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Abstract: Global environmental goals and the Paris agreement declared the need to avoid dangerous
climate change by reducing emissions of greenhouse gases with an ultimate goal to transform today’s
policies and reach climate neutrality before the end of the century. In the medium to long-term,
climate policies imply rising CO2 price and consequent financial risk for carbon-intensive producers.
In this context, there is a need for tools to buffer CO2 prices within the period of transition to greener
technologies when the emission offsetting markets expose high volatility. Contracts for optional
future purchase of carbon credits could provide emitters with a cost-efficient solution to address
existing regulatory risks. At the same time, this would help to create much needed financing for
the projects generating carbon credits in the future. This work presents the concept of a flobsion—a
flexible option with benefit sharing—and demonstrates its advantages in terms of risk reduction
for both seller and buyer as compared to both a “do nothing” strategy (offsetting at future market
price) and a traditional option with a fixed strike price. The results are supported analytically and
numerically, employing as a benchmark the dataset on historical CO2 prices from the European
Emission Trading Scheme. Flobsion has the potential to extend the traditional option in financial
applications beyond compliance markets.

Keywords: CO2; emissions offsetting; options; financial risk; benefit sharing; climate policy

1. Introduction

The sustainable development agenda United Nations Development Programme (2016) and the
need to restrain climate change UNFCCC (2015) limit greenhouse gas (GHG) emissions into the
Earth’s atmosphere and thus constrain the future use of fossil fuel. While concrete mechanisms of
achieving these goals are not yet in place, there is a clear move in this direction. On the technological
side, there is a substantial progress on electric vehicles that were considered as a potential future
development a decade ago and already in 2016 the global electric car stock surpassed two million
vehicles after crossing the 1 million threshold in 2015; the registrations of electric cars hit a record
in 2016, with over 750 thousand sales worldwide International Energy Agency (2017). The energy
used by the industry and households (also to recharge car’s batteries) is coming partially from
renewable sources, and that share is increasing, so between 2010 and 2014, renewable energy
consumption of the top countries has effectively doubled from 168 million tons to 316 million tons of oil
equivalent WordAtlas (2018). However, in the energy sector that is responsible for about 40% of global
GHG emissions The Shift Project Data Portal (2019), there is still a big (over 80%) share of fossil fuels
in total energy production BP p.l.c. (2018). The main reason for that is apparently lower costs, but also
other considerations e.g., electric grid stabilization needs as wind mills can generate fluctuations of
capacity Hannele Holttinen et al. (2006), societal attitude to avoid operation and construction of new
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nuclear power plants U.S. Congress, Office of Technology Assessment (1984). Although one may
foresee drastic changes in the energy generation technologies in the coming decades, it seems that
fossil fuel-based (i.e., CO2 intensive technologies) will maintain a reasonable share in the total power
generation mix throughout that transitional period.

The mechanisms for CO2 pricing are not established yet beyond regional scale and the legal
background is missing with the exception for the European Emission Trading Scheme (EU–ETS) and
the Cap-and-Trade Program in California, USA. However, in the mid– to long–term, the CO2 price is
likely to upscale to a larger geographical extent, be it in a form of a carbon tax, cap-and-trade, or a
mix thereof. This would inevitably create a distortion in the energy sector, with the highest impact
on those companies that have large share of fossil fuel in their power generation technologies mix.
Because of the system role of those companies, they would need to be supported with enough supply of
emission allowances/offsets. Creating such a supply by legal/policy means would raise a question on
diminishing the purpose of the CO2 price geographical upscaling, while subsidizing these companies
would mean spending taxpayers money against the principles they were spent to support renewable
technologies in the previous period. From this perspective, there seem to be a need for tools supporting
a smooth transition from a few regional CO2 pricing models to a larger scale implementation.

In this context, contracting at current relatively low price levels the future delivery of CO2 credits
is one of the possibilities to reduce regulatory risk for carbon-intensive emitters that have limited
possibilities of technological change. These carbon credits could be supplied in the future by projects
on reducing emissions in the industry and energy sectors UNFCCC (2012).

As the future development of the CO2 price is highly uncertain, a hedging strategy protecting
a regulated entity from excessive price peaks seems to be a reasonable approach for managing the
associated risk. One of the potential candidates from available financial instruments to provide hedging
capabilities is a traditional call option Collins and Fabozzi (2008), which (in our setting) is the right
purchased in advance to buy in the future a specified amount of carbon credits at a specified price.
The call option provides financing to the seller before the actual delivery, which is advantageous in the
context of financing a project implementation that is needed to generate carbon credits.

The contribution of this paper is in the introduction and proofs of analytical properties of a new
financial instrument—a flexible option with a benefit sharing mechanism, a flobsion in short, which is
an extension of a call option concept combined with the idea of benefit (and loss) sharing between
the contracting parties explored in earlier publications Krasovskii et al. (2016, 2017). A flobsion has
advantages in terms of risk reduction for both buyer and seller as compared to a “do nothing” strategy
(offsetting at future market price) and a traditional option with a fixed strike price. We illustrate
analytical results with benchmarking examples employing historical data on CO2 prices in the
European Emission Trading Scheme (EU-ETS).

2. Literature Review and Motivation

There is a rich set of literature sources devoted to the multiple concepts that we employed in
this manuscript: risk management in general and that connected to an uncertain future CO2 price for
emissions offsetting in particular; principles of indifference prices, benefit sharing, and optionality to
address future uncertainty. In this section we provide a condensed review of selected publications in
order to position our manuscript and provide the reader with an entry point to the relevant literature.

In the general risk management context a key role plays a notion of a risk measure and in particular
a “coherent” measure of risk that possesses desirable properties Artzner et al. (1999). While there exist
many risk measures used in practice e.g., variance, value-at-risk, conditional value-at-risk—not all of
them are coherent. In practice, there are deficiencies associated also with coherent risk measures e.g.,
inability to differentiate between market risk and model uncertainty Cont (2006). As a proxy for risk
associated with the future asset market price we use variance and to address risk associated with a
potential price model uncertainty, in the spirit of Cont (2006), demonstrate that flobsion (as compared to
an option) has a lower sensitivity to a wrong assumption on a price scenario.



Int. J. Financial Stud. 2019, 7, 22 3 of 16

The employed idea of benefit (revenue) and risk sharing is rather general and was earlier
explored within various contexts e.g., revenue-risk-sharing for public-private partnerships in construction
Rouhani et al. (2018), game theoretic setting for contracts in electricity market Ma et al. (2019), coordination
of supply chains Liu et al. (2017), emission offsetting context for a forward contract Krasovskii et al. (2017).
In this paper, we merge the concept of benefit sharing with a financial option to create a new instrument.

There is an vast body of literature starting from early works Black and Scholes (1973);
Cox and Ross (1976) further developed and summarized in comprehensive books on extensive
treatment of theoretical and computational aspects of options-style derivatives pricing Detemple (2005);
Pierre Henry-Labordere (2009). In these works a stochastic price process has to belong to a specific
family (e.g., Brownian motion) and the problem of derivatives’ pricing requires specific treatment
depending on the time moment when an option can be executed (American or European option).
We employ a different and a more general approach that deals with a rather generic form of a discrete
price distribution and does not specify the instrument’s execution date.

Financial instruments including those of option-type are becoming increasingly important for
risk management in particular in electricity markets due to uncertainty of consumption and limited
fungibility of energy Kudryavtsev and Zanette (2013). The link to volatile emission permit markets
leads to more complexity in risk management as the permits may expose features that are distinctive
from other financial assets Medina and Pardo (2013). An earlier research on pricing European emission
allowances Chesney and Taschini (2012) suggested a closed-form formula for option-pricing, while
admitting its rather limited utility because of the specific model assumptions. Our results are less
price-centric due to the established link to existing options pricing and more oriented towards risk
reduction properties of a flobsion.

With regard to risk reduction, a paper Andrew and Chen (2017) examines the effect of imposing
various permit price-containment policies on spot market such as a price ceiling, floor, or collar
within an electricity market context. While addressing the same problem of market volatility, unlike
the paper Andrew and Chen (2017), we suggest an instrument that is bilateral and does not require
market-level intervention by a regulator. From this perspective, the two approaches are complementary
to each other.

The motivation of this research is in the high uncertainty and risks associated with the future CO2

prices in the context of emissions offsetting of regulated entities. The research question was whether
it is possible to reduce these risks even further as compared to a traditional option respecting the
concerns of both regulated entity (buyer) and the offset supplier (seller). In parallel to suggesting a new
financial instrument, our work is addressing the need of evaluating “the new contractual forms that are
constantly emerging in response to evolving economic conditions and regulations” Detemple (2005).

3. Flobsion Description

There exist two flavors of an option—“put” and “call”, and for the purposes of the manuscript
we will only use the call-option, further referring to it for simplicity as just “option”. An option for an
asset (e.g., for an emission offset) implies that a buyer pays an amount p1 to the seller of the option
for the future possibility to purchase the asset at an agreed “strike” price s1. The owner of the option
decides in the future whether to make such a purchase or not, so for them it is a possibility, but not
an obligation. The time component of an option is specified in the contract and can be e.g., a specific
day on which the purchase of the asset can be executed a “European option”, or a time period within
which that purchase can be made an “American option”. Our discussion below is applicable to both
cases as we do not explicitly model dynamic prices and instead refer to two time moments: (1) the
time of purchase of an option and (2) the time of executing the option.
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A flobsion is similar, yet has a more general construction than the option. A buyer pays the
amount pd to the seller of a flobsion for the future possibility to purchase the asset at the agreed “strike”
price sd plus the discounted difference between the asset’s market price x and sd, if that difference is
positive (or just sd otherwise). So, in case if the flobsion holder decides to make a purchase of an asset
within the period of validity of a flobsion, they would pay the amount

ad =

{
sd + (1− d)× (x− sd), if x > sd

x, if x ≤ sd
, (1)

meaning that an asset is being purchased at a market price x and the flobsion is not being executed
if x ≤ sd. Here 0 ≤ d ≤ 1 is a discount to the market price using sd as a base. In case of a flobsion,
a future asset purchase is still optional for the buyer as in case of a standard option. The price for
future purchase of an asset in case of a flobsion is not fixed, yet tied to the market price, so based on
this general trait, the flobsion is a new, so far unknown, member of a loosely defined set of financial
instruments commonly called “exotic options” Buchen (2012); Collins and Fabozzi (2008).

Remark 1. For d = 1, a flobsion turns into an option, so that the amount paid for an underlying asset in the
future conditional on the market price x would be

a1 =

{
s1, if x > s1

x, if x ≤ s1
. (2)

Remark 2. For d = 0 the amount paid in the future for an underlying asset equals the market price x, which
corresponds to the “do nothing” alternative (naturally assuming pd = 0 i.e., nothing was paid for a zero future
discount to the market price).

4. Analytical Results

Below, we present the proofs for a probabilistic market price x described for simplicity by a
discrete distribution in the form

{xi}, P(xi) = 1/N, i = 1, ..., N, (3)

which is practical for numerical modeling and is sufficient for our application. Analytical results on
discrete approximations of continuous distributions are available in the literature Kennan (2006).

Definition 1. The price pd is a “fair price” of a flobsion with the strike price sd if the expected total amount
paid for an asset by a flobsion holder equals the expected market price of the asset:

E(pd + ad) = Ex. (4)

Theorem 1. Let s1 = sd, where s1 is the strike price of an option and sd that one of a flobsion. Then the fair
prices of an option p1 and a flobsion pd are connected through the flobsion’s discount to the future market price d:

pd = dp1. (5)

Proof. First, we denote by ai
d the amount ad defined by Equation (1) and paid in case of a particular

market price x = xi. Second, the fairness condition Equation (5) for p1 and pd implies

E(p1 + a1) = Ex = E(pd + ad), (6)
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hence
0 = E(pd + ad)−E(p1 + a1) = pd − p1 +E(ad − a1) =

= pd − p1 +
N

∑
i=1

(ai
d − ai

1) =

= pd − p1 + ∑
i: xi≤s1

(ai
d − ai

1) + ∑
i: xi>s1

(ai
d − ai

1) = {s1 = sd} =

= pd − p1 + ∑
i: xi≤s1

(xi − xi) + ∑
i: xi>s1

(sd + (1− d)× (xi − sd)− sd) =

= pd − p1 + (1− d) ∑
i: xi>s1

(xi − sd).

(7)

From the left equality in Equation (6) it follows that

N

∑
i=1

xi ≡ Ex = E(p1 + a1) ≡ p1 + ∑
i: xi≤s1

xi + ∑
i: xi>s1

s1

and hence

p1 =
N

∑
i=1

xi − ∑
i: xi≤s1

xi − ∑
i: xi>s1

s1 = ∑
i: xi>s1

xi − ∑
i: xi>s1

s1 = ∑
i: xi>s1

(xi − s1). (8)

Employing Equation (7) and substituting p1 from Equation (8) we obtain

pd = p1 − (1− d) ∑
i: xi>s1

(xi − sd) =

= ∑
i: xi>s1

(xi − s1)− (1− d) ∑
i: xi>s1

(xi − sd) = {s1 = sd} =

= d ∑
i: xi>s1

(xi − s1) = {Equation (8)} = dp1.

Theorem 2. Let sd = s1 be the strike prices of a flobsion and an option, and pd and p1 the corresponding fair
prices for the same price distribution Equation (3). Then for any alternative price distribution {yj}, j = 1, ..., K,
P(yj) = 1/K, the following equality holds:

E(pd + ad)−Ey = d [E(p1 + a1)−Ey] ,

where the expectation is calculated over the price distribution {yj}.

Proof.

E(pd + ad)−Ey− d [E(p1 + a1)−Ey] = {pd = dp1 (Theorem 1), sd = s1} =
= dp1 + ∑

j: yj≤s1

yj + ∑
j: yj>s1

[(1− d)(yj − s1) + s1]−Ey−

− dp1 − d ∑
j: yj≤s1

yj − d ∑
j: yj>s1

s1 + dEy =

= (1− d) ∑
j: yj≤s1

yj + (1− d) ∑
j: yj>s1

yj − (1− d)Ey =

= (1− d)

[
K

∑
j=1

yj −Ey

]
= 0.



Int. J. Financial Stud. 2019, 7, 22 6 of 16

Remark 3. In Theorem 2, the prices pd, sd (also respective ones for an option, if d = 1) while being fair for
the price distribution Equation (3) are not necessarily fair for the alternative price distribution {yj}, so that
generally speaking

E(pd + ad) 6= Ey

and the meaning of the term
E(pd + ad)−Ey

is the average expected profit or loss as compared to “do nothing” approach where no flobsions/options are
contracted and only the market price for an asset is being paid. The practical implication of Theorem 2 is that the
flobsion is less sensitive to a wrong assumption on price distribution than the option in terms of reducing both
expected profit and loss (both contradict the principle of a fair price) under an alternative price scenario.

Definition 2. We would call a function f (·) : R → R a compressing transform of a distribution {xi}
Equation (3) if there exist a number ξ ∈ R such that

| f (xi) + ξ − x̄| ≤ |xi − x̄|, for all i = 1, ..., N. (9)

where x̄ = Ex.

Definition 3. We would call a function g(·) : R → R a pair-wise compressing transform of a distribution
Equation (3) with additionally ordered values x1 ≤ ... ≤ xN if

0 ≤ g(xi+1)− g(xi) ≤ xi+1 − xi, for all i = 1, ..., N − 1. (10)

Lemma 1. A flobsion is a pair-wise compressing transform of the price distribution Equation (3).

Proof. Let us denote g(x) ≡ ad(x), where ad is defined in Equation (1). Without changing connotation
we may assume that the values {xi} are ordered, so that xi ≤ xi+1, for all i = 1, ..., N. Let us consider
all three possible options for any fixed i = 1, ..., N − 1:

• if xi+1 ≤ sd, then g(xi+1)− g(xi) = xi+1 − xi i.e., Equation (10) is true;
• if xi ≤ sd < xi+1, then g(xi+1)− g(xi) = sd + (1− d)× (xi+1 − sd)− xi = xi+1 − xi+1 + sd +

(1− d)× (xi+1 − sd)− xi = xi+1 − xi − d (xi+1 − sd) i.e., Equation (10) is true as

◦ xi+1 − xi − d (xi+1 − sd) ≤ {d ≥ 0, sd < xi+1} ≤ xi+1 − xi, and
◦ xi+1 − xi − d (xi+1 − sd) > {d < 1} > xi+1 − xi − xi+1 + sd = sd − xi ≥ 0;

• finally, if sd < xi, then g(xi+1)− g(xi) = sd + (1− d)× (xi+1 − sd)− sd − (1− d)× (xi − sd) =

(1− d)× (xi+1 − xi) i.e., Equation (10) is true as

◦ (1− d)× (xi+1 − xi) ≤ {d ≥ 0} ≤ xi+1 − xi, and
◦ (1− d)× (xi+1 − xi) ≥ {d ≤ 1} ≥ 0.

Lemma 2. Any pair-wise compressing transform in the sense of Definition 3 is a compressing transform in the
sense of Definition 2.
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Proof. Let us denote the distribution under consideration as {xi} and the transform as f (x). Then from
Definition 3 it follows that

0 ≤ f (xi+1)− f (xi) ≤ xi+1 − xi, for all i = 1, ..., N. (11)

Let us consider the value of the index i = i∗ such that

i∗ : xi∗ ≤ x̄ ≤ xi∗+1, where x̄ = Ex. (12)

From Equation (11) it follows that

0 ≤ f (xi∗+1)− f (xi∗) ≤ xi∗+1 − xi∗ (13)

and hence there exist such a shifting parameter ξ, such that the following inclusion of the intervals
is valid:

[ f (xi∗) + ξ, f (xi∗+1) + ξ] ⊆ [xi∗ , xi∗+1], (14)

furthermore, because of Equation (12) x̄ ∈ [xi∗ , xi∗+1] and the value of shifting parameter ξ in
Equation (14) can be refined in such a way that x̄ also belongs to the interval [ f (xi∗) + ξ, f (xi∗+1) + ξ]

implying the following chain of inequalities:

xi∗ ≤ f (xi∗) + ξ ≤ x̄ ≤ f (xi∗+1) + ξ ≤ xi∗+1,

that for easier reference we split into a set of inequalities:

xi∗ ≤ f (xi∗) + ξ, (15)

f (xi∗) + ξ ≤ x̄, (16)

x̄ ≤ f (xi∗+1) + ξ, (17)

f (xi∗+1) + ξ ≤ xi∗+1. (18)

Let us fix an arbitrary index i and consider two cases:

Case “A”: i ≤ i∗, and (19)

Case “B”: i ≥ i∗ + 1. (20)

Let us start with the case “A”:

| f (xi) + ξ − x̄| =
= {i ≤ i∗, Equation (19), f (xi) ≤ f (xi∗), Equation (11), Equation (16)⇒ f (xi) + ξ − x̄ ≤ 0} =
= x̄− f (xi)− ξ = x̄− ξ − f (xi) =

= x̄− ξ − f (xi) + f (xi+1)− f (xi+1) + ... + f (xi∗−1)− f (xi∗−1) + f (xi∗)− f (xi∗) ≤
≤ {Equation (11)} ≤
≤ x̄− ξ − xi + xi+1 − xi+1 + ... + xi∗−1 − xi∗−1 + xi∗ − f (xi∗) =

= x̄− ξ − xi + xi∗ − f (xi∗) = x̄− xi + xi∗ − f (xi∗)− ξ ≤ {Equation (15)} ≤ x̄− xi =

= {i ≤ i∗, Equation (19), xi ≤ xi∗ , Equation (12)⇒ xi ≤ x̄} = |xi − x̄|.
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So, the lemma is proven for the case “A”. Equation (9) holds for i ≤ i∗. Let us consider also the
case “B”:

| f (xi) + ξ − x̄| =
= {i ≥ i∗ + 1, Equation (20), f (xi) ≥ f (xi∗+1), Equation (11), Equation (17)⇒ f (xi) + ξ − x̄ ≥ 0} =
= f (xi) + ξ − x̄ =

= f (xi)− f (xi−1) + f (xi−1)− ...− f (xi∗+2) + f (xi∗+2)− f (xi∗+1) + f (xi∗+1) + ξ − x̄ ≤
≤ {Equation (11)} ≤
≤ xi − xi−1 + xi−1 − ...− xi∗+2 + xi∗+2 − xi∗+1 + f (xi∗+1) + ξ − x̄ =

= xi − xi∗+1 + f (xi∗+1) + ξ − x̄ = xi − x̄− xi∗+1 + f (xi∗+1) + ξ ≤ {Equation (18)} ≤ xi − x̄ =

= {i ≥ i∗ + 1, Equation (20), xi ≥ xi∗+1, Equation (12)⇒ xi ≥ x̄} = |xi − x̄|.

The lemma is proven also for the case “B”: Equation (9) holds for i ≥ i∗ + 1.

Lemma 3. If f (·) : R → R is a compressing transform of a distribution {xi} Equation (3), then the
following inequality holds:

Var f (x) ≤ Var(x). (21)

Proof. Let us denote f̄ = E f (x) and x̄ = Ex, then

Var f (x) =
N

∑
i=1

[ f (xi)− f̄ ]2 = {taking ξ from Definition 2} =

=
N

∑
i=1

[ f (xi) + ξ − ξ − f̄ ]2 =
N

∑
i=1

[ f (xi) + ξ − ( f̄ + ξ)]2 =

= {( f̄ + ξ) = E( f (x) + ξ), Ez = argmin
w

N

∑
i=1

(zi − w)2, ∀zi} ≤

≤
N

∑
i=1

( f (xi) + ξ − x̄)2 ≤ {Definition 2} ≤
N

∑
i=1

(xi − x̄)2 = Var(x).

Theorem 3. A flobsion reduces risk (decreases cost variance) for any future discount d, strike price sd = s1,
and flobsion price pd:

Var(pd + ad) ≤ Var(x), (22)

where the amount ad paid in the second period is conditional on the market price and is defined in Equation (1).

Proof. According to Lemma 1, a flobsion is a pair-wise compressing transform of the price distribution
Equation (3), hence, by Lemma 2, a flobsion is a compressing transform of the price distribution,
hence for the function f (·) transforming the market price into a price paid for an underlying asset by
a flobsion owner the Lemma 3 is valid and hence Equation (21) holds where f (x) ≡ ad, that implies
the validity of Equation (22) as Var(pd + ad) ≡ Var(ad) for any pd (a constant defined in the first
time period).

Remark 4. In Theorem 3 the flobsion price pd does not have to be the fair price as Var(pd + ad) ≡ Var(ad) for
any pd (a constant defined in the first time period).
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Remark 5. The Theorem 3 allows for making an even stronger statement: if a strict inequality sd < max{xi}
holds and d > 0, then there is at least one strict inequality in Equation (10), hence in Equation (9), hence in
Equation (21), implying a strict inequality in Equation (22).

Theorem 4. Let the prices of a flobsion pd and an option p1 satisfy the same equation Equation (5) as the fair
prices. Then in terms of total cost of offsets, a flobsion with the strike price s and a discount d is equivalent to a
portfolio of vm offsets to be purchased in the future at a market price and vo options with the same strike price s,
and d = vo

vo+vm
.

Proof. We denote the total cost of v offsets when acquiring them on the market, via option, and via
flobsion as Tm(v), To(v), and Td(v) respectively. For any offset price x materialized in the future,
we consider two possible cases: case A: x < s that implies

To(vo) = p1vo + xvo,

Tm(vm) = xvm, and

Td(vo + vm) = pd(vo + vm) + x(vo + vm) = {Equation (5)} =

= dp1(vo + vm) + x(vo + vm) = {d =
vo

vo + vm
} =

= p1vo + xvo + xvm ≡ To(vo) + Tm(vm).

Case B: x ≥ s that implies

To(vo) = p1vo + svo,

Tm(vm) = xvm, and

Td(vo + vm) = pd(vo + vm) + s(vo + vm) + (x− s)(1− d)(vo + vm) =

= (vo + vm) [pd + s + (x− s)(1− d)] = {Equation (5)} =

= (vo + vm) [dp1 + s + (x− s)(1− d)] = {d =
vo

vo + vm
} =

= (vo + vm)

[
vo

vo + vm
p1 + s + (x− s)

vm

vo + vm

]
=

= (vo + vm)

[
p1vo + s(vo + vm) + (x− s)vm

vo + vm

]
=

= p1vo + s(vo + vm) + (x− s)vm =

= p1vo + svo + xvm ≡ To(vo) + Tm(vm).

Remark 6. The prices in Theorem 4 for a flobsion and an option do not necessarily have to be fair prices,
yet naturally the theorem holds for fair prices.

5. Benchmarking Results

For numerical illustration we employ the dataset on historical CO2 prices (emission allowances,
EUA) from the European Emission Trading Scheme (ETS) Fusion Media (2018) spanning the time
period August 2005–February 2018 (further referred to as the “historical period”). These prices are
presented in Figure 1.
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Figure 1. Historical CO2 prices from the European Emission Trading Scheme (ETS) Fusion Media (2018).

For the purposes of benchmarking a flobsion against an option, we consider a hypothetic scenario
where both an option and a flobsion for EUA were purchased before August 2005 and were executed
(or expired without execution) at a random date uniformly distributed within the historical period.
The market price distribution at the time of execution/expiration of a flobsion/option is shown in the
form of a histogram in Figure 2.

Price, Euro/tCO2
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Figure 2. CO2-price distribution from the EU ETS for the period August 2005–February 2018.

We assume that the contracted volume of allowances was actually used to offset emissions either
through an option (flobsion) or via direct purchase on the market, so that the total price paid per
one ton of emitted CO2 is the sum of the option (flobsion) price plus either market price (in case the
option/flobsion was not executed) or the option’s strike price (flobsion’s strike price plus discounted
market price).

For the purposes of numerical calculations we arbitrarily set the flobsion’s discount d to 0.5 and
the strike price to 8 Euro/tCO2 (both for the option and the flobsion). The total amount that was paid
in three possible cases: just paying actual market price for emissions, using a flobsion or an option is
presented in Figure 3 for three price scenarios: original historical prices, those doubled, and halved,
where the initial purchase prices for both option and flobsion are “fair” for the original (historical) price
distribution. The total amount paid per unit of emissions when flobsion is involved for all possible
market prices stays between those of an option and the market price as illustrated in Figure 3.
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Figure 3. The total amount paid for emissions offsetting depending on the date (month since
August 2005) in three cases: just paying a market price, using an option or a flobsion for three
price scenarios: original historical prices (middle panel), those doubled (top panel), and halved
(bottom panel).

The expected deviations from zero-expected profit (loss) in case of an option and a flobsion
are presented in Table 1. The smaller scale of profits and losses provided by a flobsion numerically
illustrates the analytical results obtained in Theorem 2.

Table 1. Expected deviations from zero-expected profit (loss) in Euro/tCO2 in case of an option and a
flobsion. Positive numbers are profits, negative numbers are losses.

Price Scenario Option Flobsion

Doubled 10.97 5.48
Halved −4.05 −2.02

The flobsion’s and option’s reduction in offset cost variance for the original market price scenario
is presented in Table 2. According to Theorem 4, purchasing a flobsion was similar to buying an option
for a share of needed offsets and then actual emissions offsetting in the future using that option and
purchasing the rest of needed offsets at a market price. The variance of the total cost of emissions
offsetting supported by a flobsion is between that of an option and the “do nothing in advance”
approach. Table 2 illustrates numerically the results of Theorem 3 i.e., the variance of the offsetting
cost supported by a flobsion is smaller than the “original” variance of the market price (15.58 < 46.21).

Table 2. Variance of the emission offsetting costs for the historical price distribution and three
alternatives: paying just the marked price (“do nothing”), contracting a flobsion, and an option.

Do nothing Flobsion Option

46.21 15.58 2.28

The numbers in Tables 1 and 2 indicate a trade-off between lower sensitivity to a wrong
assumption on the price scenario (lower absolute values for flobsion in Table 1) and higher variance
of offsetting costs within a fixed price scenario (higher value for flobsion than for option in Table 2).
This links to the concepts of “model uncertainty” and “market risk” discussed earlier in Section 2 and
illustrates the fact that a better performance in the sense of “model uncertainty” (price scenario) comes
at the expense of lower performance in the sense of “market risk”. At the same time, contracting a
flobsion is better than buying an option if the price scenario is uncertain (Table 1) and better than
“do nothing” if a price scenario is fixed (Table 2).
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6. Discussion

The construction of a flobsion possesses universal properties that make it advantageous (or at least
more flexible) as compared to contracting an option or “doing nothing” (implying a future purchase
at a market price). This flexibility allows for shaping financial risk of an economic entity (flobsion
buyer) in the face of future uncertain marked developments and in a sense “soft” hedging against
unfavorable situation where the flobsion’s underlying asset price increases. While this risk is not fully
absorbed by a flobsion (as opposed to an option), it allows for a flexibility on flobsion’s seller side who
would like to avoid finding themselves in a situation where they have to sell an underlying asset to the
option holder at the pre-defined strike price regardless of how high the market price turns out to be
in the future. The flobsions’ discount construction allows for balancing the benefit (between buyer
and seller) created by a possible future price increase. So, in case if such an increase materializes in
the future, the buyer and seller are factually sharing profits stemming from the discount to the actual
market price. In case if the market price stays below the flobsions’ strike price, the instrument is not
being executed and there is no difference with the option.

A similar idea of controlling the volatility of the final price paid for an underlying asset, however
under more specific conditions imposed on the stochastic price process, was explored earlier for the
barrier options and capped options Detemple (2005). The fobsion’s concept of a discount seems to
be a “smoother” way of controlling that volatility as compared to barrier/capped options which are
inherently controlled by respective thresholds. A quantitative comparison of these approaches within
a problem-specific stochastic price processes may be useful in potential applications.

Selection of a particular risk measure is application-specific, depends on a particular problem
context, and involves consideration of the complexity in interpretation of the risk measure and
tractability of the resulting risk minimization problem. We have chosen variance for our analysis
despite its known limitations Rockafellar et al. (2002) in addressing fat-tails and equal penalty to
ups and downs of a distribution. While latter seems of a smaller problem in our setting that is
intended to address the concerns of both buyer and seller (ups for a seller are downs for a buyer and
vice versa), the fat-tail limitation is accepted assuming the interpretation of variance as a risk proxy
employed for benchmarking rather than a risk measure used in an application-specific formulation of
an optimization problem.

The options-style derivatives pricing Detemple (2005); Pierre Henry-Labordere (2009) assume a
specific family of the stochastic price process to estimate the derivative’s price. Our approach, based on
a rather generic form of a discrete price distribution, allows us to capitalize on existing results for
options pricing (both American and European style) and reduce the flobsion’s pricing problem to
those extensively explored earlier for options. To make the link between a traditional option and
a flobsion we employ the “fair price” principle, which is similar to the utility-indifference pricing
concept Hobson (2005) and the no-arbitrage principle widely used in the options pricing literature
Buchen (2012); Chesney and Taschini (2012); Cox and Ross (1976); Detemple (2005).

As stated by Theorem 4, flobsion is similar to a portfolio with fixed shares of offsets to be
purchased in the future at a market price and those covered by an option. Although mathematically,
flobsion delivers the same distribution of the total cost of offsetting as such a portfolio, it allows for
a legal contract for the whole amount of offsets, not only those covered by an option. In the sense
of a portfolio-style point of view, this seems to be similar to the result obtained for the problem of
pricing and hedging using oil and copper futures and forward contracts Kenichiro Shiraya et al. (2016),
where the authors found that using three different futures contracts to hedge long-term contracts
outperformed the traditional hedge based on a single futures position.

Here for simplicity, we have considered the properties of emission costs associated with the
CO2 price employing financial instruments independently from other emission costs reduction
options that may be available to a concerned emitter, e.g., energy producers who have a portfolio of
technologies varying in emission rates (per produced energy unit) may have a flexibility in adapting
to an increased CO2 price by adjusting the shares of individual technologies used in production
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Krasovskii et al. (2016, 2017). So, the cost structure of an energy producer may change for higher CO2

prices as these would lead to a different ranking of technologies in the total production portfolio.
Therefore, the construction of a flobsion has to be applied to such cases and studied in more detail.
As energy producers who have only CO2-intensive technologies in their portfolios lack this flexibility,
they are largely limited in managing their costs to financial instruments including a flobsion.

A more complex problem setting than that considered in this paper, could include the case of
asymmetric information where the flobsion buyer and seller have different views on the future
CO2 prices, so their fair price estimates would be different. Depending on the mathematical
sign of that difference, it can make it easier or more difficult to come to a purchase agreement
Krasovskii et al. (2017). A similar consideration is valid in the context of risk preferences of a buyer
and a seller (risk taking or risk averse attitudes). We expect that the risk context would influence the
flobsion price in a similar way as it influences the price of a forward contract, however, this has to be
proven by a numerical modeling similar to earlier works Krasovskii et al. (2016).

In this paper, we carried out an indicative benchmarking of a flobsion’s performance employing
a historical dataset with real market prices to avoid the complexity of price process modeling.
As demonstrated in the earlier literature (see e.g., Fortin et al. (2008); Fuss et al. (2012)), the price process
can be represented by a multi-parametric family of distributions, where the parameters of a distribution
determine the results of numerical modeling. In this study we illustrated possible outcomes of
contracting flobsions employing original historical data (and simple transformations thereof) to avoid
the necessity of finding a suitable distribution family and prove its fit to historical prices.

The flobsion concept carries potential for supporting initiatives on reducing emissions from
deforestation and forest degradation (REDD), while the problem associated with the acceptance
of REDD-based offsets for emission reduction compliance at both national and international levels
is still open and the future fungibility of REDD-based offsets with emission allowances and clean
development mechanism (CDM) offsets is unknown Beltran et al. (2013); Dooley and Gupta (2017).
This uncertainty creates additional risk associated with contracting REDD-offsets that a flobsion might
help to mitigate.

7. Conclusions

Analytical results on the flobsion’s properties presented in this paper cover a rich enough family of
discrete price distributions and make this work complete for practical applications. These applications
can be more general and not necessarily connected to the current and future CO2 markets and the
emission offsetting context.

The simple relation between the option and flobsion price based on Theorem 1 allows for easy
determination of the flobsion price for any given discount based on the price of an option which is
familiar to many market players. Flobsion’s reduction of cost variance is less than that provided by the
option, however, in case that the initially assumed price scenario turns out to be wrong, flobsion leads
to smaller implied losses and gains, which reduces the risk for both buyer and seller.

While the flobsion construct is apparently applicable more universally, we see its good fit within
the emission offsetting context. Despite technical details of potential future regulation remain uncertain,
there is a progress towards more climate-aware policies. As policy changes can create not only
opportunities, but also risks for certain market players, there is a need to accommodate and alleviate
those risks. The flobsion’s properties presented in this paper prove it to be a potential candidate
helping in addressing these challenges and ultimately enabling or accelerating the implementation of
new policies.

Further research might be directed towards exploration of a flobsion in more general financial
risk management contexts as well as in the context of more detailed economic models that
inherently include a regulated entity’s possibility to adapt to rising CO2 prices e.g., by adjusting
technological portfolios.
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