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Abstract: A smart city is a trending concept describing a new generation of cities operated intelli-
gently with minimal human intervention. It promotes energy sustainability, minimal environmental
impact, and better governance. In transportation, the remote highway infrastructure monitoring will
enhance the driver’s safety, continuously report road conditions, and identify potential hazardous
incidents such as accidents, floods, or snow storms. In addition, it facilitates the integration of future
cuttingedge technologies such as self-driving vehicles. This paper presents a general introduction to
a smart monitoring system for automated real-time road condition inspection. The proposed solution
includes hardware devices/nodes and software applications for data processing, road condition
inspection using hybrid algorithms based on digital signal processing, and artificial intelligence
technologies. The proposed system has an interactive web interface for real-time data sharing, infras-
tructure monitoring, visualization, and management of inspection reports which can improve the

maintenance process.

Keywords: Internet of Things (IoT); road inspection; deep learning; classification; object detection;
API; SQL database; prototyping; Firebase

1. Introduction

Nowadays, the Fourth Industrial Revolution (sometimes called the 4IR or Industry
4.0) is pushing industries toward integrating state-of-the-art technologies, such as artificial
intelligence (Al), robotics, and the Internet of Things (IoT) [1]. In public transportation,
the highway’s status will become digitized, allowing real-time data collection and sharing,
surveillance of the infrastructure condition of bridges and tunnels, and traffic monitor-
ing and management. These factors will help prepare the needed digital capabilities to
integrate and assist the transition to fully connected and automated vehicles (CAV) [2].
This transition is feasible given the recent innovation and research and application of
autonomous driving technology, robotics and artificial intelligence [3-5], while maintaining
legal regulations [6,7]. The application of these technologies in infrastructure inspection
will support the deployments of autonomous vehicles with the required information on the
highway conditions for a better understanding of the road environment dynamics while
driving. In particular, in winter conditions where the safety risks increase. To facilitate the
integration of the CAVs and ensure the safety of drivers and pedestrians, monitoring and
analyzing road conditions play a critical role in fulfilling the following needs and concerns:

¢  Safety concern: Road conditions vary in winter, representing a hazard for safe driving.
Thus, all roads need to be inspected frequently to ensure better maintenance.

e  Camera limitation: The individual use of a camera for inspection limits the inspection
performance due to ambient light variation and visibility reduction (e.g., dust or snow).
Therefore, it would be interesting to add other sensors, such as ultrasound-based or
laser-based sensors, to work collaboratively to increase inspection accuracy.

Vehicles assistance: The drivers need external aid when driving in harsh weather
or when the sensors are no longer reliable, such as a camera in snow or a tunnel.
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The driver and autonomous vehicles (AVs) need to obtain real-time information about
the critical zones that have been inspected recently. Because getting real-time road
conditions or any potential road hazards will help enhance safety measures and
save lives.

*  Connectivity: integrating secure and reliable connections, such as vehicle-to-vehicle,
vehicle-to-infrastructure, and infrastructure-to-vehicle, will help enhance the safety
measure within a connected collaborative-driving network.

Consequently, optimizing the infrastructure monitoring/inspection will play a key
role in proving road /bridge conditions feed with minimal cost. This valuable information
will be used to localize the damage, notify the drivers, and request reparation from the main-
tenance team. The transportation infrastructure, such as highways, bridges, and tunnels,
can be inspected using four main inspection categories:

*  Manual inspection: regular missions/visits are performed to check the road visually
or using some measurement tools. If needed, the reported damages will be delivered
to the maintenance team for further investigation and reparation. The technician will
provide a visual inspection.

¢  Satellite-based inspection: satellite can be used to scan the road landscape and report
the damage [8]. This approach is expensive, but it can provide good results depending
on the satellite imagery resolution and the weather condition.

* Inspection node (semi-automated): the inspection vehicle, equipped with a node
composed of a sensors-based platform (cameras, LiDAR), is used to scan the road and
send the data to an online platform to report the inspection results.

* Autonomous inspection: a self-driven vehicle (robot or drone) is used for the inspec-
tion [9]. In this case, the inspection vehicle will define automatically the inspection
mission trajectory based on the assigned target area. The collected data will be pro-
cessed online to provide the inspection results.

This paper explores the proposed semi-automated hardware/software for road in-
spection, called Highway Autonomous Inspection System (HAIS). The proposed HAIS
system takes advantage of the recent advances in deep learning and computer vision tech-
nology to assess and monitor highway conditions and enforce safety measures by giving
real-time driving assistance. The system has a hardware module that prepares and sends
the collected sensor data to the cloud (see the system illustration in Figure 1). These data
will be processed using the designed inspection algorithm and visualized inspection report
on an interactive user interface.

Data Collection Pre-| i “API-based Transfer

Figure 1. Illustration of the proposed HAIS inspection system.

The following sections of the paper are organized as follows. Section 2 presents a
general overview of the proposed framework flowchart and its different modules and
explores the data collection and preparation module. Section 3 explores the data transfer
module. Section 4 reports the inspection module with examples of the obtained inspection
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results. Section 5 exposes the interactive user interface module. Finally, concluding remarks
and future works are summarized in Section 6.

2. System Design and Prototyping

This work investigates how to make highways safer and suitable for autonomous
driving in the future. The proposed system will focus on automatic road condition in-
spection and safety assessment and send this information to all vehicles sharing the road.
The proposed system will enhance real-time monitoring and improve the efficiency of the
maintenance schedule. Moreover, it will facilitate the integration of autonomous driving by
generating smart and digital highways where the highway can assist the vehicle with safety
alarms. The proposed solution used inspection nodes to diagnose the road conditions and
share these data with the data center (cloud), as illustrated in the following figures.

The proposed solution used inspection nodes to diagnose road conditions and share
these data with the data center (cloud). The designed and prototyped hardware is a
system (inspection node) composed of different sensors with 5G/4G connection to collect
the data from roads and send them to the cloud database (see Figure 2). The system
can be mounted on vehicles, buses, and snow removal trucks, allowing more scanning
flexibility. The HAIS system processes the data of the different sensors in a hierarchical
scheme, performing an automated road inspection in real-time. The inspection system
uses the sensors for measurements and the inspection history to provide a final inspection
report: road conditions and preventive maintenance scheduling. The first prototype of the
inspection node is presented in Figure 3.

(1) Data collection module
Camera, LiDAR, GPS, IMU

Upload sensors

measurment
Cloud —
. Visualization/ - Sensors data Incremental L )
I~ Scheduler glilsansans Learning =
- Road inspections —
Operator Expert
Monitoring Human-in-Loop
(3) User interface module (2) Inspection module
Visualize Road conditions, Data labeling, add users,
schedule road maitenanc setup the preferences

o

Figure 2. The proposed framework of the HAIS system.
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Figure 3. The first prototype of the inspection node.

One sensor or more of the inspection node will be used to monitor a specific element of
the road conditions. For instance, the road camera and LiDAR sensors are mainly used for
road damage detection but the side camera is used for lane marker reflectivity estimation
(see Figure 4). The data collection is a road screening process based on a predefined mission.
The collected data will be then structured and transformed into the Nuscenes schema [10].
Examples of the collected sensor data are presented in Figure 4.

Road Camera Side Camera

.
LiDAR IMU/Gyro
‘é‘ 200 301 — acexangle A
O s 300 | — Acctangle
— - gyraXangle
o -~J Y_ B 20 -~ gyonngle
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% 100 E 150 CRanglett
E— - c — heading
= X 10| titCompensatedHeading
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= e

Road lane (view of 120°) Time (sec)
Figure 4. Examples of the collected data using the inspection node.

3. Data Collection and Transfer Module

The main aim of this Component is to save the collected data in the cloud database
and retrieve it to the server. Considering the time response, size of the data, and the offline
mode. In addition, it provides the receiver side with API-enabled requests, which enables
the user to retrieve specific data by mission ID. Figure 5 shows the general flowchart of the
data transfer module. The different components of the transfer module are composed of
the following components.
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Figure 5. Illustration of the data transfer module flowchart.

*  Data compression: compress the received data from the inspection node and store
the compressed file in a local folder based on a specific compression size. The tarfile
library is used to create a .tar file containing the sensor’s data in the previously defined
compression size [11].

*  Local storage: the compressed data are kept locally until they are sent successfully to
the cloud Firebase [12], where all previously collected data are stored in the Firebase
online database. In case of connection interruption or sending error, the transmis-
sion thread will keep trying to send the compressed data while preserving a local
backup until the program ensures that the data are completely sent successfully to the
database.

*  Data exchange using API: this component is the main component for the receiver side.
It enables the web application to download, retrieve and request specific data from
the database using Flask APIs. This component takes the vehicle number and the data
token key to return a specific mission trajectory with the corresponding collected data.

4. Inspection Module

The HAIS system provides an integrated platform for road inspection in real-time.
The project aims to investigate how to make highways safer and suitable for autonomous
driving in the future. The proposed approach will take advantage of the recent advances
in deep learning and computer vision technology to assess and monitor highway con-
ditions and enforce safety measures by giving real-time driving assistance. It inspects
highways/road status, such as roads full of snow or that are broken, and its conformity
with safety measures. The inspection accuracy is enhanced by integrating and processing
the data of different types of sensors using deep learning algorithms to diagnose the road
conditions, as shown in Figure 6. The road inspection system is integrated with a comple-
mentary detection approach using both digital signal processing (DSP)-based and machine
learning-based algorithms.
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Sensor data

Data Preprocessing
- Filtering / denoising
- Normalization
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ML-model exists?

ML-based Detection
classification, object localization,
instance segmentation, ...

Automated Inspection Flowchart

Inspection report

Figure 6. The flowchart of the automated inspection approach.

The main DSP-based algorithm consists of a damage detection algorithm based on
image variation. The algorithm is based on detecting the damages as a variation in the
road textures and then selecting the soundest defect based on their area. An example of the
obtained damage detection is shown in Figure 7.

HAIS-Inspection
filelD=2022-10-31-17h-20min-0dsec_ CSI_CAMERA_64.jpg
data folder: /media/abdo2020/DATA1/data/labeled-dataset/HAIS-project/download/node1

Nodes and trips

Nodes: [node1

—— . Damaged report [11 damages]:
Sensor: |CSI_CAMERA - . deep = 0.864%
Inspection — medium = 6.04%

IS — small = 0.0286%

‘ — metric = 5.11%

Visualization

all nodes forcasting lanemarker road conditon

Manual Annotation

Image classification

Bad roads Medium roads Good roads
VGA annotator
run VGA object annotator

Figure 7. Example of road damage detection.

The inspection of the retro-reflectivity of road lane markings on all highways is an
important diagnosis to assess road safety for drivers during low light/night-time conditions.
The proposed algorithm is based on processing the RGB camera sensor. The proposed
algorithm estimates the reflectivity based on pixel intensity in the segmented lane marker.
An example of the obtained retro-reflectivity estimation is shown in Figure 8:
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HAIS-Inspection

reflection coef=3.0

Figure 8. Example of road lane markings retro-reflectivity inspection.

The ML-based algorithms are integrated into the HAIS system to better understand
the driving environment. The proposed classification, object detection, and semantic seg-
mentation models are trained using the collection dataset, manually annotated, and some
public datasets, such as the RTK dataset [13]. The trained models will be used to enhance
the inspection performance as follows:

e  Classification: to recognize the road safety index based on the weather condition and
road quality. Examples of the CARLA-based simulated dataset [14] and public dataset
used in this work are presented in Figures 9 and 10. The trained classification model
could achieve an accuracy of 97.1% and 97.8% in road snow coverage detection and
safety index prediction, respectively.

Level 1: High Safety Index Level 0.5: Medium Safety Index Level 0: Low Safety Index

Figure 9. Examples of CARLA simulation dataset of the RGB camera sensor.

L1: clear road in clear weather : clear road in rainy weather L3: clear road in snowy weather

-

Figure 10. Examples of winter RTK classification dataset.

*  Segmentation: to detect the road surface to avoid the false positive damage coming
from the surrounding objects in the image. The trained segmentation model could
achieve a DICE up to 0.99, as shown in Figure 11.
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Input image

PO

True mask predicted mask DICE=0.9958348

Figure 11. Examples of road segmentation using the RTK segmentation dataset.

*  Object detection: to detect road damage, mainly the cracks, and compute the road
damage area of each crack. Some examples of the obtained results using an object
detection model, trained on a manually annotated dataset collected using a Dashcam
or inspection node or drone dataset, are presented in Figure 12. The trained YOLOv5
model could achieve an IOU of up to 0.7.

Figure 12. Examples of damage detection using: (a) Dashcam, (b) node camera, and (c) drone camera.

It is worth mentioning that the size of the dataset (number of images) plays a key role
in improving the performance of the previously reported models.

5. User Interface Module

The designed web-app interface is a HTML5/JavaScript-based user interface that
allows the operator to visualize the collected data on the map from the inspection database
on Firebase cloud and create the inspection reports in real-time. The web—app interface
provides registered users with real-time and robust interaction and visualization, as shown
in Figure 13, and is explained as follows:

e Explore the collected data at every location by showing the different sensor data, such
as road image, car speed, and car position.

*  Visualize the road conditions report generated by the inspection algorithms.

*  Manage the inspection and reparation missions by showing each mission separately.
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Figure 13. Road condition visualization data exploration using the inspection node data.

The demonstration of the interactive user interface is shared in this video, Available
online: https:/ /youtu.be/5kdigwUg2ao (accessed on 20 March 2023).

6. Conclusions and Future Work

In this work, we presented an automated highway inspection system enabling real-
time hybrid road condition inspection and monitoring. The proposed solution includes a
hardware devices/nodes architecture and software application for data processing, such
as road conditions using computer vision and artificial intelligence technologies. It en-
ables data-sharing of the collected data using the Firebase cloud platform. In addition,
it provides the users with an interactive web app user interface that allows the real-time
monitoring, visualization, and management of inspection reports, which will help in plan-
ning maintenance operations. The obtained inspections show promising results in different
weather conditions:
* Road snow coverage detection: an average prediction accuracy of 97.1%.
[ ]
[ )

Road safety index prediction: an average prediction accuracy of 97.8%.
Road damage detection: achieve an IOU up 0.7.

In addition, two evaluation metrics are proposed to assess the road quality and
lane marker quality that can be personalized to define the criteria where reparation or
maintenance is required.

The proposed solution can be extended and adapted to other infrastructure inspec-
tions, such as bridges and tunnels, using autonomous drones. Therefore, we will implement
an optimization-based algorithm for autonomous trajectory planning taking into consid-
eration the number of drones, available power, and the minimization of the overall cost
and resources.
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Abbreviations

The following abbreviations are used in this manuscript:
API  application programming interface

DSP  digital signal processing

IoU intersection over union

ML  Machine learning

SQL  full structured query language

RTK road traversing knowledge
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