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Abstract: Nomex honeycomb composites are used extensively in aerospace, automotive, and other
industries due to their superior material properties. However, the tool wear during their machining
can compromise the processing accuracy and the stability of the whole machining process, thus
studies on the tool wear and strengthening method are urgently needed. This study presents a radial
difference calculation method (RDC) to evaluate the tool wear of the disc cutter quantitatively in both
conventional cutting and ultrasonic assisted cutting. The morphology of the tool wear process and
its characteristics were analyzed. Two different heat treatments (salt bath quenching and vacuum
quenching) were carried out to strengthen the tool performance. The research results demonstrated
that ultrasonic vibration could significantly reduce the tool wear of the disc cutter, by up to 36%, after
the same machining time. Salt bath quenching and vacuum quenching can both strengthen the tool
performance. Particularly, after vacuum quenching treatment, the disc cutter’s metallographic grains
were refined, and the tool wear could be reduced by 64%, compared to the as-received disc cutter.
The findings in this study could be instructive to obtain further understanding of the machining
mechanism and to improve methods in ultrasonic assisted cutting of Nomex honeycomb composites.

Keywords: Nomex honeycomb composites; ultrasonic assisted cutting; disc cutter; tool wear;
tool strengthening

1. Introduction

Nomex honeycomb composites are a type of biomimetic material composed of phe-
nolic resin and aramid fiber. They have low density, high specific strength and specific
stiffness, corrosion resistance, excellent environmental adaptability, outstanding electrical
insulation and impact resistance [1–3], etc. Therefore, they are widely used in aerospace,
automobile, shipbuilding, construction, and other fields [4,5]. Due to their porous thin-
walled structure, Nomex honeycomb composites are susceptible to burrs, tearing, collapse,
and other problems during the traditional high-speed milling process. The cutting tool
wears out rapidly and the quality of the machined surface is poor. The milling process pro-
duces much dust, which dramatically pollutes the workplace and jeopardizes the workers’
health [6,7].

Substantial research has focused attention on ultrasonic assisted machining (UAM)
technology to address these issues. Numerous studies demonstrated that UAM has signif-
icant advantages in reducing cutting force, improving cutting tool wear and machining
quality [8–10], etc. This technology shows many excellent properties in machining pro-
cesses of different composites [11–14]. Ultrasonic assisted cutting is one of the ultrasonic
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assisted machining technologies. Ultrasonic vibration is applied on the cutting tool to
facilitate material removal, reduce cutting force and material deformation simultaneously.
Straight-blade knives and disc cutters are the two types of cutting tools for machining
Nomex honeycomb composites. The disc cutter is generally used in the finishing machining
process so the state of the disc cutter has a significant influence on the vibration perfor-
mance, machining accuracy, and machining efficiency of the whole ultrasonic machining
system [15–17].

The majority of current research on Nomex honeycomb material machining by the
disc cutter focuses on its structural design and processing characteristics [18–21], etc. For
example, Xia et al. [18] optimized the structure of the disc cutter. They studied the change
regularity of the stiffness with geometric parameters and optimized the process parameters
by finite element simulations and experiments. The results showed that the tool wedge
angle and the outer diameter significantly influenced the process. While the spindle speed
and ultrasonic amplitude were negatively connected with the cutting force, the cutting
force was positively correlated with the feed speed, cutting width, and cutting depth.
Ahmad et al. [19] designed a new saw-tooth disc cutter and studied different structural
parameters of the new disc cutter on resonance frequency by finite element simulations
and experiments. The results demonstrated that the ultrasonic frequency and amplitude of
cutting tools were sufficient for the ultrasonic machining of Nomex honeycomb composites.
However, there are few studies on the tool wear performance and strengthening methods
of the disc cutter. Jaafar et al. [22,23] found that the disc cutter had two types of tool
wear when cutting Nomex honeycomb composites: edge-chipping and resin material
adhesion. The width of damage on the cutting edge of the disc cutter was used as the
measurement criterion for the tool wear. There are currently no accepted criteria for the
tool wear of the disc cutter, and it is still in the exploratory phase. Researchers usually
establish the criteria according to experimental conditions, such as the width of the cutting-
edge damage, the width of the material adhesion, and so on. David et al. [24] studied the
machining process of honeycomb core materials by a saw-tooth disc cutter through high-
speed photography. The results showed that the tool wore out rapidly, and the materials
easily collapsed, leading to more severe tool wear and more cutting heat. The tool wear
speed far exceeded expectations. Thus, it is essential to improve the tool performance as
there is no specific strengthening method for the disc cutter. Heat treatment is a commonly
used method to improve the tool performance [25,26]. However, the proper method to
improve the performance of the disc cutter used in ultrasonic assisted cutting of Nomex
honeycomb composites still needs to be explored. The tool life and the surface quality of
the workpiece can be improved significantly if the appropriate strengthening method is
adopted to improve the tool wear resistance.

In order to deeply study the tool wear of the disc cutter in ultrasonic assisted cutting of
Nomex honeycomb composites, this study proposes a radial difference calculation method
to evaluate the tool wear quantitatively. The morphology of the tool wear process and its
characteristics were analyzed through experiments of considerable cutting length (more
than 500 m). Two different heat treatments (salt bath quenching and vacuum quenching)
were applied to strengthen the tool performance.

2. Experimental Details
2.1. Evaluation Method for Tool Wear Characteristics

The typical structure of the disc cutter and the schematic diagram of its machining
process are shown in Figure 1. The disc cutter rotates at a high speed and, at the same
time, vibrates with an ultrasonic frequency in the axial direction. The states of the disc
cutter before and after machining are shown in Figure 2. It can be seen that the cutting
edge of the disc cutter is the area that is susceptible to wear. The structure of the disc cutter
makes it challenging to assess the tool wear by using conventional criteria, such as the flank
wear width.
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Figure 2. (a) A new disc cutter; (b) A worn disc cutter.

To evaluate the tool wear of the disc cutter quantitatively, this study proposes a radial
difference calculation method, which involves calculating the difference of tool diameter
before and after wear. To realize this method, laser etching was used to mark the disc
cutter in a total of four locations at 90◦ intervals, as shown in Figure 3. A reference line
and a number were etched on each position. The end of the reference line was used as
the measurement point. The laser etching platform and the etching process are shown in
Figure 4.
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Figure 4. The laser etching platform.

As shown in Figure 5, when observing the tool wear, the number is first found by
microscope at a low magnification, and then the line is found at a high magnification as a
reference to observe the tool wear. The distance between the edge of the disc cutter and
the end of the reference line is measured. Finally, the radial difference is calculated as
the value of the tool wear. This method is called the radial difference calculation method
(RDC). During the experiments, the tool wear at set intervals was observed and the radial
difference recorded so as to explore the rule of conduct of the tool wear.
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2.2. Tool Strengthening Method

Two different heat treatments (salt bath quenching and vacuum quenching) were
applied to strengthen the tool performance in this study. The processing parameters, listed
in Table 1, were those used for high-speed tool steel, which is the material of the disc cutter.
The cooling medium was the molten salt and the vacuum, respectively.
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Table 1. The processing parameters of two heat treatments.

Preheating Quenching Tempering

Temperature
/◦C

Heating
Coefficient

/(s/mm)

Temperature
/◦C

Heating
Coefficient

/(s/mm)

Cooling
Medium

Temperature
/◦C

850 24 1180~1200 12~15

500~600 ◦C
salt bath 550 ◦C × 1 h,

3 times500~600 ◦C
vacuum

The heat treatment consisted of three steps: preheating, quenching, and tempering.
First, the disc cutter was preheated to 850 ◦C, and then the temperature was raised to
1200 ◦C. After that, the disc cutter was cooled in the molten salt or in the vacuum environ-
ment. Finally, the tempering was conducted three times. The only difference between the
two heat treatments was the cooling medium. The vacuum furnace was used in place of
the salt bath furnace in the vacuum quenching process to realize the vacuum environment.
Vacuum quenching can avoid oxidation, decarburization, and deformation on the surface
of workpieces. The disadvantages of the vacuum quenching method are large equipment
investment and low processing efficiency.

After the heat treatment, the hardness of the disc cutter was measured by an au-
tomatic Rockwell hardness tester (SCTMC-560 RSSZ). Two cutters were tested for each
heat treatment and each cutter was tested for five points. The metallographic specimens
of the disc cutter were prepared and the metallographic structure was observed by a
metallographic microscope.

2.3. Experimental Setup

The wear experiments were conducted on a self-developed experimental platform.
This experimental platform consisted of a 5-axis machining center (DU810, EUMA), a self-
designed ultrasonic assisted cutting system, microscope, computer, dynamometer, laser
displacement sensor, Nomex honeycomb composites workpiece, and fixture, as shown in
Figure 6.
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Figure 6. The experimental platform.

The self-designed ultrasonic assisted cutting system comprised an ultrasonic controller,
an ultrasonic assisted cutting tool handle, and the disc cutter. This cutting system could
work continuously for more than 12 h. The output power of the ultrasonic controller
was 1000 W and its output frequency was 18~35 kHz. The microscope was employed to
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observe and measure the tool wear. The laser displacement sensor was used to measure the
ultrasonic amplitude of the disc cutter. The experimental parameters are shown in Table 2.

Table 2. The experimental parameters.

Conventional Cutting
Experiments

Ultrasonic Assisted Cutting
Experiments

The size of workpiece 205 × 105 × 100 mm
The material of the disc cutter high speed steel (W6Mo5Cr4V2)

The size of the disc cutter
wedge angle: 14◦

outer diameter: 27 mm
thickness: 0.9 mm

Cutting parameters

spindle speed: 3000 r/min
feed rate: 5000 mm/min

cutting width: 5 mm
cutting depth: 2 mm

Ultrasonic parameters / frequency: 19,825 Hz
amplitude: 20 µm

As there are currently no accepted criteria for the tool wear of the disc cutter, the tool
wear was evaluated by the radial difference calculation method, proposed in Section 2.1, at
set intervals (set cutting length), based on engineering experience. According to the size of
the workpiece and cutting parameters, the cutting length of the disc cutter was 4.31 m after
removing each layer of the workpiece. To observe and record the whole tool wear process,
the observation interval was short at the beginning of the cutting process, and it gradually
became longer as the experiments proceeded. The arrangement of tool wear observation is
shown in Table 3.

Table 3. The arrangement of tool wear observation.

Observing
Sequence Cutting Layer Cutting Length

/m
Observing
Sequence Cutting Layer Cutting Length

/m

1 0.33 1.43 14 28 120.54
2 0.67 2.87 15 36 154.98
3 1 4.31 16 44 189.42
4 1.33 5.74 17 52 223.86
5 1.67 7.17 18 60 258.30
6 2 8.61 19 68 292.74
7 3 12.92 20 76 327.18
8 4 17.22 21 84 361.62
9 6 25.83 22 96 413.28
10 8 34.44 23 108 464.94
11 12 51.66 24 128 551.04
12 16 68.88 25 148 637.14
13 22 94.71

3. Results and Discussion
3.1. The Morphology of Tool Wear Process

Figure 7 demonstrates how the cutting edge of the disc cutter changed during the
machining process. The cutting edge was intact before machining. As machining proceeded,
small tears started to emerge on the cutting edge when the cutting length reached 2.87 m,
and the maximum length of tears did not exceed 81 µm. When the cutting length reached
34.44 m, the tears increased up to 150 µm in length. Edge chipping occurred when the
cutting length reached 51.66 m, with a width of 76 µm and depth of 55 µm. The cutting
edge curled after machining 413.28 m and scratches showed on the surface of the disc cutter
after machining 515.04 m. The length of scratches could reach 436 µm. It is reasonable
to speculate that these scratches were caused by the edge chippings from the disc cutter
itself as the material of the Nomex honeycomb composites was not hard enough to cause
the damage.
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It can be seen that the cutting process went smoothly at the beginning with small tears
as typical morphology of the tool wear. With increase in the cutting length, the state of the
cutting edge deteriorated. Edge chipping and curls happened more often. Moreover, the
surface of the disc cutter was damaged at the end stage of the cutting process.

3.2. The Analysis of Tool Wear

The radial difference of the disc cutter was recorded to evaluate the tool wear quanti-
tatively. Figure 8 shows the changes in the radial difference at 4 different positions which
were marked by laser etching, respectively. It can be seen that at the beginning of the
cutting process (from 0~50 m), the radial difference of the disc cutter increased rapidly and
there was a rapid wear period, both in conventional cutting experiments and ultrasonic
assisted cutting experiments (UACE), although the value in UACE on position 1 was larger
than that in traditional cutting experiments. Then, a stable wear period followed. In this
period, the radial difference of the disc cutter in UACE was much smaller than that in
conventional cutting experiments.
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Considering that there were deviations in the measurement at different positions, the
mean value of these 4 positions was taken to comprehensively evaluate the regularity of
the tool wear, as shown in Figure 9. There was a rapid wear period and a stable wear
period in the two kinds of experiments. The results in UACE were better than those in
the conventional cutting experiments. Taking the final value as the reference, it could be
ascertained that ultrasonic vibration could significantly reduce the tool wear of the disc
cutter, reaching 36% after the same machining time.
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3.3. The Tool Wear of the Strengthened Disc Cutter

Hardness and uniformity can be used to characterize the wear resistance of the cutting
tool. It can be seen from Figure 10 that the average hardness of disc cutters quenched
in a vacuum was HRA 83.17, and that of disc cutters quenched in a salt bath was HRA
83.22. The values were consistent. However, the standard deviation of the data from the
vacuum quenching treatment was 0.17, while it was 0.33 from the salt bath quenching
treatment. The hardness distribution of the disc cutters after vacuum quenching treatment
was more uniform.
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The metallographic structure of disc cutters is shown in Figure 11. The shape of the
grain was the same under a 500-fold magnification, and consisted of tempered martensite,
residual austenite, and carbide. It can be seen that the grains under vacuum quenching
were refined to a certain extent, and their dispersion degree was better. The distribution
of carbides in the metallographic structure by vacuum quenching treatment was more
uniform than that by salt bath quenching treatment.
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Figure 11. The metallographic structure of the disc cutter after the heat treatment: (a) Salt bath
quenching; (b) Vacuum quenching.

The average radial difference of the disc cutter under vacuum quenching treatment
was recorded by using the same experimental method mentioned in Section 2, as shown
in Figure 12. The disc cutter under vacuum quenching treatment in UACE entered the
stable wear period quickly and this reduced the tool wear of the disc cutter by up to 64%,
compared to conventional cutting experiments, if the final value was taken as the reference.
It could be observed that the vacuum quenching treatment could significantly improve the
tool wear performance of the disc cutter in machining Nomex honeycomb composites.
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4. Conclusions

Tool wear occurs easily during the machining of Nomex honeycomb composites with
a disc cutter, which affects the processing accuracy and the stability of the entire machining
process. Both conventional cutting experiments and UACE were carried out on a self-
developed experimental platform. Two different heat treatments (salt bath quenching and
vacuum quenching) were carried out to strengthen the tool performance. The conclusions
can be summarized as follows:

(1) An evaluation method was proposed to evaluate the tool wear of the disc cutter
quantitatively which was called the radial difference calculation method. Small tears
were typical morphology of the tool wear at the beginning of the machining process.
Edge chipping and curls occurred with increase of the cutting length. Furthermore,
even the surface of the disc cutter was damaged at the end stage of the cutting process.

(2) There was a rapid wear period and a stable wear period during the tool wear process.
In the stable wear period, the radial difference of the disc cutter in UACE was signifi-
cantly smaller than that in conventional cutting experiments. The ultrasonic vibration
could significantly reduce the tool wear of the disc cutter by up to 36% after the same
machining time.

(3) Vacuum quenching could significantly improve the wear resistance of the disc cutter.
By changing the salt bath quenching to vacuum quenching in the heat treatment
process, the metallographic grains were refined and their distribution became more
uniform. The tool wear of the disc cutter after vacuum quenching treatment in UACE
could be reduced up to 64%, compared to conventional cutting experiments if the
final value was taken as the reference.
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