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Abstract: This paper develops methods and a framework of financial market theory. We model
financial markets as a system of agents which perform market transactions with other agents under
the action of numerous expectations. Agents’ expectations are formed of economic and financial
variables, market transactions, the expectations of other agents, and other factors that impact financial
markets. We use the risk ratings of agents as their coordinates and approximate a description of
financial variables, market transactions, and expectations of numerous separate agents by density
functions of aggregated agents in the economic domain. The motion of separate agents in the
economic domain due to a change of agents’ risk rating produces collective financial flows of
variables, transactions, and expectations. We derive equations on collective financial variables, market
transactions, expectations, and their flows in the economic domain. These flows define the evolution
of financial markets. As an example, we present a simple model with linear dependence between
disturbances of volume and the cost of transactions on one hand, and disturbances of expectations
that determine transactions on the other hand. Our model describes harmonique oscillations
of these disturbances with numerous frequencies and allows an explicit form for fluctuations of
price and return to be derived. These relations show a direct dependence between price, return,
and volume perturbations.
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1. Introduction

In recent decades, Econophysics has produced many studies for modeling financial markets and the
statistical properties of price and return fluctuation: Mantegna and Stanley (2000), Gabaix et al. (2003),
Stanley (2003), and Borland and Bouchaud (2005). The variety of financial instruments causes diversity
of their response to shocks and requires the usage of different models and approximations (Roehner 2010;
Chakraborti et al. 2011; Schinckus 2012; Gontis et al. 2016; Guedesa et al. 2018; Dhesi et al. 2019).
The modeling statistical properties of financial markets require methods that describe general financial
and economic relations of market trading and price evolution.

At present, financial market and macro finance modeling heavily rely on methods of general
equilibrium theory (GE) (Arrow and Debreu 1954; Arrow 1974; Kydland and Prescott 1990; Starr 2011)
and DSGE (Fernández-Villaverde 2010; Komunjer and Ng 2011; Del Negro et al. 2013; Farmer 2017).
Existing flaws and weaknesses of GE and DSGE may bring unjustified decisions and excess shocks to
unsteady financial processes. Numerous papers have discussed the pros and cons of GE (Hazlitt 1959;
Morgenstern 1972; Ackerman 1999; Stiglitz 2017). A special issue of Oxford Review of Economic Policy
on “Rebuilding macroeconomic theory” discusses: “What new ideas are needed? What needs to be
thrown away? What might a new benchmark model look like? Will there be a ‘paradigm shift’?”
(Vines and Wills 2018a, 2018b).
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Financial markets and their dynamics are very complex and their description requires different
methods and approximations. In this paper, we develop methods, models, and equations, which
treat financial variables, market transactions, and expectations as functions of risk. We propose that
such an approach to financial modeling may improve the understanding and description of real
financial markets.

This paper will treat macro finance as a system of agents with economic and financial variables.
We regard economic agents as simple units that define economic and financial relations of the
macro financial system. Agent-based models (ABM) have been studied for decades, and we
mention (Poggio et al. 1999; Tesfatsion and Judd 2005; Chakraborti et al. 2011; Janžek and Ziherl 2013;
Haldane and Turrell 2018) and the references therein as only a small fraction of these studies. We note
households, banks, industry companies, and all those who establish macroeconomic and financial
systems as economic agents. Aggregations of economic and financial variables of agents define macro
financial variables and market transactions between agents define the evolution of the macro financial
system. Participants of financial markets—agents—are engaged in numerous market transactions
with other agents. Agents perform their transactions under different expectations. Agents form
their expectations on the basis of economic or financial variables, transactions, expectations of other
agents, policy, technology or regulatory changes, and so on. Market transactions of agents are always
performed under risks. Moreover, the financial activity of agents creates risks and no economic or
financial development is possible without risks. We use risk ratings of agents as their coordinates
and show that the change of an agent’s risk rating due to any reason causes risk collective flows
of financial variables, transactions, and expectations. These flows induce continuous changes of
economic and financial variables like investment and credits, or market supply and demand in
particular. The permanent evolution of market supply and demand due to risk flows makes the
concept of equilibrium states questionable. In this study, we develop methods, tools, and equations
that describe relations between financial variables, transactions, and expectations and their flows.
A general approach description of financial variables, market transactions, and expectations allows
model price and return fluctuations to act as the internal property of financial markets.

The rest of the paper unfolds as follows. In Section 2, we discuss assumptions, and introduce the
economic domain, financial variables and their flows, and the main equations. In Section 3, we discuss
financial transactions as functions of risk. In Section 4, we introduce expectations as functions of risk.
To show the advantages of our approach, in Section 5, we apply our methods to model asset price and
return fluctuations. The conclusion is presented in Section 6.

2. Assumptions, Variables, and Equations

The main assumptions, starting with the properties of financial variables, will now be discussed.
Agents have different variables like credits and debts, assets and investment, and supply and demand.
Some variables are additive and some are non-additive. For example, the sum of investment or
credits of a group of agents (without doubling) defines the investment and credits of the entire group.
Ratios of additive variables define non-additive variables like prices or financial ratios. Inflation and
indexes are determined as the ratio of prices in different moments of time and are also non-additive.
Therefore, an agent’s additive financial or economic variables describe all economic and financial
variables. The aggregation of agents’ additive variables defines the macro variables. For example,
the sum of an agent’s credits (without doubling) determines the macroeconomic credits, the sum of
an agent’s investment defines the investment of all the economics, etc. Therefore, agents’ additive
variables are key factors that define the macro financial variables and their evolution.

Some additive variables are involved in market transactions between agents. Each transaction
implies that the seller transfers a certain number of additive variables, like commodities, assets, service,
investment, and credits, to the buyer. Transactions between agents are only factors that impact the
change of additive variables. Changes of market regulation, political, technological or climate impacts
on markets only have results after certain transactions are performed. The available information for
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the value and volume of the performed transactions and prices of the transactions may impact the
change of variables for all agents. Therefore, a description of transactions between agents plays a key
role for modeling all agents and financial variables.

All agents perform transactions under different expectations. Agents’ expectations determine the
volume and value of transactions, choice of commodities, amount of credits, and directing investment.
Agents’ expectations as drivers of transactions are responsible for financial activity and hence impact the
evolution of macro variables. Agents form their expectations as forecasts of variables, expectations of
other agents, market regulatory trends, technology, climate, and other changes. Therefore, expectations
transfer the impact of endogenous and exogenous factors on the performance of transactions between
agents and hence on the evolution of financial variables.

Relations between financial variables, transactions, and expectations establish a core problem for
macro modeling. In this paper, we present methods and tools that describe the evolution of variables,
transactions, and expectations under different approximations. We use bold italic font to denote vectors
and italic font for scalars. Three main issues determine our approach:

• We use risk ratings of agents as their coordinates;
• We describe variables, transactions and expectations as functions of risk;
• We describe collective flows of financial variables, transactions, and expectations and their impact

on financial markets.

These issues will now be discussed in detail.

2.1. Risk Ratings of Agents as Their Coordinates

We propose risk ratings of economic agents as their coordinates in economic space. A description
of agents in economic space establishes the basis for modeling financial variables, market transactions
between agents, and expectations as functions of time and coordinates in economic space. This magnifies
the modeling capacity and uncovers the internal complexity of macro financial evolution. We introduce
a description of economic agents in economic space (Olkhov 2016a, 2016b, 2017a, 2017b, 2017c, 2018a,
2018b, 2019) and present different benefits and problems of such approach. Agent-based models in
macro finance are well-known and numerous papers have presented various descriptions of financial
markets, decision-making, etc. (Poggio et al. 1999; Tesfatsion and Judd 2005; Chakraborti et al. 2011;
Janžek and Ziherl 2013; Haldane and Turrell 2018). However, we do not know of any studies that
have used risk ratings as agents’ coordinates similar to our model of economic space. For decades,
international rating agencies such as S&P, Moody’s, and Fitch (Metz and Cantor 2007; S&P 2014;
Fitch Ratings 2018) have provided risk assessments for major banks, corporations, securities, etc.,
and delivered distributions of the biggest banks by their risk ratings (Moody’s Investors Service 2018;
South and Gurwitz 2018). These assessments determine the investment expectations of the biggest hedge
funds, investors, traders, etc. According to current risk assessment methodologies (Altman et al. 2010;
Moody’s Investors Service 2010; S&P 2016; Fitch Ratings 2018), risk ratings take values of risk grades
like AAA, AA, BB, C, etc. Different rating agencies use different risk assessment methodologies and
risk grade notions differ slightly.

Risk grades AAA, AA, BB, C can be treated as points x1, . . . xN of space that we call economic
space. The risk assessment methodology uses available economic statistics and determines the number
N of risk points. We propose that economic statistics and econometrics provide sufficient data to
assess risk ratings for all economic agents and for all risks that may hit macroeconomic or macro
financial evolution and growth. Additionally, we assume that rating agencies assess risk ratings for all
agents, including large corporations and banks, for small companies and firms, and even households.
Now we assume that the risk assessment methodologies define continuous spectrum of the risk
grades in the space R. The risk methodology may always take the continuous risk grades as interval
[0,1] with point 0 as most secure and 1 as most risky grade. A lot of different risks may disturb the
macroeconomic processes (McNeil et al. 2005). The assessment of single risk, like credit risk, distributes
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agents over interval [0,1] of 1-dimensional space R. The assessment of two or three risks, like credit,
exchange rate, and liquidity risk for example, distributes economic agents over unit square or cube.
For the given configuration of n macro risks, assessment of the agents’ risk rating distributes agents
by risk coordinates x = (x1, . . . xn) in economic domain of n-dimensional space Rn. Distribution of
economic agents by risk coordinates x = (x1, . . . xn) in economic domain (1) implies that all agent’s
economic and financial variables are also distributed in (1). Aggregation of the similar variables of
agents with coordinates near point x = (x1, . . . xn) of (1) defines the collective variables as a function
of x. Aggregations of the similar transactions between agents with coordinates x and y determine
the collective transactions as a function of x and y in (1). This helps describe the financial variables,
transactions, and expectations, by partial differential equations in economic domain.

0 ≤ xi ≤ 1 , i = 1, . . . n (1)

2.2. Variables, Transactions, and Expectations as Functions of Risk

A description of financial variables, transactions, and expectations of separate agents of all
economics is too complex and does not help model the evolution of macro variables. Up to now,
macro financial modelling has used aggregations of variables of all agents as functions of time.
For example, the sum of investment of all agents defines macro investment as a function of time.
We claim that such an approach hides and loses too much information about the properties of financial
macro variables and that this may be the origin of numerous failures of GE and DSGE. We use the
distribution of agents in the economic domain (1) as the tool for a description of collective financial
variables, transactions, and expectations as functions of risk. Such approximation is much rougher then
description relations between variables, transactions, and expectations of separate agents, but much
more detailed than descriptions as only functions of time. Let us chose economic space scale d
and time scale ∆. Additionally let us collect variables, transactions, or expectations of agents with
risk coordinates inside a small volume dV = dn near point x of (1) and then average them during a
certain time term ∆. It can be assumed that the scale d << 1, but many economic agents have risk
coordinates inside dV near point x. It can also be assumed that time ∆ is too small to compare with
the time scale of the problem under consideration, but many transactions are performed during ∆.
For example, we can estimate the number of agents in economics with a population of 108–109 as
108–109. Therefore, the space scale d ~ 10−2 in a two-dimensional domain (1) defines the volume dV ~
10−4, with around 104–105 agents inside it. Time scale ∆ = 1 week is too small to compare it with the
time term of one quarter or year. It can be assumed that agents perform one transaction per second,
and there are thus about 6 × 105 transactions per ∆ = 1 week. Therefore, aggregation by scales d ~ 10−2

and averaging by ∆ = 1 week may approximate economic processes for a time term of one quarter,
year, or more. As an example, we can consider the credits provided by agents inside dV near point x
and average them during ∆ = 1 week. Let us consider that C(t,x) equals the sum of credits provided by
agents in volume dV and averaged during time ∆. Function C(t,x) represents the density of credits
provided by agents from point x at moment t. Indeed, the integral of C(t,x) by dx over economic
domain equals the total credits provided by all agents in economics at moment t. Averaging over
time ∆ reduces high-frequency fluctuations of the collected credits and makes this variable smooth.
The introduction of scale d and scale ∆ reduces the accuracy of the model approximation. If one
choses scale d = 1, then volume dV will be equal to the economic domain (1) and the sum of credits
provided by agents inside (1) equals all credits provided in macroeconomics. Similar definitions allow
collective transactions between two points x and y on (1) to be introduced as density functions of two
risk coordinates and density functions of expectations as functions of x. Therefore, the introduction of
scales d << 1 establishes approximation that is intermediate between a precise description of separate
economic agents and a too rough approximation based on the aggregation of variables of all agents in
the economy. Below, we define density functions of financial variables, transactions, and expectations.
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It is obvious that one may aggregate agents and their variables, transactions, and expectations in
domain (1) by various economic or financial groups with sections for different industry sectors, wealth,
gender, age, or other economic or financial specification. Macro models based on the aggregation of
agents by various groups in domain (1) may model relations between banks and industry sectors or
describe the influence of any specifications that define grouping agents. Such models may use different
sets of risks and different risk measures for different groups of agents. For example, risk assessments
may differ for financial and industry sectors, or for different wealth. Any specific grouping and usage
of different sets of risks and risk measures introduce additional complexity to the model. In the current
paper, we describe the simplest tools and framework without any additional specifications.

The most important factor that impacts the evolution of density functions of variables, transactions,
and expectations is determined by collective flows of variables, transactions, and expectations induced
by the motion of agents in domain (1). Such financial risk flows result in the motion of agents in
domain (1) due to a change of their risk rating.

2.3. Variations of Agents’ Risk Ratings Produce Collective Flows of Variables, Transactions, and Expectations

Most economic and financial risks like credit, investment, market, or tax policy risks are generated
by the activity of economic agents. Any financial activity and development reproduces financial risks.
Financial activity without risks is impossible. Changes of agents’ risk ratings due to their financial or
economic activity and other reasons cause changes of agents’ risk coordinates in domain (1). Let us model
the change of agents’ risks during time ∆ by a certain risk speed υin domain (1). The meaning of risk
speed υis simple. For a long time, credit transition matrixes (Bangia et al. 2000; Metz and Cantor 2007;
Fitch Ratings 2017; S&P 2019) have been the subject of intensive studies as tools for default assessment and
business cycle modeling. Credit transition matrixes describe the probabilities of transition from the current
risk grade to safer or riskier grades over one, two, or more years. Current risk grades have notations such
as AAA, AA, BB, and C (Moody’s Investors Service 2010, 2018). Meanwhile, the “distance” between risk
grades AAA and BB makes no sense. The introduction of a continuous risk domain (1) instead of
common risk grades allows the define distance between risk grades to be defined. Transitions between
two risk grades with distance x during time term T with probabilities P allow the risk velocity υ in
domain (1) to be defined as (2a): the mean transition risk distance per time T. The motion of agents
with risk speed υ indicates that agents carry their economic and financial variables, transactions,
and expectations. For example, if a certain agent provides credits C and moves with speed υ, then
it carries credit flow PC = Cυ. Flows of variables, transactions, and expectations carried by agents
due to changes of their risk ratings have important impacts on the economic and financial evolution.
Flows of variables and transactions induce continuous changes of financial variables. In particular,
this causes continuous changes of the market supply and demand and makes the GE concept of
supply–demand equilibrium very questionable. Recent papers on “Rebuilding macroeconomic theory”
(Vines and Wills 2018a) do not investigate this issue and we plan to discuss contradictions with the
GE concept in a forthcoming work. The collective flows of separate agents define financial flows
of variables, transactions, and expectations. Let us explain the meaning of aggregative variables,
collective flows, and risk velocities in a more rigorous way.

We describe the macro finance as a system of numerous agents in n-dimensional domain (1) and
propose that agents at a moment t have risk coordinates x = (x1, . . . xn) and velocities υ = (υ1, . . . υn).
The velocities υ= (υ1, . . . υn) describe the change of agents’ risk coordinates during a time term ∆. Let us
explain the relations between the risk velocities and risk transition matrixes (Metz and Cantor 2007;
Fitch Ratings 2017; S&P 2019). We define probability Pij of transition from a risk grade i to a risk
grade j during a time term T. Current risk methodologies (Moody’s Investors Service 2010; S&P 2016;
Fitch Ratings 2018) note risk grades such as AAA, AA, BB, and CC, and therefore, difference between
two risk grades has no sense. We propose, that risk grades may take values in the domain (1), and the
difference between two grades equals the distance y-x between points x and y of domain (1). We assume,
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that at time t for agent i the function Pi(t;x,y) defines the probability of transition from risk x to y during
a time term T. Therefore, we denote the risk velocity υi of agent i as:

υi(t, x) =
1
T

∫
dyPi(t; x, y)(y− x) =

1
T
[

∫
dyPi(t; x, y)y − x] (2a)

and, for the transition probability Pi(t;x,y):∫
dyPi(t; x, y) = 1

The transition probability Pi(t;x,y) in domain (1) define mean velocity υi (2a) of agent i. Let us
assume that the scale d << 1 defines a unit volume dV at point x:

d� 1 ; dV = dn (2b)

and a volume dV (2b) contains many agents. Let us describe only the additive variables of agents and
assume that econometric statistics selects “independent” agents. We call agents “independent” if the
sum of their additive variables equals the same variable of the entire group. For example, the sum of
credits of k agents equals the credits of the group of these k agents. Let us define the additive collective
variable A(t,x) at point x as the sum of the variables Ai(t,x) of agents i with coordinates in a unit volume
dV(x) (2b) and then average the sum during term ∆ as:

A(t, x) =
∑

i∈dV(x); ∆
Ai(t, x) (3)

∑
i∈dV(x); ∆

Ai(t, x) =
1
∆

∫ t+∆

t
dτ

∑
i∈dV(x)

Ai(τ, x) (4)

We use i ∈ dV(x) to denote that the risk coordinates x of agent i belong to a volume dV(x).
For brevity, we use left hand sum (4) to denote averaging during time ∆ in a unit volume dV(x).
We propose that the scale ∆ is small to compare with the time scales of the problem under consideration,
but agents perform a lot of financial transactions between them during time ∆. Time averaging smooth
out the changes of agents’ variables under numerous transactions during time ∆. We aggregate the
values of variables of numerous agents with risk coordinates inside a volume dV(x), smooth their
changes during time ∆ and denote the result as a density function of variable at point x. The density
function A(t,x) describes the collective financial or economic variable at point x in (1). For example,
denote Ai(t,x) as the credits of an agent i. Therefore the density of credits A(t,x) describes the sum of
credits issued by all agents with coordinates x inside a unit volume dV(x) and averaged during a time
∆. Then the total credits A(t) in the economy equal the integral (5) over (1):

A(t) =
∫

dx A(t, x) (5)

Therefore the function A(t,x) (3) can be treated as the financial density of variable A(t) (5) in
(1). Now let us introduce the collective flows P and collective velocities υ. We describe changes of
coordinates xi = (x1, . . . xn) of an agent i with additive variable Ai(t,x) during a time ∆ by velocities υi
= (υ1i, . . . υni) (2a). Thus each agent i carries flow piA(t,x):

piA(t, x) = Ai(t, x)υi(t, x) (6)

Different agents induce different flows of variable A in different directions with different velocities.
Let us collect flows of the variable Ai(t,x) in the direction of velocity υi of agent i with coordinates in
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a unit volume dV(x) (2b) and then average this flow during a time ∆ similar to relations (3) and (4).
Let us define the collective flow PA(t,x) of variable A(t,x) as:

PA(t, x) =
∑

i∈dV(x); ∆
Ai(t, x)υi(t, x) (7)

Similar to (5) the integral of (7) by dx over (1) defines the macro flow PA(t) of the variable A(t):

PA(t) =
∫

dx PA(t, x) (8)

The flow PA(t,x) (7) of the variable A(t,x) (3) defines the collective velocity υA(t,x) of the variable
A(t,x) as:

PA(t, x) = A(t, x)υA(t, x) (9)

Therefore (9) describes the flow PA(t,x) of the variable A(t,x) with velocity υA(t,x). Relations (5)
and (8) define the macro velocity υA(t) of macro variable A(t) in (1) as:

PA(t) = A(t)υA(t) (10)

One can obtain relations (8) and (10) as a sum of flows (6) of all agents of the entire economics.
Let us mention that due to (3), (5), (7)–(10) the velocity υA(t) is not equals to the integral of velocity
υA(t,x) over domain (1). Due to (3)–(10) different variables A define different collective flows PA(t,x)
with different velocities υA(t,x). In other words—different additive variables A(t,x) in (1) have different
velocities υA(t,x). For example, the flow PC(t,x) of credits C(t,x) has the velocity υC(t,x) different from
the velocity υL(t,x) of the collective flow PL(t,x) of loans L(t,x) or from collective velocity υI(t,x) that
describes flow PI(t,x) of the investment I(t,x) in (1). The flows (8) and (10) for different variables are
also different. For example, flows PS(t) and velocities υS(t,x) of the market supply are different from
flows PD(t) and velocities υD(t,x) of the market demand for any commodities, assets, or goods and
any markets. This causes permanent changes of supply and demand and makes the existence of
imaginable market supply–demand equilibrium states very doubtful. There have been no assessments
of the time scales that establish market supply–demand equilibrium states. Risk actions and the impact
of financial risk flows disturb any equilibrium states and make GE as a concept too questionable.
We propose that further research on the applicability of the GE concept is required. Macro models
should describe dynamics and mutual interactions between numerous financial and economic variables,
market transactions, expectations, and their flows. It should be highlighted that the properties of
economic and financial flows are completely different from the properties of any physical flows.

As we show below, similar considerations help to define collective flows of transactions and
expectations. To outline the impact of collective flows of variables, transactions, and expectations
on macro finance, equations which govern collective variables, transactions, and expectations can be
considered as functions of risk coordinates. All equations have similar form and we derive them for
the credit density function C(t,x) as example.

The credit density function C(t,x) (3) and (4) describes collective credits issued by agents with
coordinates inside a small volume dV at a point x. The motion of agents inside a volume dV induces
collective credit flows PC(t,x) = C(t,x)υ(t,x) (7) and (9). The function υ(t,x) describes velocity of the
credit density flow C(t,x)υ(t,x). To describe changes of the credit density function C(t,x) during time dt
in a small volume dV on (1) let us take into account two factors. The first one describes changes of
C(t,x) in a time dt in a small volume dV: ∫

dV
∂
∂t

C(t, x)

The second factor describes changes induced by the credit flow PC = Cυ of agents that may flow
in- or flow out- of a small volume dV during a time dt. Agents that flow in- a volume dV during dt with
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the credit flow PC = Cυ increase the credit density function C(t,x) in a volume dV and agents that flow
out of the volume dV with credit flow PC = Cυ decrease the credit density function C(t,x). The balance
of credit in- and out-flows equals the integral of the credit flow PC(t,x) = C(t,x)υ(t,x) over the surface of
a volume dV: ∮

dsPC(t, x) =
∮

dsC(t, x) v(t, x)

According to well-known divergence Gauss’ Theorem (Strauss 2008, p. 179), the surface integral
of the flows equals the volume integral of the flows’ divergence over a small volume dV:∮

dsC(t, x) v(t, x) =
∫

dV ∇·( C(t, x) v(t, x)) (11a)

Hence the total change of the credit density function during a time dt in a small volume dV equals:∫
dV

[
∂
∂t

C(t, x) +∇·( C(t, x) v(t, x))
]

A volume dV is an arbitrary small and thus equations on C(t,x) (Olkhov 2016a, 2016b, 2017a)
take form:

∂
∂t

C(t, x) +∇·( C(t, x) v(t, x)) = FC(t, x) (11b)

The function FC(t,x) in the right side (11b) describes the impact of factors defined by variables,
transactions, or expectations and their flows on evolution of the credit density function C(t,x).
The Equation (11b) depends on credit flow PC(t,x) = C(t,x)υ(t,x) and hence one should derive equation
on it. The same considerations permit derive equations on the flow PC(t,x) = C(t,x)υ(t,x) as:

∂
∂t

PC(t, x) +∇·( PC(t, x) v(t, x)) = GC(t, x) (11c)

The function GC(t,x) in (11c) describes factors defined by variables, transactions, and expectations
and their flows those impact evolution of the credit flow PC(t,x). Due to (5) the integral by dx of (11b)
over (1):

d
dt

C(t) +
∫

dx∇·( C(t, x) v(t, x)) =
∫

dx FC(t, x) = FC(t) (11d)

Due to (11a) the integral in the left side (11d) equals zero as no agents, in- or out- flows exist on
surface outside of domain (1). Therefore (11d) takes form of ordinary differential equation:

d
dt

C(t) = FC(t) (11e)

The complexities of (11e) are hidden by the function FC(t) determined by the integral in (11d).
The function FC(t,x) may depend on many variables, transactions, expectations, and their flows and
may be a very complex function. Thus time evolution of the collective variables like the macro credits
C(t) may depend on the hidden dynamics of variables, transactions, and expectations and their flows
in domain (1). Due to (8), (10) and (11a) the integral by dx for Equations (11c) over domain (1) defines
ordinary differential equation on credit flow PC(t):

d
dt

PC(t) =
∫

dx GC(t, x) = GC(t) (11f)

The function GC(t) in (11f) may be as complex as function FC(t) (11d). Equations similar to
(11b), (11c), (11e) and (11f) are valid for other additive variables such as investment, loans, demand,
and supply, and their flows. Each aggregate variable A(t) as a function of time has a different velocity
υ(t). Macroevolution requires a description of the motion of numerous financial variables with different
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velocities in (1) and that is a tough problem. The meaning of (11f) will now be presented. Velocity υ(t)
of credit flow PC(t) = C(t)υ(t) describes the motion of credits C(t) in (1). Economic domain (1) is
bounded along each risk axis by the most secure and most risky grades [0,1]. Therefore, the motion of
credits C(t) with velocity υ(t) along each risk axis from a secure to risky direction should change by the
opposite motion from a risky to secure area. Hence, credit velocity υ(t) should fluctuate in time and
such fluctuations describe credit cycles. Similar fluctuations describe cycles of GDP, investment, etc.

There are some consequences of our model. As we mentioned above, equations similar to
(11b) and (11c) describe density functions and flows of numerous financial variables, transactions,
and expectations. Therefore, equations similar to (11b) and (11c) define macro models for each
selected set of variables, transactions, and expectations. The model can be determined by a set of
k different transactions like credit, investment, and buy–sell transactions. Each transaction defines
a change of variables of sellers and buyers. For example, a credit transaction changes the value
of credits provided by the creditor (seller) and amount of loans received by borrowers (buyers).
Therefore, k transactions change 2k additive variables. Each transaction can be performed under
different expectations. It can be assumed that k transactions are performed under W expectations.
To develop a self-consistent model that describes the macro model determined by 2k additive variables
and k transactions, one should assume that all W expectations are determined by 2k additive variables,
k selected transactions, and their flows. In particular, W expectations should depend on 2k additive
variables or non-additive variables that can be determined by 2k additive variables and their flows.
If some expectations depend on exogenous factors, then evolution of the macroeconomic model reflects
the action of exogenous properties. Exogenous expectations transfer the impact of exogenous factors
on macro financial dynamics.

The importance of expectations is not reduced by their role as a transmitter of exogenous
shocks. As we argued above, expectations may depend on flows of variables, transactions, and other
expectations. Expectations formed by financial flows become key factors that determine the impact
of flows on financial evolution. Dynamics of flows of variables, transactions, and expectations
and their mutual interactions in (1) establish a very complex picture. For example, flows in
domain (1) generate business, credit, and investment cycles that describe slow oscillations of macro
financial variables. On the other hand, perturbations of flows produce generation, propagation,
and interaction of waves of disturbances of financial variables, transactions, and expectations,
and induce fast oscillations of financial parameters. We apply our methods to study the approximations
based on equations similar to (11b) and (11c) that describe a “simplified” model interactions
between two variables (Olkhov 2016a, 2016b), between two transactions (Olkhov 2018a), model
the business cycles (Olkhov 2017c, 2019), and wave propagation of disturbances of financial variables
(Olkhov 2016a, 2016b, 2017a), and transactions (Olkhov 2018a), and surface-like waves (Olkhov 2017b)
in domain (1). In the Section 5 we apply equations similar to (11b), (11c) to model price fluctuations
induced by interactions between transactions and numerous expectations.

3. Market Transactions as Functions of Risk

Let us assume, that agent i at point x sell the amount Qij of variable E to agent j at point y.
Variable E may make sense of commodities, credits, investment, assets, service, etc. For example, agent
i provides the credits C to agent j. Such a transaction between agents i and j changes the amount of
credits C provided by i and the amount of loans L received by j. The transaction of amount Qij cost
certain value Cij that should be paid by the agent j as buyer to the agent i as seller. Therefore each
transaction defines two variables—the amount Qij and the cost Cij and these variables define price
pij of the financial transaction of variable E. For the agent i with risk coordinates x and the agent j
with coordinates y at moment t we define the transaction bsij(t,x,y) with the amount Qij(t,x,y) and cost
Cij(t,x,y) as:

bsi j(t, z) =
(
Qi j(t, z); Ci j(t, z)

)
; z = (x, y) (12a)
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Then the price pij(t,z) of the transaction (12a) takes obvious form:

pi j(t, z) = Ci j(t, z)/Qi j(t, z) ; z = (x, y) (12b)

We use bold font for the transaction bsij(t,z), z = (x,y) to underline that each transaction defines
two additive variables—the amount Qij and the cost Cij of economic or financial variable E. It is
obvious, that cost Cij may be transferred later then amount Qij or vice versa but for simplicity as first
approximation we assume that it is done simultaneously. Each transaction takes a certain time dt and
we consider transactions as a rate or speed of change of corresponding variable E for agents involved
into the transaction. For example, all transactions of agent i at a moment t during time [0,t] define
change of variable E (Steel, Energy, Shares, Credits, Assets etc.) owned by agent i during a period [0,t].
Now, let us move from description of transactions bsij(t,x,y) between separate agents i at x and j at y to
description of collective transactions BS(t,x,y) between points x and y.

Let us assume that agents in (1) at a moment t have coordinates x = (x1, . . . xn) and risk velocities υ
= (υ1, . . . υn). The transactions between agents with risk coordinates x and agents with risk coordinates
y are determined on 2n-dimensional economic domain, z = (x,y):

z = (x, y) ; x = (x1 . . . xn) ; y = (y1 . . . yn) (12c)

0 ≤ xi ≤ 1 ; 0 ≤ yi ≤ 1 , i = 1, . . . n (12d)

Relations (12c) and (12d) define 2n-dimensional economic domain and pairs of agents with
coordinates z = (x,y) fill this domain. Let us take a unit volume dV(z)

dV(z) = dV(x)dV(y) ; dV(x) = dn ; dV(x) = dn ; z = (x, y) (12e)

and assume that dV(x) and dV(y) obey relations (2a) and their scales d << 1. Let us assume that each
unit volume dV(x) and dV(y) contain a lot of agents with risk coordinates inside dV(x) and dV(y) and
during time ∆ agents inside dV(x) and dV(y) perform a lot of mutual transactions. Let us define the
collective transaction BS(t,x,y) between points x and y as a sum of all transactions of agents i with
coordinates in a unit volume dV(x) and agents j with coordinates in a unit volume dV(y) (12e) and then
average this sum during the term ∆ similar to (3) and (4) as:

BS(t, x, y) =
∑

i∈dV(x); j∈dV(y); ∆
bsi, j(t, x, y) (12f)

∑
i∈dV(x); ∆

bsi, j(t, x, y) =
1
∆

∫ t+∆

t
dτ

∑
i∈dV(x); j∈dV(y)

bsi, j(τ, x, y) (12g)

BS(t, z) = (Q(t, z); C(t, z)) ; z = (x, y) (12h)

Q(t, z) =
∑

i∈dV(x); j∈dV(y); ∆

∑
k1

Qi j(t, z) (12i)

C(t, z) =
∑

i∈dV(x); j∈dV(y); ∆

∑
k2

Ci j(t, z) (12j)

We take the price p(t,z) of the transaction BS(t,z) as:

C(t, z) = p(t, z)Q(t, z) ; z = (x, y) (12k)

The integral of transaction BS(t,z) (12h) by dy over the economic domain (12c) and (12d) defines
all sells BS(t,x) of variable E performed by agents inside a unit volume dV(x) at x

BS(t, x) = (QS(t, x); CS(t, x)) (13a)
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QS(t, x) =
∫

dyQ(t, x, y) ; CS(t, x) =
∫

dyC(t, x, y) (13b)

Relations (13a) and (13b) define the price pS(t,x) of sellers for the transactions with variable E
from x:

CS(t, x) = pS(t, x)QS(t, x) (13c)

The integral of transaction BS(t,z) (12h) by dx over (12c) and (12d) defines the buyers’ price pB(t,y)
at y:

CB(t, y) =
∫

dxC(t, x, y) = pB(t, y)QB(t, y) ; QB(t, y) =
∫

dxQ(t, x, y) (13d)

The integral of the transaction BS(t,z) (12h) by dxdy over (12c) and (12d) define the trading volume
Q(t), the cost C(t), and the price p(t) of transactions BS(t) in economy at a moment t:

BS(t) = (Q(t); C(t)) (13e)

C(t) =
∫

dxdyC(t, x, y) = p(t)Q(t) ; Q(t) =
∫

dxdyQ(t, x, y) (13f)

For example, if CI(t) equals the amount of cumulative investment made in economy during a
term [0,t] and Q(t,x,y)—the amount of investment transactions BS(t,x,y) (12f) made from x to y during
a time term dt then from (12f):

d
dt

CI(t) = Q(t) =
∫

dxdy Q(t, x, y) (13g)

Hence, the transactions define time derivative of cumulative macro variables like investment,
credits, etc. Let us note BS(t,z) as a transaction density function on 2n-dimensional domain (12c) and
(12d) similar to a variable density function A(t,x) (3) and (4) on (1). Relations (12f)–(13d) demonstrate
that different aggregations describe different price of transactions. Thus, different aggregations of the
price have a different impact on the price evolutions and fluctuations.

Similar to (6) and (7), let us introduce the transactions flows that are induced by changes of
risk coordinates of agents at point x and y. Indeed, a motion of agents due to changes of their risk
coordinates induces flows of the transactions that change the amount and cost of the transactions in a
small volume (12c)–(12e). Let us define the flows pij(t,z) (14a) and (14b) of the transactions bsij(t,z)
between agents i and j similar to (6):

pi j(t, z) =
(
pQij(t, z), pCij(t, z)

)
(14a)

pQij(t, z) =
(
pQijx(t, z); pQijy(t, z)

)
; pCij(t, z) =

(
pCijx(t, z); pCijy(t, z)

)
(14b)

pQijx(t, z) = Qi, j(t, z)υix(t, x) ; pQijy(t, z) = Qi, j(t, z)υ jy(t, y) (14c)

pCijx(t, z) = Ci, j(t, z)υix(t, x) ; pCijy(t, z) = Ci, j(t, z)υ jy(t, y) (14d)

The flows pij(t,z) (14a) define the flows pQij(t,z) (14c) that carry the amount Qij and the flows
pQij(t,z) (14d) that carry the cost Cij of the transaction bsij(t,z) (12a). The cumulative flows P(t,z) over
all agents i at x inside dV(x) and all agents j at y inside dV(y) define the transactions flows between
points x and y similar to (7) as:

P(t, z) =
(
PQ(t, z), PC(t, z)

)
; z = (x, y) (15a)

PQ(t, z) =
∑

i∈dV(x); j∈dV(y) ∆
pQij(t, z) ; PC(t, z) =

∑
i∈dV(x); j∈dV(y) ∆

pCij(t, z) (15b)

PQ(t, z) =
(
PxQ(t, z); PyQ(t, z)

)
; PC(t, z) =

(
PxC(t, z); PyC(t, z)

)
(15c)
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PxQ(t, z) =
∑

i∈dV(x); j∈dV(y) ∆
Qi j(t, z)υi(t, x) = Q(t, z)υxQ(t, z) (15d)

PyQ(t, z) =
∑

i∈dV(x); j∈dV(y) ∆
Qi j(t, z)υ j(t, y) = Q(t, z)υyQ(t, z) (15e)

PxC(t, z) =
∑

i∈dV(x); j∈dV(y) ∆
Ci j(t, z)υi(t, x) = C(t, z)υxC(t, z) (15f)

PyC(t, z) =
∑

i∈dV(x); j∈dV(y) ∆
Ci j(t, z)υ j(t, y) = C(t, z)υyC(t, z) (15g)

v(t, z) =
(
vQ(t, z); vC(t, z)

)
(15h)

vQ(t, z) =
(
vxQ(t, z) ; vyQ(t, z)

)
; vC(t, z) =

(
vxC(t, z) ; vyC(t, z)

)
(15i)

The flows of transactions P(t,z) (15a)–(15f) between points x and y describe the amounts of
transactions BS(t,z) (13a) carried by transactions velocities υ(t,z) (15g)–(15i) through 2n-dimensional
domain (12c) and (12d). Let us underline that velocities υQ(t,z) (15h) that define the motion of amount
of transactions may be different from velocities υC(t,z) (15i) that describe the motion of transactions
costs. These distinctions add additional perturbations for price of the transactions (12k). Similar to (8)
and (9) integrals of the flows P(t,z) (15a)–(15f) and (15g)–(15i) over (12c) and (12d) by dxdy we define
the macro flows of transactions BS(t) (4.1) with velocity υ(t) as:

P(t) =
(
PQ(t); PC(t)

)
(16a)

PQ(t) = Q(t)vQ(t) =
∫

dz Q(t, z)υQ(t, y) (16b)

PC(t) = C(t)vC(t) =
∫

dz C(t, z)υC(t, y) (16c)

v(t) =
(
vQ(t) ; vC(t)

)
(16d)

vQ(t, z) =
(
vxQ(t) ; vyQ(t)

)
; vC(t, z) =

(
vxC(t) ; vyC(t)

)
(16e)

For example, let us take BS(t) as investment transactions with an amount of investment Q(t) in
the economy at moment t. Then, the relations (16b) describe the flow of the amount of investment
with velocity υQ(t) on (12c) and (12d). Components υxQ(t) and υyQ(t) describe the motion of collective
investors and recipients of investments. Positive or negative values of components of velocity
υxiQ(t) along axis xi of (12c) and (12d) describe the motion of investors in risky or safer directions.
Positive values of components of velocity υyjQ(t) along axis yj of (12c) and (12d) describe the motion of
recipients of investments in a risky direction and negative υyj(t) describes a decline of risks of recipients
of investments along axis yj. Collective investors and recipients of investments may only move inside
the bounded domain (12c) and (12d). Therefore, velocities (16d) and (16e) cannot be constant and
must change their signature and fluctuate as borders of domain (12c) and (12d) reduce the motion
along each risk axis. Fluctuations of velocities (16d) and (16e) describe the motion of investors and
recipients of investments from safer to risky areas and back from risky to safer areas, and thus describe
investment cycles. Credit transactions, buy–sell transactions, etc., induce similar macro transactions
flows (16a)–(16e) and describe corresponding credit cycles, buy–sell cycles, etc., (Olkhov 2017c, 2019).

The relations (12f)–(12j) and (14a)–(15i) allow derive equations on the transactions BS(t,z) and
transactions flows P(t,z), z = (x,y) on 2n-dimensional domain (12c) and (12d) similar to the Equations
(11b) and (11c) on density and flows of variables (3), (4) and (7). To derive equations on transactions
density BS(t,z) (12h)–(12j) and flows P(t,z) (15a)–(15i), let us describe their changes in a small unit
volume dV(z) (12c)–(12e). Let us take equations on the amount of transactions Q (12i) and its flows PQ.
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Equations on cost of transaction take similar form. Two factors change the amount of transaction Q(t,z)
in a unit volume dV(z). The first one change Q(t,z) in time as:∫

dz
∂
∂t

Q(t, z) (17a)

The second factor describes change of Q(t,z) due to flows PQ(t,z): the amount of Q(t,z) in a unit
volume dV(z) (12c)–(12e) can grow up or decrease due to in- or out-flows PQ(t,z) during time dt. If in-
flows PQ(t,z) exceed out- flows then Q(t,z) grow up in a volume dV(z). To calculate the balance of in-
and out-flows let us take the integral of flow PQ(t,z) over the surface of dV(z):∮

dsPQ(t, z) =
∮

ds Q(t, z)vQ(t, z) (17b)

Due to the divergence theorem (Strauss 2008, p. 179) the surface integral (17b) of the flow PQ(t,z)
= Q(t,z)υQ(t,z) equals its volume integral by divergence of the flow:∮

dsQ(t, z)vQ(t, z) =
∫

dz ∇·
(
Q(t, z)vQ(t, z)

)
(17c)

The relations (17a)–(17c) give total change of the amount of transactions Q(t,z) in dV(z):∫
dz

[
∂
∂t

Q(t, z) +∇·
(
Q(t, z) vQ(t, z)

)]
As a unit volume dV(z) is an arbitrary, one can take equations on Q(t,z) as

∂
∂t

Q(t, z) +∇·
(
Q(t, z) vQ(t, z)

)
= F(t, z) (17d)

The same considerations are valid for the flow PQ(t,z):

∂
∂t

PQ(t, z) +∇·
(
PQ(t, z) vQ(t, z)

)
= G(t, z) (17e)

Similar to (11d) and (11e) the integrals of (17d) and (17e) by dz = (dx,dy) over domain (12c) and
(12d) give: ∫

dz
[
∂
∂t

Q(t, z) +∇·
(
Q(t, z) vQ(t, z)

)]
=

d
dt

Q(t) = F(t) =
∫

dzF(t, z) (18a)∫
dz

[
∂
∂t

PQ(t, z) +∇·
(
PQ(t, z) vQ(t, z)

)]
=

d
dt

PQ(t) = G(t) =
∫

dzG(t, z) (18b)

The relations (18a) and (18b) illustrate that operators in the left hand of (17d) and (17e) for Q(t,z)
and the flows PQ(t,z), z = (x,y) on the 2n-dimensional domain (12c), (12d) play role alike to ordinary
derivative by time t for the amount of transactions Q(t) (12i) and (18a) and flows PQ(t) (15c) and (18b).
Equations similar to (17d), (17e) and (18a), (18b) are valid for the cost of transactions C(t,z) and cost
flows PC(t,z), z=(x,y), but velocities υC(t,z) of the cost flows PC(t,z) are different from velocities υQ(t,z)
of amount flows PQ(t,z). Each component of each transaction has a different velocity and is described
by different operators (17d), (17e) and (18a), (18b) with a different functions F(t,z) and G(t,z). Such a
variety of flows and velocities in the domain (12c), (12d) establishes a very complex picture of economic
and financial processes and their evolution. The form of functions F(t,z) and G(t,z) and the questions
relating to what factors impact equations on transactions (17d), (17e) and (18a), (18b), reflect the main
complexity for modeling financial transactions and variables.

Various expectations impact the way in which agents perform transactions BS(t,z) with other
agents. Equations (17d) and (17e) define the evolution of the amount Q (12i) of transactions and similar
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equations describe the cost C (12j) of transactions. We propose that functions F(t,z) and G(t,z) on the
right-hand side of (17d) and (17e) describe the action of expectations of agents involved in transactions
BS(t,z). Expectations may depend on economic or financial variables, transactions, expectations of
other agents, market and tax regulation, technology trends, and forecasts. This permits the study of
the evolution of financial systems in different approximations.

Expectations are very numerous and different. Agents may go into the same transactions under
various expectations. For example, different agents at point x may make decisions on amount Q (12i)
of the same transaction under inflation expectations, return expectations, professional macroeconomic
forecasters (these expectations are mentioned by (Manski 2017)), etc. It is clear that the composition of
different expectations as inflation, return, or professional macroeconomic forecasters does not help to
establish collective expectations that may explain the aggregate amount Q(t,z) (12i) of transactions
made from point x to point y, z = (x,y). To describe the collective impact of heterogeneous expectations,
let us introduce definitions of expectations similar to macro variables and transactions.

4. Expectations as Functions of Risk

Expectations are the most “etheric” substance of economics and finance. Expectations are treated as
factors that govern financial transactions, prices, and returns at least since Keynes (1936), Muth (1961),
and Lucas (1972) and in numerous publications (Sargent and Wallace 1976; Hansen and Sargent
1979; Kydland and Prescott 1980; Blume and Easley 1984; Brock and Hommes 1998; Manski 2004;
Brunnermeier and Parker 2005; Dominitz and Manski 2005; Klaauw et al. 2008; Janžek and Ziherl 2013;
Greenwood and Shleifer 2014; Lof 2014; Manski 2017; Thaler 2018).

Expectations concern inflation and demand, exchange and bank rates, price trends, etc. There are
many studies on expectations measurements (Manski 2004; Dominitz and Manski 2005; Klaauw et al. 2008;
Stangl 2009; Janžek and Ziherl 2013; Manski 2017; Tanaka et al. 2018). Due to Manski (2004) “It would
be better to measure expectations as—subjective probabilities”. Dominitz and Manski (2005) “analyze
probabilistic expectations of equity returns”. Stangl (2009) suggests that “Visual Analog Scale (VAS)
enables scores between categories, and the respondent can express not only the direction of his attitude
but also its magnitude on a 1-to-100-point scale, which comes close to an interval scale measurement”.
The measurement of such “etheric” substances as expectations of separate agents is a really tough
problem. Let us propose that it is possible to measure the expectations of separate agents. How can we
establish collective expectations that govern transactions made by agents at point x? Indeed, aggregate
transactions (12f)–(12j) are performed under collective expectations of agents in the domain (12c) and
(12d) at point z in a unit volume (12e). It is impossible to collect different expectations like “inflation
expectations, return, professional macroeconomic forecasters” in one aggregate expectation. To define
collective expectations, let us simplify the problem. It can be assumed that all different expectations
are measured as an index. It is clear that the scale of the index is not important. The measure of
expectations may have values between 0 and 100 or 0 and 1. All expectations are measured by the same
measure with the same scale. For certainty, interval [0,1] can be taken as a measure of expectations.
It can be assumed that each agent may have j = 1, . . . K different expectations that define decisions on
transactions bsij(t,x,y) (12a) and each j = 1, . . . K particular expectation has a particular measure in
interval [0,1].

To aggregate the value and importance of agents’ expectations, the financial or economic value
of a particular agent’s expectation should be proportional to the value of transactions made under
this expectation. Indeed, if particular transactions amount to 90% of all deals and are made under
expectation 1, then expectation 1 is ninety times more important than expectation 2, which is responsible
for only 1% of the same deals. Therefore, to aggregate the expectations of agents at point x, one should
collect expectations weighted by the value of transactions made under these expectations.

Let us explain this statement using the transactions bsij(t,z) (12a) as example. We remind, that
each transaction bsij(t,z), z = (x,y) (12a) defines the quantity Qij and the cost Cij of the transaction.
Decisions on the quantity Qij and cost Cij may be made under different expectations. The seller and
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the buyer may make decisions on the transaction between them under different expectations too.
Therefore even single transaction bsij(t,z) (12a) may be performed under four different expectations:
Two expectations of the seller on the quantity Qij and cost Cij and two expectations of the buyer.
As example, we argue expectations that determine decisions of the sellers on quantity Qij and cost Cij of
the transaction (12a). We denote the seller’s expectations exQi(k;t,x) of type k = 1, . . . K of agent i at point
x to perform the transactions of the amount Qij(k;t,z) as part of the transactions of the total amount
Qij(t,z) (12a) of agent i with agent j under all expectations. Let us denote the expectations exCi(l;t,x) of
type l = 1, . . . K of the same agent to perform the transaction of amount Qij(k;t,z) at the cost—Cij(l;t,z).
It seems reasonable that the decisions on the quantity Qij(k;t,z) depend on the decisions on cost Cij(l;t,z)
of transactions and vice versa. Therefore, the amount Qij and the cost Cij of transactions preformed
by the seller should depend on both expectations k and l: exQi(k,l;t,x) and exCi(k,l;t,x). We denote the
volume Qij and the cost Cij of the seller’s transaction bsij(t,z) (12a) as:

bsi j(t, z) =
(
Qi j(k; t, z); Ci j(k; t, z)

)
; k = (k, l) ; k, l = 1, . . .K; z = (x, y) (19a)

The same reasons allow denote the volume Qij and the cost Cij of the buyer’s transaction bsij(t,z)
(12a) as:

bsi j(t, z) =
(
Qi j(t, z; l); Ci j(t, z; l)

)
; l = (k, l); k, l = 1, . . . K (19b)

To define the economic value of the sellers’ expectations exQi(k,l;t,x) and exCi(k,l;t,x) let us introduce
the sellers’ expected transaction etij(k;t,x,y) as follows:

eti j(k; t, z) =
(
etQij(k; t, z) ; etCij(k; t, z)

)
; k = (k, l) (19c)

etQij(k; t, z) = exQi(k; t, x)Qi j(k; t, z) ; etCij(k; t, z) = exCj(k; t, y)Ci j(k; t, z)

The relations (19c) describe the sellers’ volume expected transaction etQi(k;t,z) that equals the
product of the volume expectations exQi(k;t,x) of type k, k = (k,l) at point x and the quantity Qij(k;t,z) of
the transaction performed between agents i at x as the sellers and agents j at y as the buyers. The cost
of expected transactions etCi(k;t,z) (19c) equals the product of the cost expectations exCi(k;t,x) of type l,
k = (k,l) at a point x and the cost Cij(k;t,z) of transaction performed between agents i at x as sellers and
agents j at y as buyers. Similar considerations define buyers expected transactions:

eti j(t, z; l) =
(
etQij(t, z; l) ; etCij(t, z; l)

)
; l = (k, l) (19d)

etQij(t, z; l) = exQi(t, x; l1)Qi j(t, z; l) ; etCij(t, z; l) = ex j(t, y; l2)Ci j(t, z; l)

Now let us move from the description of transactions between agents to the description of
transactions between points of the economic domain (12c) and (12d) similar to (12f)–(12j) and define a
part Q(k;t,z) of the total amount Q(t,z) and a cost C(k;t,z) of the total cost C(t,z) of the transaction (12h)
performed under sellers’ expectations of the type k:

Q(k; t, z) =
∑

i∈dV(x); j∈dV(y); ∆
Qi, j(k; t, z) ; z = (x, y) (19e)

C(k; t, z) =
∑

i∈dV(x); j∈dV(y); ∆
Ci, j(k; t, z) ; k = (k, l) (19f)

The total amount Q(t,z) (12i) and the total cost C(t,z) of the transactions (12h) equal sum by all
sellers’ expectations and by all buyers’ expectations:

Q(t, z) =
∑

kl

Q(k, l; t, z) =
∑

kl

Q(t, z; k, l) (19g)
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C(t, z) =
∑

kl

C(k, l; t, z) =
∑

kl

C(t, z; k, l) (19h)

Now we define sellers’ expected transactions Ets(k;t,z), z = (x,y) between points x and y made
under sellers’ expectations k = (k,l). Let us aggregate (19c) alike to (15d)–(15g) as:

Ets(k; t, z) =
(
EtQ(k; t, z) ; EtC(k; t, z)

)
; z = (x, y) (20a)

EtQ(k; t, z) =
∑

i∈dV(x); j∈dV(y);∆
exi(k1; t, x)Qi j(k; t, z) (20b)

EtC(k; t, z) =
∑

i∈dV(x); j∈dV(y);∆
ex j(k2; t, y)Ci j(k; t, z) (20c)

The relations (20a)–(20c) and the functions Q(k;t,z) (19e) and C(k;t,z) (19f) define sellers’
expectations ExQ(k;t,z) and ExQ(k;t,z) of the type k = (k,l) as:

EtQ(k; t, z) = ExQ(k; t, z)Q(k; t, z) (20d)

EtC(k; t, z) = ExC(k; t, z)C(k; t, z) (20e)

We underline, that sellers’ expected transactions EtQ(k;t,z), EtC(k;t,z) (20b) and (20c) and sellers’
expectations ExQ(k;t,z), ExC(k;t,z) (20d) and (20e) are determined with respect to the transactions
(12f)–(12j) with the selected financial or economic variable E. The transactions with a different variables
E—with commodities, service, assets, etc.—define different expectations ExQ(k;t,z), ExC(k;t,z). To define
macro expectations of sellers’ ExQ(k;t) and ExC(k;t) at moment t let us take the integrals over the
economic domain (12c) and (12d):

Q(k; t, x) =
∫

dyQ(k; t, x; y) ; C(k; t, x) =
∫

dyC(k; t, x; y) (21a)

EtQ(k; t, x) =
∫

dyEt(k; t, x, y) = ExQ(k; t, x)Q(k; t, x) (21b)

EtC(k; t, x) =
∫

dyEt(k; t, x, y) = ExC(k; t, x)C(k; t, x) (21c)

Q(k; t) =
∫

dxdyQ(k; t, x; y) ; C(k; t) =
∫

dxdyC(k; t, x; y) (21d)

EtQ(k; t) =
∫

dxdyEt(k; t, x, y) = ExQ(k; t)Q(k; t) (21e)

EtC(k; t) =
∫

dxdyEt(k; t, x, y) = ExC(k; t)C(k; t) (21f)

The relations (21a) define the amount Q(k;t,x) of the transactions (12f) with variable E performed
by sellers at x under their expectations with all buyers of entire economics. The functions C(k;t,x)
(21a) define the cost of sellers’ transactions of the amount Q(k;t,x) (21a) with all buyers. The relations
(21b) define sellers expected transactions EtQ(k;t,x) of the amount Q(k;t,x) under sellers’ expectations
ExQ(k;t,x) with all buyers. The relations (20c) define sellers expected transactions EtC(k;t,x) of the cost
C(k;t,x) under sellers’ expectations ExC(k;t,x) with all buyers. The relations (21d) define the volume
Q(k;t) of all transactions with variable E performed in the economics under sellers’ expectations ExQ(k;t)
(20e) of the type k = (k,l). The relations (21d) define the cost C(k;t) of all transactions with variable
E performed in the economics under sellers’ expectations ExC(k;t) (21f). Therefore, starting with the
definitions of the sellers’ expected transactions (20a)–(20c) and the definitions of Q(k;t,z) (19e) and
C(k;t,z) (19f) we derive reasonable definitions of macro sellers expectations of the volume ExQ(k;t) (21e)
and the cost ExC(k;t) (21f) for transactions with variable E. Similar relations (21a)–(21f) are valid for the
buyers’ volume Q(t,z;l), cost C(t,z;l), and buyers’ expectations ExQ(t;l), and ExC(t;l). We outline, that
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expectations of the type k = (k,l) play different role for the transactions with a different variables E. That
makes observations, measurements, and description of financial expectations a really complex problem.

Now we explain and describe how expected transactions and expectations can flow on the domain
(12c-4) alike to flows of variables (6)–(10) and transactions (14a)–(15i). For brevity we take only flows
of the amount Qij(t,z) (12a) of sellers’ transactions bsij(t,z) (12a). The flows of sellers’ cost Cij(t,z) (12a)
and the flows of buyers’ expected transactions are determined in the same way. The motion of agents i
and j at points x and y with the velocities υi(t,x) and υj(t,y) (14c) and (14d) due to change of their risk
ratings induces flows pQij(k;t,z) of sellers’ expected transactions etQij(k;t,z) (19c) alike to flows pQijx(t,z)
(14c) of the amount Qij(t,z) (12a) of the transactions bsij(t,z) (12a) as:

peQij(k; t, z) = etQij(k; t, z)υi(x) = exi(k; t, x)Qi, j(k; t, z)υi(x) (22a)

The functions peQij(k;t,z) (22a) describe flows of expected transactions etQij(k;t,z), k = (k,l) carried
by agent i with velocity υi. To define the aggregate flows of sellers’ expected transactions we collect
flows peQij(k;t,z) of the expected transactions etQij(k;t,z) (22a) of agents i in a unit dV(t,z) (12e) and then
average the sum during a time term ∆ similar to (12f)–(12i) as:

PeQx(k; t, z) =
∑

i∈dV(x); j∈dV(y) ∆
etQij(k; t, z)υi(x) (22b)

The sellers move along axis X (12c) and (12d) and we note the flow of sellers’ expected transactions
as PeQx(k;t,z). Let us note the buyers flows as PeQy(t,z;l).

PeQx(k; t, z) = EtQ(k; t, z) υeQx(k; t, z) = ExQ(k; t, z)Q(k; t, z)υeQx(k; t, z) (22c)

The relations (22b) and (22c) define the aggregated flows PeQx(k;t,z) and the velocities υeQx(k;t,z)
of sellers expected transactions ExQ(k;t,z) of the type k = (k,l). Similar to definitions of the flows of
variables (6)–(9) and the flows of transactions (14a)–(15i), the integrals of (22b) and (22c) by dz=dxdy
over domain (12c) and (12d) define the macro flows PeQx(k;t) and the macro velocities υeQx(k;t) of
expected transactions EtQx(k;t) and expectations ExQx(k;t) (21e) as:

PeQx(k; t) =
∫

dzPeQx(k; t, z) (22d)

PeQx(k; t) = EtQx(k; t) υeQx(k; t) = ExQx(k; t)Q(k; t)υeQx(k; t) (22e)

The relations (22d) and (22e) define the sellers’ macro flows of PeQx(k;t) and the velocities υeQx(k;t)
of expected transaction EtQx(k;t) and describe the motion of expectations ExQx(k;t) of variable E. Borders
of the domain (12c) and (12d) reduce the motion along risk axes and hence values and direction of
flows PeQx(k;t) and velocities υeQx(k;t) should fluctuate. These induce time oscillations of expectations
ExQx(k;t). Such fluctuations of expectations ExQx(k;t) should correlate with fluctuations of the volume
Q(k;t) (21d) and Q(t) (13g) of transactions induced by oscillations of the flows P(t) (16b) and velocities
υ(t) (16d). We propose that fluctuations of macro variables, transactions, and expectations induced by
oscillations of their flows and velocities due to borders of the economic domain (12c) and (12d) should
be treated as business cycles. We present simple business cycles models in Olkhov (2017c, 2019).

We underline, that velocities of υx(t) of the sellers and velocities υy(t) of the buyers (15i) differ
from velocities υeQx(k;t) of the sellers’ expectations ExQx(k;t) and velocities υeQy(t;l) of the buyers’
expectations ExQy(t;l). The flows and velocities of expectations for a different k = (k,l) are also different.
The flows of a different variables E, transactions, and expectations have different velocities and their
mutual interactions on the economic domain (12c) and (12d) reflect extreme complexity of real financial
and economic processes.
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The definitions of sellers expected transactions EtQx(k;t,z) (20b), their flows PeQx(k;t,z) and
velocities υQx(k;t,z) (22b) and (22c), allow take equations on expected transactions and their flows
similar to equations on transactions and their flows (17d), (17e) as:

∂
∂t

EtQx(k; t, z) +∇·
(
EtQx(k; t, z) veQx(k; t, z)

)
= WQx(k; t, z) (22f)

∂
∂t

PeQx(k; t, z) +∇·
(
PeQx(k; t, z) veQx(k; t, z)

)
= RQx(k; t, z) (22g)

The functions WQx, WQy and RQx, RQy in Equations (22f) and (22g) describe the action of financial
variables, transactions, and different expectations, and other factors that may impact changes of
expected transactions EtQx(k;t,z) and their flows PeQx(k;t,z). Equations on sellers’ and buyers’ expected
transactions that determine the cost C(t,z) (12j) of the transactions (12h) are similar to (22f), (22g).
Similar to (18a) and (18b) equations on EtQx(k;t) (21e) and flows PeQx(k;t) (22d) take form:

d
dt

EtQx(k; t) = WQx(k; t) =
∫

dzWQx(k; t, z) (22h)

d
dt

PeQx(k; t) = RQx(k; t) =
∫

dzRQx(k; t, z) (22i)

The Equations (11b) and (11c) on financial variables A(t,x) and their flows PA(t,x), Equations (17d)
and (17e) on the volume Q(t,z) (12i) of the transactions BS(t,z) (12h), and transactions’ flows PQ(t,z)
(15b) and (15c), and Equations (22f), (22g) on expected transaction EtQx(k;t,z), and flows PeQx(k;t,z)
complete our approximation of the macro financial system based on a description of relations between
variables, transactions, and expectations in the domain (12c) and (12d). It is obvious, that description
of any particular problem requires the definition of the right-hand side factors of the Equations (11b)
and (12c), (17d) and (17e), (22f) and (22g). All specifics and details of the financial processes are
hidden in and are determined by the functions FA(t,x) and GA(t,x), F(t,z) and G(t,z), WQx, WQy and RQx,
RQy. We apply our methods and equations to describe the wave propagation of small disturbances
of variables (Olkhov 2016a, 2016b, 2017a), the wave propagation of disturbances of transactions
(Olkhov 2018a) and the surface waves (Olkhov 2017b). Our methods permit model the business cycles
(Olkhov 2017c, 2019), describe hidden complexities of the classical Black-Scholes option pricing model
(Olkhov 2016a, 2016b) and propose Lorentz attractor as a possible model origin of the random behavior
of price fluctuations (Olkhov 2018b). In the next section we describe how perturbations of transactions
may define price and return disturbances.

5. Asset Pricing and Return

Asset pricing is one of the most important problems of macro finance. We refer
(Cochrane and Hansen 1992; Cochrane and Culp 2003; Hansen 2013; Campbell 2014; Fama 2014;
Cochrane 2017) as only small part of asset pricing studies. In this section we describe how economic
equations on variables, transactions, expectations, and their flows can govern asset prices, returns,
and their fluctuations.

The Equations (17d) and (17e) describe the volume Q(t,z) (12i) of the transaction BS(t,z) (12h)
with economic variable E and similar equations model the cost C(t,z) (12j) of the transaction BS(t,z).
As variable E one may study any particular assets and Equations (17d), (17e) define relations on
price and price fluctuations. We remind, that different aggregations of the volume and cost of the
transactions define different prices. For example, the relations (12k) define the price of transactions
with the volume Q(t,z) and cost C(t,z) between points x and y, z = (x,y) and (13c) define the price pS(t,x)
of the sellers of variable E from point x. The transactions of the quantity Q(k;t,z) (19e) with the cost
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C(k;t,z) (19f) performed under sellers’ expectations of the type k = (k,l) determine the price p(k;t,z) of
sellers’ transactions:

C(k; t, z) = p(k; t, z)Q(k; t, z) ; k = (k, l) (23a)

The relations (12f) define the price p(t) of all transactions with the volume Q(t) (12f) with cost C(t)
(12f) with selected assets E performed in the economy at a moment t. The price p(k;t) of all transactions
with the volume Q(k;t) with cost C(k;t) (21d) with selected assets E performed under expectations k =

(k,l) in the economy at a moment t.

C(k; t) = p(k; t)Q(k; t) ; k = (k, l) (23b)

The relations (12k), (13c), (12f), (23a), and (23b) indicate that the price of assets always should
be treated in regard to definite aggregation of the volume and the cost of transactions. Equations on
transactions and their flows define equations on prices. As the simplest case we study The Equations
(18a) and (18b) on the volume Q(t) and the flow of volume PQ(t) of transactions

d
dt

Q(t) = FQ(t) ;
d
dt

PQ(t) = GQ(t) (23c)

and similar equations on the cost C(t) and the flow of volume PC(t) of transactions

d
dt

C(t) = FC(t) ;
d
dt

PC(t) = GC(t) (23d)

The Equations (23c) and (23d) define equations on the price p(t) (12f) of all transactions made in
the economy at a moment t with variable E

d
dt

Q(t) = FQ(t) ; Q(t)
d
dt

p(t) + p(t)FQ(t) = FC(t) (23e)

Q(t)
d
dt

vQ(t) + FQ(t)vQ(t) = GQ(t) ; Q(t)p(t)
d
dt

vC(t) + vC(t)FC(t) = GC(t) (23f)

PQ(t) = Q(t)vQ(t) ; PC(t) = C(t)vC(t) = Q(t)p(t)vC(t) (23g)

Even the simplest form of the price Equations (23e)–(23g) demonstrates that the right hand factors
hide the main complexity of the price dynamics and price may depend on the flows PQ(t), PC(t) or
velocities υQ(t), υC(t) of amount Q(t) and cost C(t) of transactions.

Currently we do not know any research of possible impact of the risk flows PQ(t), PC(t) and
velocities υQ(t), υC(t) on the price p(t) evolution and fluctuations. These studies may be very
important for description of price and return disturbances and for modeling the price–volume and
return-volume relations.

For simplicity here we neglect possible impact of flows and describe how equations on volume
and cost similar to (23e) may model the price fluctuations. Let us study equations similar to (23e)–(23g)
that take into account the volume Q(k;t) and the cost C(k;t) (21d) that define the price p(k;t) (23b) for
different expectations k = (k,l). Similar to (23e)–(23g) equations on Q(k;t) and C(k;t) (24a) take form:

d
dt

Q(k; t) = FQ(k; t) ;
d
dt

C(k; t) = FC(k; t) (24a)

Let us assume, that FQ(k;t) and FC(k;t) in (24a) depend on the expected transaction EtQ(k;t) (21e)
and EtC(k;t) (21f) that due to (22f) and (18a) follows equations similar to (24a)

d
dt

EtQ(k; t) = FeQ(k; t) ;
d
dt

EtC(k; t) = FeC(k; t) (24b)
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Let us assume, that FeQ(k;t) and FeC(k;t) in (24b) depend on the volume Q(k;t) and the cost C(k;t)
(24a). Let us take small dimensionless perturbations of Q(k;t), C(k;t), EtQ(k;t), and EtC(k;t) as:

Q(k; t) = Q0kl(1 + q(k; t)) ; C(k; t) = C0kl(1 + c(k; t)) (24c)

k = (k, l); k, l = 1, . . .K

EtQ(k; t) = EtQ0kl
(
1 + etq(k; t)

)
; EtC(k; t) = EtC0kl(1 + etc(k; t)) (24d)

and assume that the mean values of Q0kl, C0kl, EtQ0kl, EtC0kl are slow to compare with variations of the
small disturbances q(k;t), c(k;t), etq(k;t) and etc(k;t). Let us take the same assumptions on the functions
in the right-hand side of (24a) and (24b).

FQ(k; t) = FQ0kl
(
1 + fQ(k; t)

)
; FC(k; t) = FC0kl(1 + fc(k; t )) (24e)

FeQ(k; t) = FeQ0kl
(
1 + f eQ(k; t)

)
; FeCl(k; t) = FeC0kl(1 + f ec(k; t )) (24f)

Therefore, the mean values of Q0kl, C0kl, EtQ0kl, EtC0kl, and FQ0kl, FC0kl, EtQ0kl, EtC0kl may be treated
as constants and the equations on disturbances take form:

Q0kl
d
dt

q(k; t) = FQ0kl fq(k; t) ; C0kl
d
dt

c(k; t) = FC0kl fc(k; t) (25a)

EtQ0kl
d
dt

etq(k; t) = FeQ0kl f eq(k; t) ; EtC0kl
d
dt

etc(k; t) = FeC0kl f ec(k; t) (25b)

To consider (25a) and (25b) as self-consistent equations, assume that the disturbances fq(k;t) and
fc(k;t) in (25a) depend on the disturbances etq(k;t) and etc(k;t) and feq(k;t) and fec(k;t) in (25b) depend
on the disturbances of q(k;t) and c(k;t).

fq(k; t) = aqkletq(k; t) ; fc(k; t) = ackletc(k; t) (26a)

f eq(k; t) = beqklq(k; t) ; f ec(k; t) = becklc(k; t) (26b)

Due to (26a) and (26b) the Equations (25a) and (25b) take form:

Q0kl
d
dt

q(k; t) = aqklFQ0kletq(k; t) ; C0kl
d
dt

c(k; t) = acklFC0kl etc(k; t) (26c)

EtQ0kl
d
dt

etq(k; t) = beqklFeQ0klq(k; t) ; EtC0kl
d
dt

etc(k; t) = becklFeC0kl c(k; t) (26d)

For

ω2
qkl = −aqklbeqkl

FQ0kl

Q0kl

FeQ0kl

EtQ0kl
> 0 ; ω2

ckl = −acklbeckl
FC0kl
C0kl

FeC0kl
EtC0kl

> 0 (27a)

The equations on disturbances q(k;t), c(k;t), etq(k;t), etc(k;t) take form of harmonic oscillators:(
d2

dt2 +ω2
qkl

)
q(k; t) = 0 ;

(
d2

dt2 +ω2
ckl

)
c(k; t) = 0 (27b)

k = (k, l); k, l = 1, . . .K(
d2

dt2 +ω2
qkl

)
etq(k; t) = 0 ;

(
d2

dt2 +ω2
ckl

)
etc(k; t) = 0 (27c)
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Simple solutions of (27b) for the dimensionless disturbances q(k;t) and c(k;t)

q(k; t) = gqklsinωqklt + dqklcosωqklt gqkl, dqkl � 1 (27d)

c(k; t) = gcklsinωcklt + dcklcosωcklt ; gckl, dckl � 1 (27e)

The Equations (27b) and (27c) describe simple harmonic fluctuations (27d) and (27e) of disturbances
q(k;t) of the volume Q(k;t) and disturbance c(k;t) of the cost C(k;t) of transactions under the expectations
k = (k,l). The harmonic Equations (27b), (27c) are result of the assumptions of linear dependence in
(26a)–(26d) and describe the simplest possible model relations between the disturbances of q(k;t) of
volume Q(k;t) and the disturbance c(k;t) of cost C(k;t) of transactions on one hand and disturbances of
expectations etq(k;t) and etc(k;t) on other hand. The disturbances of the cost C(t) and the volume Q(t)
(12f) take form:

Q(t) =
∑

k,l
Q0kl(1 + q(k; t)) = Q0

∑
k,l
λkl(1 + q(k; t)) (28a)

C(t) =
∑

k,l
C0kl(1 + c(k; t)) = C0

∑
k,l
µkl(1 + c(k; t)) (28b)

The relations (28a) describe impact of dimensionless disturbances q(k;t) on the volume Q(t) and
(28b) describe impact of dimensionless disturbances c(k;t) on the cost C(t), k = (k,l):

Q0 =
∑

k,l
Q0kl ; λkl =

Q0kl
Q0

; C0 =
∑

k,l
C0kl ; µkl =

C0kl
C0

(28c)

∑
λkl =

∑
µkl = 1 ; (28d)

The relations (12f) define the price p(t) for transactions with the volume Q(t) and cost C(t):

p(t) =
C(t)
Q(t)

=

∑
k,l C(k, l; t)∑
k,l Q(k, l; t)

; p0 =
C0

Q0
=

∑
k,l C0kl∑
k,l Q0kl

(28e)

In linear approximation by the disturbances q(k,l;t) and c(k,l;t), the price p(t) (28e) take form:

p(t) =
C(t)
Q(t)

=
C0

∑
k,l µkl(1 + c(k, l; t))

Q0
∑

k,l λkl(1 + q(k, l; t))
= p0

[
1 +

∑
k,l
µklc(k, l; t) −

∑
k,l
λklq(k, l; t)

]
p(t) = p0[1 + π(t)] = p0

[
1 +

∑
k,l
(µklc(k, l; t) − λklq(k, l; t))

]
(28f)

The dimensionless fluctuations of the price π(t) (28f) equal the weighted sum of the disturbances
q(k,l;t) and c(k,l;t) as (28g):

π(t) =
∑

k,l
µklc(k, l; t) − λklq(k, l; t) (28g)

Now, for (23b) and (24c) we present π(t) in other form:

C(k, l; t) = C0kl[1 + c(k, l; t)] = p0kl[1 + π(k, l; t)]Q0kl[1 + q(k, l; t)] (29a)

From (28f), (28g) and (29a) in the linear approximation by c(k,l;t), π(k,l;t) and q(k,l;t) obtain:

C0kl = p0klQ0kl ; c(k, l; t) = π(k, l; t) + q(k, l; t) (29b)

Let us substitute (29b) into (28g):

π(t) =
∑

k,l
µklπ(k, l; t) +

∑
k,l
(µkl − λkl)q(k, l; t) (29c)

The relations (29c) describe the price perturbations π(t) as the weighted sum of partial price
disturbances π(k,l;t) and volume disturbances q(k,l;t). Therefore, the statistics of price disturbances
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π(t) should be defined by the statistics of partial price disturbances π(k,l;t) and the statistics of volume
disturbances qk(k,l;t). There are many studies of price–volume correlations (Campbell et al. 1993;
Leung et al. 2002; Podobnik et al. 2009; DeFusco et al. 2017) but our simple model presents the relations
(29c) that allow study the price–volume correlations under different approximations on statistics.

Relations between disturbances of the quantity and cost of transactions on one hand and
disturbances of the expectations that approve these transactions may be the source of the random
evolution. Random behavior of disturbances of the quantity and cost of the transactions induce random
motion of the price disturbances π(t) and in (Olkhov 2018b) we describe Lorentz attractor as a possible
model that cause random behavior of the price fluctuations.

Return perturbations. The price disturbances (29c) cause perturbations of the return r(t,d):

r(t, d) =
p(t)

p(t− d)
− 1 (30a)

Let us introduce the partial returns r(k;t,d) for the price p(k;t) (23b) and the “returns” w(k;t,d) for
the volumes Q(k;t) (24c), k = (k,l) as:

r(k; t, d) = r(k, l; t, d) =
p(k, l; t)

p(k, l; t− d)
− 1 ; w(k; t, d) = w(k, l; t, d) =

Q(k, l; t)
Q(k, l; t− d)

− 1 (30b)

For simplicity assume, that the mean price p0kl and Q0kl (29b) are constant during a time term d
and present (30a) and (30b) as

r(t, d) =
π(t) −π(t− d)

1 + π(t− d)
; w(k, l; t, d) =

q(k, l; t) − q(k, l; t− d)
1 + q(k, l; t− d)

(30c)

r(t, d) =
∑

µkl
1 + π(k, l; t− d)

1 + π(t− d)
r(k, l; t, d) +

∑
(µkl − λkl)

1 + q(k, l; t− d)
1 + π(t− d)

w(k, l; t, d) (30d)

Let us define

εkl(t− d) = µkl
1 + π(k, l; t− d)

1 + π(t− d)
; ηkl(t− d) = (µkl − λkl)

1 + q(k, l; t− d)
1 + π(t− d)

(30e)

∑
k,l
[εkl(t− d) + ηkl(t− d)] = 1 (30f)

r(t, d) =
∑

k,l
εkl(t− d)r(k, l; t, d) +

∑
k,l
ηkl(t− d)w(k, l; t, d) (30g)

The relations (30f) and (30g) describe the return (30a) as a sum of partial returns and the volume
“returns” w(k,l;t,d) (30b) and (30c). The sum for coefficients µkl and (µkl − λkl) for the price p(t) (28f),
π(t) (29c), and εkl(t), and ηkl(t) for the return r(t,d) (30a) equals unit but (29c) and (30g) can’t be treated
as averaging procedure because some coefficients (µkl − λkl) and ηkl(t) should be negative. If the mean
price (29b) p0kl = p0 for all pairs of the expectations (k,l) then from (28f) and (28g) obtain

p0kl = p0 = const → λkl = µkl ; ηkl(t) = 0 for all k, l (30h)

and the relations (29c) and (30g) take simple form

π(t) =
∑

k,l
µklπ(k, l; t) (30i)

r(t, d) =
∑

k,l
µkl

1 + π(k, l; t− d)
1 + π(t− d)

r(k, l; t, d) =
∑

k,l
µkl
π(k, l; t) −π(k, l; t− d)

1 + π(t− d)
(30j)

Therefore, the assumption (30h) on the prices (29b) for all pairs of the expectations (k,l) causes
representation (30i) and (30j) of the price disturbances π(t) as a sum of partial price disturbances π(k,l;t)
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weighted by µkl (28c) for different pairs of expectations (k,l). If the coefficients µkl (28c) are random then
their statistics should impact the statistic properties of the price disturbances π(t). If (30h) is not valid
then the price disturbances π(t) should take form (29c) and depend on partial disturbances π(k,l;t),
volume perturbations q(k,l;t), and statistics of λkl and µkl (28c). Assumption (30h) cause returns as
(30j), otherwise returns take (30g). Actually, expectations are the key factors for market competition
and different expectations (k,l) should cause different mean partial prices p0kl. That produces complex
representation of the price (29c) and return (30g) disturbances as well as impact volatility and statistic
distributions of price and return disturbances.

6. Conclusions

Properties of macro finance and financial markets are constantly changing. Methods for their
description should match these variations. We propose methods for macro modeling that may
describe the different evolution of macro finance and financial markets. Above, we only presented the
theoretical framework.

Let us resume with the main issues of our methods. We model macro finance and financial
markets by three elements: Financial variables, market transactions, and expectations of economic
agents. To do that, we distribute agents by their risk ratings as coordinates in the economic domain
and describe variables, transactions, and expectations as density functions of risk. We regard risks as
the main drivers of any economic or financial evolution and consider the financial activity of agents as
the main source of risk. Any financial or economic activity is related to risk.

We show that changes of agents’ risk ratings due to any reason induce financial or economic
flows of variables, transactions, and expectations in the economic domain and these flows impact
the evolution of macro finance and financial markets. Flows of variables, market transactions,
and expectations at least double the number of properties that define the evolution of financial markets.
Different variables as demand and supply have different flows and their mutual interactions cause
permanent perturbations of any market supply and demand equilibrium state. That makes the existence
of market supply–demand equilibrium and equilibrium between different markets an exceptional case.

Financial variables as functions of risk x describe the state of the macro system. Market transactions
as functions of risk z = (x,y) describe the dynamics of financial variables and model the evolution of
financial markets. Expectations as most “etheric” substances impact agents to perform transactions.
Numerous expectations are determined by variables, transactions, expectations of other agents,
technology or climate forecasts, etc. These factors project the impact of the economic environment
on financial processes and can be considered as the main source of macro modeling complexity.
Different expectations cause different impacts on market transactions. The economic or financial value
of expectations, as well as their importance and influence on market evolution, should be measured
proportionally to the amount of market transactions performed under these expectations. That makes
the description of financial markets an exciting problem.

We have already used our model to describe several interesting properties of macro financial
systems. Modeling financial variables and market transactions in economic space uncovers the
existence of numerous financial waves. Wave generation, propagation, and interactions reflect most
general and common properties of any complex system. A description of economic and financial
waves requires space where these waves can propagate. Modeling in economic space uncovers various
types of economic and financial waves that may impact macro financial evolution and sustainability.
In (Olkhov 2016a, 2016b, 2017a, 2018a) we describe the wave propagation of disturbances of financial
variables and market transactions in the economic domain for different models of interactions between
them. Perturbations of financial variables or market transactions near borders of the economic domain
may generate waves that are similar to surface waves in fluids (Olkhov 2017b). Financial relations
that cause wave propagation are completely different from physical waves. These distinctions may
allow the exponential growth of small disturbances of wave amplitudes in time and that have an
important impact on macro finance. Partitions of collective financial variables and market transactions
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in the economic domain permit mean values to be defined for the risk coordinate of each variable or
transaction. Borders of the economic domain (1), (12c) and (12d) reduce the change of these mean
risk coordinates. This causes a cyclical motion of mean risks that reflects the business and credit
cycles of macro financial systems (Olkhov 2017c, 2019). Mutual interactions between price, volume,
and expectation perturbations may become stochastic due to models similar to Lorentz attractors
(Olkhov 2018b). These examples indicate that the methods we propose may model various properties
of financial systems.

In this paper, we have applied our methods to describe price and return perturbations. We derived
simple relations to show that the statistical properties of asset pricing and return disturbances should be
studied with respect to the corresponding volume perturbation of the market transactions. Price–volume
correlations have been under investigation for decades, (Campbell et al. 1993; Leung et al. 2002;
Podobnik et al. 2009; DeFusco et al. 2017) but our model provides simple representation for description
correlations under different assumptions and a tool for modeling their statistical properties. It is
obvious that our simple model may not match the real properties of measured price–volume and
return–volume correlations. Additionally, it redirects the studies of price, return, and volume statistics
to the investigation of relations between market transactions and expectations.

The applicability of our methodology does not require any specific assumptions. A description
of financial markets as the most practical problem should be based on econometric data. The use of
our model is based on the assumption that econometrics may provide sufficient data for risk rating
assessments of economic agents. This requires the development of risk assessment methods that may
model risk ratings in the economic domain (1) for continuous risk grades and Big Data analysis and
computing. A description of financial markets in the economic domain requires the modeling of
numerous equations on financial variables, transactions, and expectations, as well as their flows and
mutual interactions that have certain parallels to problems of multi-fluid hydrodynamics. Solutions to
these problems are impossible without modern computing. We propose that the implementation of our
methods may be useful for financial authorities, central banks, top commercial banks and corporations,
and top investment and hedge funds. We are sure that our methods can improve the description and
forecasting of financial processes.
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