are the aggregate measures of loss and exposures for that particular
combination. Traditionally, within actuarial practice, the estimates of rating factor relativities are
conducted by using MBP (Feldblum 2003). In rate filings reviews, often the rating variables of Class
and DR are considered. The relativities are estimated by MBP separately for each data set, that is,
from each respective combination of different years, territories, and coverages. The problem with
this approach as a rate-making technique is that the potential interactions among rating variables are
not considered. Thus, the results may not be comparable. Also, MBP is a numerical approach that is
unable to statistically evaluate the difference between relativities.

In this paper, we present the results of a comparative study employing MBP and GLM as
modeling tools. We focus on the study of industry-level data used in rate filings reviews to decide
if major data variation could be retained in the models, and how it is affected by the risk factors
under consideration. We investigate the consistency of the results obtained from both MBP and
GLM methods. It is expected that one could replicate the results obtained by MBP by applying
GLM to the same data set. For ease of understanding the interaction of rating variables, we mainly
focus on the predictive modeling of loss cost using DR, Class, and accident year as the major rating
variables. The significance of this work is in providing general guidelines for the use of predictive
modeling in an insurance rate filings review for auto insurance regulators. In particular, this work
demonstrates the usefulness of GLM in rate-making for rate filing purposes. This approach can help
us to understand how a decision is being made when focusing only on major risk factors. This paper
is organized as follows. In Section 2, we summarize the data used in this work, and discuss the
methodologies, including MBP and GLM, used for producing the results presented in this paper.
In Section 3, comparative results obtained from MBP and GLM under different model settings are
analyzed. Finally, in Section 4, we conclude our findings and provide summary remarks.

2. Methods

2.1. Minimum Bias Procedure

Let rij be a collection of observed values. It can be loss severity, claim counts, average loss cost,
or loss ratio, depending on the interest of modeling, and how we define a response variable. Let x1i be
the value contributed by the ith DR level (i.e., DR takes values 0, 1, 2, 3, 4, 5, 6+), and let x2j be the
value contributed by the jth level of Class. Also, let wij be the number of exposures of risk in the (i,j)th
combination of levels of the underlying risk factors. The objective of MBP is to find optimal solutions
for x1i and x2j, subject to the following two sets of equations as constraints (Feldblum 2003):

∑
j

wij(rij − (x1i + x2j)) = 0, ∀i, where i = 1, 2, . . . , 7,

∑
i

wij(rij − (x1i + x2j)) = 0, ∀j, where j = 1, 2, . . . , 14.

Numerically, MBP iteratively solves for x1i and x2j using the following two equations, until x(l)1i

and x(l)2j converge at the lth step, where

x(l+1)
1i = ∑

j
wij(rij − x(l)2j )

/
∑

j
wij,

x(l+1)
2j = ∑

i
wij(rij − x(l)1i )

/
∑

i
wij.
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The relativities are obtained by selecting kth levels as a base, which are defined as x1i
x1k

, ∀i for DR,

and
x2j
x2k

, ∀j for Class.

2.2. Generalized Linear Models for Rate-Making

The main idea of generalized linear models (GLMs) (De Jong 2001; Haberman 1996;
Ohlsson 2010) in rate-making is to model a transformation of the expected value of a response variable,
which in our case is rij. The transformation function g(µij) is called the link function, where µij = E(rij).
The model that is used to explain the transformation function g is a linear model, and it can be written
as follows:

g(µij) = Y>β, or g(rij) = Y>β + εij,

where Y>=[y1i, y2j] and β>=[β1i, β2j]. Here, y1i and y2j are dummy variables. That is, y1i takes the
value 1 when i corresponds to the ith level of DR, otherwise it is zero. y2j takes the value 1 when j
corresponds to the jth level of Class, otherwise it is zero. εij is the error random variable assumed
to have a certain probability distribution function. Y>β is referred to as a systematic component.
The variance of εij is assumed to have the following functional relationship with the mean response:

Var(εij) =
φV(µij)

ωij
,

where V(x) is called a variance function. The parameter φ scales the variance function V(x),
and ωij is a constant assigning a weight. This result comes from a family of distributions called
the exponential family (McCullagh 1989), which determines the parameters φ and ωij. The case
when V(x) = 1 implies a normal distribution. If V(x) = x, then the distribution is Poisson.
If V(x) = x2, then it is a gamma distribution, and if V(x) = x3, then it is an inverse Gaussian
distribution (Mildenhall 1999). These distributions are the distributions used in this work. In general,
the following relationship between variance function and mean value of response is considered:

V(µij) ∼ µ
p
ij.

We discussed the cases when p=0, 1, 2, and 3. For p < 0 or p > 2, the distributions are
called Tweedie distributions (note that the inverse Gaussian belongs to this class of distribution)
(Dunn 2001; Tweedie 1957).

In the case when g is an identity function, GLM becomes a general linear model.
Thus, the relativities are obtained by computing the exponential transformation of model coefficients,
which are denoted by exp{β1i} and exp{β2j}, ∀ i and j (Ohlsson 2010). In this work, the following
model specifications are investigated:

• Systematic component: µ(Loss Cost)∼Class + DR;
• Error distribution functions: Gaussian, Poisson, inverse Gaussian, and gamma;
• The multiplicative model, resulting in a log link function for GLM, that, is g = log;
• The number of exposures is used as a weight value.

From the way the systematic component for the given data is modeled, one can see that for each
combination of risk factor levels, the loss cost has a unique distribution, and the model specifies a
common variation captured by the error distribution function. Because the standard deviation estimate
is available for each level of risk factors, one can easily construct their confidence intervals based
on the normal approximation approach. To validate the choice of log-scale, a Box-Cox transform
(Osborne 2010) can be applied. If the obtained parameter value is close to zero, this implies that a
selection of the log link function is appropriate for the given data.
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2.3. Handling Weights in GLM

In general, it is expected that GLM will be applied to either an industry-level data summary or a
company’s transactional data summary. There are no fundamental differences between these two cases,
as they are only subject to different levels of data aggregation. In transactional data summary, the loss
costs are calculated in exactly the same way as in the industry data summary. It is important to consider
a suitable weight function for each cell data, so that the variance function of the pre-defined error
distribution in GLM is appropriately modeled. The number of exposures associated with each cell of
the two-way data summary (by DR and Class) is used as a weight for the loss cost approach. The main
purpose is to offset the different levels of data variation among the cells. Under the definition of the
weight function in GLM, the assumption of having an identical error distribution for each cell of loss
cost becomes reasonable.

In practice, there is flexibility in specifying the weight function, but this depends on how each
cell data within the summary is defined. In addition to the use of the number of exposures at each
combination as a weight, a new type of weight function can be defined by

wij =
Ei × Ej

E2
total

,

where Ei is the one-way summary of the number of exposures for the ith level of DR, and Ej is the
one-way summary of the number of exposures for the jth level of Class. Etotal is the total number of
exposures. Also, another weight function can be defined by

wij =
Ei

Etotal

when one wants to emphasize the importance of DR, by ignoring the effect of the number of exposures
from the Class. Similarly, a third weight function can be defined by

wij =
Ej

Etotal
.

2.4. Inclusion of Year as a Major Risk Factor

The estimates of relativities obtained from multiple-year loss experience are often considered to
be more robust. One approach is to combine the multiple-year data together and ignore their year
labels. In this case, the credibility of loss cost for each combination is improved as the corresponding
number of exposures is increased with the increase of number of years of data. Thus, the number of
exposures is now based on multiple years of aggregation. However, the disadvantage of this approach
is that the effect from different years on relativity estimates is transferred to the relativities of other
risk factors. A better approach is to add Year as a major risk factor to the GLM, in which the systematic
component is re-defined as

log(Loss Cost) ∼ Class + DR + Year.

Since we added Year as another variable, Y>=[y1i, y2j, y3k] and β>=[β1i, β2j, β3k], where y3k
is a dummy variable taking the value 1 when k corresponds to the kth level of Year. The β3k
is the associated coefficient. In this approach, the effect from the factor Year can be estimated.
Also, the data variation captured by the model is improved by the consideration of an additional
risk factor. Under this approach, the estimate of relativity is less dependent on the choice of an error
distribution function. This implies the robustness of estimating relativity using GLM. The relativity of
Year reflects the level of loss cost for that particular year. Since loss costs of later years have not yet
fully developed to the ultimate loss level, a smaller value of relativity of Year may only mean a lower
loss cost for that particular year, based on the available reported loss amounts.
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2.5. Fundamental Difference between MBP and GLM

The use of loss cost as a response variable is a common approach when applying MBP to
industry-level data (Brown 1988; Garrido 2016; Ismail 2009). The loss cost approach considers both
the relativities caused by loss frequency and loss severity. Within the loss cost approach, the relativities
are obtained by a conditional iterative process, which implies that the lth step of the output of the
algorithm becomes the input of the (l+1)th step, Brown (1988). The minimization of the total bias is
based on the marginal balance principle that is applied to each column and each row of the loss cost
data matrix, respectively, where the row and the column correspond to DR and Class. Essentially, MBP
treats the bias within each cell of the data matrix as being independently and identically distributed,
without actually measuring its distribution. This method is less practical when the total number of
risk factors is large, due to the nature of the numerical approach. This approach does not give optimal
estimate for base rate (Brown 1988), which is important for calculating pure premium. In terms of
numerical convergence, the initial value condition plays an important role. The initial values are
assigned based on the one-way summary of loss costs. Due to the nature of the iterative process,
the final solution is often affected by the choice of initial values. Each value will be adjusted based on
the result from the previous step.

Unlike MBP, GLM specifies an error distribution function for the bias of loss costs, and transforms
observed values by link function to improve the linearity between the transformed response variable
and the risk factors. The transformation is introduced to model a potential non-linear relationship
via an appropriate mapping from the original space of the mean value of observations to a linear
feature space. The selected error distribution function mainly captures the true distribution of
underlying loss cost. Instead of placing a balance constraint for each row and column of data, GLM
uses the assumption that within each row and each column, the error function is common to the bias.
This constraint has a similar effect on determining a unique solution, as it was observed in MBP.
However, in MBP, an iterative process is used to solve a non-linear optimization problem. The idea
of using the GLM method is to fit the bias to a certain distribution and use a statistical approach to
estimate the distribution parameters. In this case, an interval estimate of relativity becomes possible.
Because of this, the use of GLM is more powerful than using MBP in terms of the statistical validation
of test data. When specifying an equivalent constraint for both MBP and GLM, one can recover the
same estimates of relativities from both MBP and GLM (Brown 1988; Mildenhall 1999).

With regards to making a prediction of loss costs, both MBP and GLM require a common base
rate for all rating variables. The common base estimated using GLM corresponds to the intercept
of the model. For MBP, it is calculated from the total loss divided by the total exposures for all risk
factors. Therefore, the performances of MBP and GLM differ in minimizing overall bias: the base
rate from GLM is a model estimate, but the base rate for MBP is just an empirical estimate. However,
the estimated relativities can be the same for certain cases for both methods.

2.6. Some Discussions

In general, the use of GLM enables us to select variables according to their statistical significance.
This is likely why GLM has been considered to be the most powerful tool for non-life insurance pricing
(Ohlsson 2010). One of the important tasks of the pricing problem is ensuring that risk factors and
their levels are included in the model. As the dimension of the risk factors and their associated number
of levels increase, it becomes challenging to interpret the impact of particular combinations of the
rating variables on the loss cost. Therefore, focusing on the most significant rating variables may
be superior. However, we do not encounter this difficulty within the scope of this work, as we only
consider a few important risk factors that appear in the rate filings review. The relativities estimates
of major risk factors become a general guideline for rate filings reviewers to better understand the
nature of insurance rate fluctuations when comparing the results from different companies. Thus,
the selection of a proper approach makes rate regulation statistically more sound, as the results are
less affected by reviewer experience and judgement.
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Recently, the generalized additive model (GAM) has been proposed in predictive modeling for
rate-making (Denuit 2004; Fuzi 2016; Klein 2014). From a technical perspective, GAM is an extension
of GLM. In statistics, data are categorized into two types, numerical or categorical. When modeling
data in practice, there is often no clear-cut rule about the data type. In most cases, it depends on expert
opinion and the purpose of modeling. This means that for some of the variables within rate-making,
we can have different types of treatments. For instance, the DR takes values 0, 1, 2, 3, 4, 5, 6+. If our
goal is to estimate the average differential for each driving record, we assume that the collected data
are categorical. However, since there is a natural ordering of the data, we expect that with the increase
of the value of driving record, the differential decreases. It is reasonable to expect that there is a
monotonic relationship within different driving records. Therefore, one can impose this relationship on
a model by specifying the functional form of the Driving Record. This is the idea behind the extension
of GLM to GAM.

3. Results

In this study, we considered an industry-level data set for accident years from 2007–2009, with
third party liability (TPL) coverage and urban territory. The relativities of DR and Class at various
levels were obtained for the accident year 2007 data set by both MBP and GLM. Additionally, a data
set comprising these three accident years as a whole was used for relativity estimation for both cases
of with and without Year as a rating factor. The modeling and analysis were based on the aggregate
measure of each combination of levels among all factors that we considered. The summary of average
loss costs is reported in Table 1. The value of each cell represents the loss cost of each given combination
of levels from DR and Class. Notice that in the table the NA values mean that the loss costs were
not available for these cells, which causes the problem of dealing with the missing values in the later
computation. In some cases, zero values of the loss cost appeared in the summary data table. If this
happens, then zero values were simply replaced by NAs. Ideally, we expected to have full information
in the summary data table. Since we used industry-level data, the impact of missing values on some
combinations of DR and Class was reduced when compared to the cases that dealt with company-level
data. Thus, it makes sense to use the estimated relativities as a benchmark in rate filings review.

Table 1. Two-way summary of loss cost by Driving Record (DR) and Class. The values represent the dollar amount
of average loss cost for the given combination of Class and DR. Note that there are no levels 4 and 14–17, because
this is how the level is specified in the given data set.

Class1 Class2 Class3 Class5 Class6 Class7 Class8 Class9 Class10 Class11 Class12 Class13 Class18 Class19

DR0 559 824 675 372 517 2006 2359 2513 3087 1109 1507 397 946 461
DR1 510 644 508 146 433 660 2398 1435 1300 995 1113 1951 644 436
DR2 395 709 580 90 149 697 290 1010 1533 992 1151 1068 558 827
DR3 563 573 648 137 187 470 509 544 2201 1218 881 1167 848 471
DR4 458 450 686 145 78 1288 147 787 936 849 679 578 532 776
DR5 388 444 585 62 224 329 708 214 NA 152 629 659 320 476
DR6 275 301 374 78 90 345 NA 657 NA NA 295 479 NA 274

The obtained results of model coefficients and relativities are presented in Figure 1 for the case of
using Gaussian distribution as an error function. The results include both the results of the general
linear model and of the generalized linear models. From Figure 1, we can see that there were no
significant large differences among the estimates of relativities. However, the general linear model gave
slightly higher overall average relativities, which implies that the pure premium using results from
the general linear model would be overestimated when compared to the generalized linear models.
When GLM results were compared to the ones from MBP, a similar pattern was observed. This confirms
our expectation that GLM would perform better in terms of reducing the effects of the interaction of
risk factors, leading to lower estimates of relativities. However, this is only applicable for a Gaussian
error function, which implies that the underlying assumption of the loss cost has to have a lighter tail
distribution. This suggests that in modeling loss cost using GLM with a Gaussian error function, a large
loss, corresponding to catastrophic events, must be removed before fitting the models to the data.
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This is because the loss data without removing large loss often follow a heavy-tailed distribution
(Bradley 2003; McNeil 1997).

		 Gaussian	 DR0	and	CLASS1	AS	a	BASE	 DR3	and	CLASS2	AS	a	BASE	
		 V1	(Coef)	 EXP(V1)	 EXP(V1)	

		
Generalized(log	

link)	
Linear	(Identity	

link)	
Generalized	(log	

link)	
Linear	(Identity	

link)	
Generalized(log	

link)	 Linear	(Identity	link)	 MBP	
One-Way	
Relativity	

(Intercept)	 6.5431	 6.6070	 694.45	 740.28	 790.85	 947.03	 		 		
DR0	 0.0000	 0.0000	 1.000	 1.000	 1.285	 1.416	 1.349	 1.402	
DR1	 -0.2575	 -0.2523	 0.773	 0.777	 0.993	 1.100	 1.064	 1.111	
DR2	 -0.2356	 -0.3326	 0.790	 0.717	 1.015	 1.015	 1.051	 1.122	
DR3	 -0.2506	 -0.3477	 0.778	 0.706	 1.000	 1.000	 1.000	 1.000	
DR4	 -0.4479	 -0.5224	 0.639	 0.593	 0.821	 0.840	 0.859	 0.914	
DR5	 -0.5898	 -0.6337	 0.554	 0.531	 0.712	 0.751	 0.743	 0.779	
DR6	 -0.9433	 -0.9965	 0.389	 0.369	 0.500	 0.523	 0.518	 0.534	

AVG	of	DR	 		 		 		 		 0.576	 0.601	 0.596	 		
CLASS1	 0.0000	 0.0000	 1.000	 1.000	 0.886	 0.904	 0.898	 0.858	
CLASS2	 0.1206	 0.1014	 1.128	 1.107	 1.000	 1.000	 1.000	 1.000	
CLASS3	 0.2778	 0.3019	 1.320	 1.352	 1.170	 1.222	 1.205	 1.219	
CLASS5	 -1.2296	 -1.3333	 0.292	 0.264	 0.259	 0.238	 0.244	 0.425	
CLASS6	 -0.8311	 -0.9608	 0.436	 0.383	 0.386	 0.346	 0.370	 0.625	
CLASS7	 0.2886	 0.2151	 1.335	 1.240	 1.183	 1.120	 1.115	 1.137	
CLASS8	 0.5864	 0.1478	 1.797	 1.159	 1.593	 1.048	 1.560	 2.726	
CLASS9	 0.6564	 0.4939	 1.928	 1.639	 1.709	 1.481	 1.674	 2.267	
CLASS10	 1.3519	 1.3259	 3.865	 3.766	 3.426	 3.403	 3.474	 6.255	
CLASS11	 0.6990	 0.6834	 2.012	 1.981	 1.783	 1.790	 1.814	 3.137	
CLASS12	 0.5532	 0.4543	 1.739	 1.575	 1.541	 1.423	 1.500	 2.192	
CLASS13	 0.6096	 0.5539	 1.840	 1.740	 1.631	 1.572	 1.633	 2.026	
CLASS18	 0.3414	 0.3342	 1.407	 1.397	 1.247	 1.262	 1.268	 2.236	
CLASS19	 0.1236	 0.0995	 1.132	 1.105	 1.003	 0.998	 1.023	 1.358	

AVG	of	CLASS	 		 		 		 		 0.973	 0.976	 0.978	

Figure 1. Model coefficients (i.e., V1 columns) and relativities (i.e., EXP(V1) columns) obtained
respectively under generalized linear model (GLM) with Gaussian error distribution function &
log link function and under GLM with Gaussian error distribution function & the identity link function.
The loss cost data from the accident year 2007 was used. MBP: minimum bias procedure.

The results obtained by using other error distributions, including gamma and inverse Gaussian,
are presented in Figure 2. The estimates of relativities for both DR and Class were larger than the
ones obtained from MBP or Poisson distribution. The MBP and Poisson distribution led to the same
theoretical results—see Brown (1988). This may mean that the use of a heavy tail distribution in an
error distribution function gives larger estimates of relativities. Risk increased when the tail of the
loss distribution was heavier, resulting in larger relativities for the rating factors. When the relativities
obtained from GLM or MBP were compared to one-way relativities, we saw that they were mostly
underestimated. This suggests that more risk factors may need to be included in order to better capture
data variation. Rate filings reviews do not aim at pricing, but focus instead on producing results that
help to better understand the nature of major risk factors used by companies.

By looking at the loss cost or the one-way relativities of loss cost for DR1 and DR2 (i.e., the last
column in both Figures 1 and 2), we realized that there was a reversal for the relativity of DR1 and DR2.
We expected a higher relativity for the insured who had less experience. Unfortunately, the results
from the one-way summary were not as good as the ones obtained by GLM or MBP because the
one-way relativity based on a two-way summary loss cost ignores the differences of the number of
exposures among cells. Therefore, in order to better model loss costs using GLM, a suitable choice of a
weight function needs to be specified, reflecting the difference of data value in each cell caused by the
different levels of loss aggregation.

The results of relativity estimates and their comparisons under different model assumptions are
reported in Figures 3–6. In Figures 3 and 4, the overall pattern for DR was consistent for all cases.
Relativity decreased with the increase of the number of non-accident years. This means that prior
driving record proved to have validity in predicting a driver’s accident risk. This result coincides
with the results of in Peck (1983), who demonstrated the significant predictive power of DR as a
rating factor. In all cases, the relativities of DR obtained from GLM were close to the actual relativities
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calculated from the one-way summary. For Classes 1 to 7, which contained the majority of the
risk exposures, the estimated relativities for all considered models were close to the actual one-way
estimates. The model estimates’ departure from the actual one-way relativities became significant only
for those Classes that contained a smaller number of risk exposures. The values of the coefficients
and relativities of the considered methods are displayed in Figure 7. Overall, these values coincided
with the actual values, but GLM underestimated the relativities at some levels of Class—namely,
Class8, Class10, Class11, and Class18. We believe that this is due to both the missing values and the
level of credibility of data from those classes. Combining Class with DR, we were able to see that
Class was successful in explaining the loss cost data. A similar research outcome was reported in
Lourens (1999). Unlike a single class with multiple characteristics as in our work, drivers’ sex, age,
and level of education were used in Lourens (1999).

		
		 		 		 		 DR0	and	CLASS1	AS	A	BASE	 DR3	and	CLASS2	AS	A	BASE	
		 V1	(Coef)	 EXP(V1)	 EXP(V1)	

		 Gamma	 Poisson	
Inverse	
Gaussian	 Gamma	 Poisson	 Inver.Gauss	 Gamma	 Poisson	

Inverse	
Gaussian	 MBP	

One-Way	
Relativity	

(Intercept)	 6.66717	 6.56395	 6.90985	 786	 709	 1002	 1085	 856	 1749	 		 		
DR0	 0.00000	 0.00000	 0.00000	 1.000	 1.000	 1.000	 1.526	 1.344	 1.922	 1.349	 1.402	
DR1	 -0.28298	 -0.23742	 -0.40088	 0.754	 0.789	 0.670	 1.150	 1.060	 1.287	 1.064	 1.111	
DR2	 -0.37133	 -0.24853	 -0.68348	 0.690	 0.780	 0.505	 1.052	 1.048	 0.970	 1.051	 1.122	
DR3	 -0.42242	 -0.29582	 -0.65332	 0.655	 0.744	 0.520	 1.000	 1.000	 1.000	 1.000	 1.000	
DR4	 -0.55469	 -0.45061	 -0.80964	 0.574	 0.637	 0.445	 0.876	 0.857	 0.855	 0.859	 0.914	
DR5	 -0.68957	 -0.59600	 -0.92040	 0.502	 0.551	 0.398	 0.766	 0.741	 0.766	 0.743	 0.779	
DR6	 -1.05704	 -0.95752	 -1.29788	 0.347	 0.384	 0.273	 0.530	 0.516	 0.525	 0.518	 0.534	

AVG	of	DR	 		 		 		 		 		 		 0.612	 0.594	 0.612	 0.596	 		
CLASS1	 0.00000	 0.00000	 0.00000	 1.000	 1.000	 1.000	 0.905	 0.898	 0.908	 0.898	 0.858	
CLASS2	 0.10006	 0.10776	 0.09652	 1.105	 1.114	 1.101	 1.000	 1.000	 1.000	 1.000	 1.000	
CLASS3	 0.30377	 0.29452	 0.30893	 1.355	 1.342	 1.362	 1.226	 1.205	 1.237	 1.205	 1.219	
CLASS5	 -1.30220	 -1.26143	 -1.36074	 0.272	 0.283	 0.256	 0.246	 0.254	 0.233	 0.244	 0.425	
CLASS6	 -0.89934	 -0.85541	 -0.97930	 0.407	 0.425	 0.376	 0.368	 0.382	 0.341	 0.370	 0.625	
CLASS7	 0.23256	 0.25182	 0.22531	 1.262	 1.286	 1.253	 1.142	 1.155	 1.137	 1.115	 1.137	
CLASS8	 0.44473	 0.53990	 0.23871	 1.560	 1.716	 1.270	 1.412	 1.541	 1.153	 1.560	 2.726	
CLASS9	 0.61420	 0.62362	 0.63693	 1.848	 1.866	 1.891	 1.672	 1.675	 1.717	 1.674	 2.267	
CLASS10	 1.34839	 1.35100	 1.32907	 3.851	 3.861	 3.778	 3.485	 3.467	 3.430	 3.474	 6.255	
CLASS11	 0.70853	 0.70173	 0.70663	 2.031	 2.017	 2.027	 1.838	 1.811	 1.841	 1.814	 3.137	
CLASS12	 0.46444	 0.51273	 0.40763	 1.591	 1.670	 1.503	 1.440	 1.499	 1.365	 1.500	 2.192	
CLASS13	 0.58335	 0.59774	 0.56892	 1.792	 1.818	 1.766	 1.621	 1.632	 1.604	 1.633	 2.026	
CLASS18	 0.34876	 0.34417	 0.33834	 1.417	 1.411	 1.403	 1.282	 1.267	 1.274	 1.268	 2.236	
CLASS19	 0.12555	 0.12990	 0.11738	 1.134	 1.139	 1.125	 1.026	 1.022	 1.021	 1.023	 1.358	

AVG	of	CLASS	 		 		 		 		 		 		 0.982	 0.979	 0.983	 0.978	

Figure 2. Model coefficients (i.e., V1 columns) and relativities (i.e., EXP(V1) columns) obtained
respectively under GLM with log link function and various error distribution functions including
gamma, Poisson, and inverse Gaussian. The loss cost data from the accident year 2007 was used.
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Figure 3. Results of relativities for DR obtained from GLM under Gaussian family.
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Figure 4. Results of relativities for DR obtained from GLM under gamma and Poisson models.
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Figure 5. Results of relativities for Class obtained from GLM under Gaussian family.
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Figure 6. Results of relativities for Class obtained from GLM under gamma and Poisson models.

The values of the coefficients and relativities obtained by the GLM for the data with three accident
years combined are reported in Figures 8 and 9. Recall that for the one-way relativities we observed
the reversal of the values for DR1 and DR2 in both the 2007 and 2009 accident years (see Figures 1
and 2). However, after combining three years’ data, this reversal of the values disappeared in one-way
relativities. This implies that the use of the data of three accident years combined was better in terms
of discovering the desired pattern. The results obtained by GLM for both cases with and without Year
as a risk factor did not display a reversal phenomenon. Also, with the inclusion of Year as a risk factor,
we could capture its effect on loss cost. From the results of Figures 8 and 9 we see that this effect was
significant among different years.
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From the results displayed in Figures 8 and 9, we can conclude that the model with Year as a risk
factor was a good choice from the rate filings review prospective, as it could avoid extra uncertainty
from single-year data. The results from the data of three years combined were more reliable and more
suitable for acting as a benchmark for the rate filings review. The model can be easily extended to
further include the territory as additional risk factor. However, we feel that from the rate filing review
perspective it is not necessary, because it will significantly decrease the number of exposures for each
combination of given levels. Also, we found that the definition of territory presents another difficulty,
as it may change from time to time. Definitions of DR and Class are relatively more stable.

0	

500	
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1500	

2000	
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3500	

1	 1	 1	 1	 2	 2	 2	 3	 3	 3	 3	 5	 5	 5	 6	 6	 6	 6	 7	 7	 7	 8	 8	 8	 9	 9	 9	 9	 10	10	11	 11	 11	12	12	12	12	13	 13	 13	18	18	18	19	19	19	19	

Observed.L.C	

Gamma.fitted	

Figure 7. The predicted loss costs associated with different levels of Class under GLM with log link
function and gamma error distribution function.

TPL-Urban	2007-2009		 DR3	and	CLASS2	AS	A	BASE	
		 EXP(V1)	

		 Gamma	 Poisson	 Inverse.Gauss	 MBP	 One-Way.Relativity	
(Intercept)	 718	 677	 790	 		 		

DR0	 1.279	 1.231	 1.378	 1.231	 1.267	
DR1	 1.074	 1.037	 1.134	 1.037	 1.096	
DR2	 0.950	 0.962	 0.923	 0.962	 1.048	
DR3	 1.000	 1.000	 1.000	 1.000	 1.000	
DR4	 0.897	 0.862	 0.956	 0.862	 0.956	
DR5	 0.779	 0.760	 0.821	 0.760	 0.842	
DR6	 0.525	 0.513	 0.555	 0.513	 0.562	

AVG	of	DR	 		 		 		 0.586	 		
CLASS1	 0.930	 0.927	 0.931	 0.927	 0.889	
CLASS2	 1.000	 1.000	 1.000	 1.000	 1.000	
CLASS3	 1.231	 1.214	 1.238	 1.214	 1.221	
CLASS5	 0.292	 0.283	 0.312	 0.283	 0.467	
CLASS6	 0.338	 0.334	 0.345	 0.334	 0.550	
CLASS7	 1.167	 1.173	 1.165	 1.173	 1.158	
CLASS8	 1.468	 1.525	 1.433	 1.525	 2.658	
CLASS9	 1.786	 1.741	 1.854	 1.741	 2.289	
CLASS10	 2.740	 2.701	 2.883	 2.701	 4.860	
CLASS11	 1.738	 1.727	 1.803	 1.727	 2.969	
CLASS12	 1.349	 1.391	 1.322	 1.392	 2.021	
CLASS13	 1.435	 1.434	 1.445	 1.435	 1.755	
CLASS18	 1.260	 1.255	 1.302	 1.255	 2.201	
CLASS19	 1.126	 1.127	 1.130	 1.127	 1.490	

AVG	of	CLASS	 		 		 		 0.987	

Figure 8. Relativities obtained under GLM with log link function and various error functions including
gamma, Poisson, and inverse Gaussian. The combined data of three accident years’ loss cost were used.
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Relativity	Estimate	using	Three	Year	Data	+	Year	as	a	Variable	
TPL+Ubran	

Generlized	Gaussian	 Gamma	 Poisson	 Linear	Gaussian	 2007	 2008	 2009	
Base	 676.5770	 665.7869	 665.9685	 634.4699	
YEAR2007	 1.0000	 1.0000	 1.0000	 1.0000	
YEAR2008	 0.8641	 0.8917	 0.8855	 0.8910	
YEAR2009	 0.7473	 0.7819	 0.7700	 0.7804	

One	-way	relativities	 Avg.	
DR0	 1.2332	 1.2744	 1.2359	 1.1962	 1.4228	 1.0081	 1.4458	 1.2922	
DR1	 1.0244	 1.0755	 1.0434	 1.0389	 1.1261	 1.0946	 1.0849	 1.1019	
DR2	 0.9771	 0.9517	 0.9643	 0.9211	 1.1368	 0.8533	 1.1918	 1.0606	
DR3	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	
DR4	 0.8340	 0.9047	 0.8628	 0.8629	 0.9269	 0.8590	 1.1467	 0.9775	
DR5	 0.7529	 0.7852	 0.7638	 0.7677	 0.7916	 0.8561	 0.9105	 0.8527	
DR6	 0.5146	 0.5331	 0.5190	 0.5253	 0.5424	 0.5262	 0.6618	 0.5768	
CLASS1	 0.9165	 0.9301	 0.9262	 0.9287	 0.85762	 0.93209	 0.88218	 0.8906	
CLASS2	 1.0000	 1.0000	 1.0000	 1.0000	 1.00000	 1.00000	 1.00000	 1.0000	
CLASS3	 1.1893	 1.2312	 1.2171	 1.2233	 1.21875	 1.31647	 1.13487	 1.2234	
CLASS5	 0.2800	 0.3010	 0.2859	 0.2715	 0.40807	 0.49945	 0.50632	 0.4713	
CLASS6	 0.3392	 0.3386	 0.3373	 0.3209	 0.60465	 0.55313	 0.47658	 0.5448	
CLASS7	 1.1818	 1.1684	 1.1708	 1.1498	 1.13667	 1.14339	 1.19736	 1.1591	
CLASS8	 1.6123	 1.5116	 1.5556	 1.1960	 2.75350	 2.64238	 2.53476	 2.6435	
CLASS9	 1.7069	 1.8077	 1.7381	 1.5733	 2.26476	 1.91548	 2.73710	 2.3058	
CLASS10	 2.7508	 2.7392	 2.7205	 2.3935	 6.25818	 3.16067	 4.89364	 4.7708	
CLASS11	 1.7626	 1.7337	 1.7412	 1.5847	 3.13759	 3.54148	 2.12313	 2.9341	
CLASS12	 1.4525	 1.3448	 1.3948	 1.3002	 2.19119	 2.05428	 1.71716	 1.9875	
CLASS13	 1.4533	 1.4277	 1.4356	 1.3988	 2.02595	 1.54043	 1.63193	 1.7328	
CLASS18	 1.2626	 1.2753	 1.2641	 1.2308	 2.23503	 2.04992	 2.31546	 2.2001	
CLASS19	 1.1188	 1.1369	 1.1298	 1.1045	 1.35728	 1.59652	 1.53518	 1.4963	

Figure 9. Relativities obtained under GLM with log link function and various error functions including
gamma, Poisson, and inverse Gaussian. Three accident years’ loss cost data were used, and the model
included Year as a rating variable. DR and Class relativities obtained from MBP and the one-way
analysis are also reported.

4. Conclusions

The GLM procedure with Poisson error distribution function is equivalent to MBP in estimating
relativities. However, due to the different methods of estimating base rate, the GLM with Poisson error
function outperformed MBP in terms of the overall bias. For the data considered, the gamma error
function was the most appropriate error distribution. For the relativity estimation under multiple-year
loss experiences, the gamma error distribution function was the only loss function that led to a
monotonic decrease with the increase of driving experience. Because a monotonic decrease is desired
for DR in auto insurance pricing, this suggests that the gamma error distribution function should
be used. When GLM is applied to aggregate data, a weight function is needed if one believes that there
is some bias from estimating average loss cost for each combination of risk factors, or if the level of
data variation at each cell needs to be considered. The commonly used weight function is the number
of exposures for each combination of the levels of the risk factors. However, GLM is able to reduce the
effect of potential interaction of risk factors. Because of this, the obtained relativities for major risk
factors are usually lower than those from the one-way analysis. GLM can be expanded by including
additional rating variables, conducting a statistical test of significance, and evaluating the predictive
power of the model. Since GLM is an efficient and reliable predictive tool, it is popular in other areas
of predictive modeling.

The overall implication of the presented findings is that the pricing issues in a complex insurance
system from the rate filings perspective is better understood. The estimates of major risk factors
captured major pricing patterns. The results explain the natural variation in the process when
reviewing a company’s rate change application. This enhances decision-making in operations using
only major risk factors. because it is less affected by the details of the company’s results. Understanding
how advanced statistical techniques work may also lead to a better communication with insurance
companies in the process of discussing rate changes. Our study demonstrated that GLM is suitable as
a predictive modeling technique in auto insurance rate filings review. The GLM relativities of major
risk factors within rate filings review can be used as the benchmark for the same risk factors used in
auto insurance pricing.
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