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Abstract: In the energy-planning sector, the precise prediction of electrical load is a critical matter
for the functional operation of power systems and the efficient management of markets. Numerous
forecasting platforms have been proposed in the literature to tackle this issue. This paper introduces
an effective framework, coded in Python, that can forecast future electrical load based on hourly
or daily load inputs. The framework utilizes a recurrent neural network model, consisting of two
simpleRNN layers and a dense layer, and adopts the Adam optimizer and tanh loss function during
the training process. Depending on the size of the input dataset, the proposed system can handle
both short-term and medium-term load-forecasting categories. The network was extensively tested
using multiple datasets, and the results were found to be highly promising. All variations of the
network were able to capture the underlying patterns and achieved a small test error in terms of
root mean square error and mean absolute error. Notably, the proposed framework outperformed
more complex neural networks, with a root mean square error of 0.033, indicating a high degree of
accuracy in predicting future load, due to its ability to capture data patterns and trends.

Keywords: electrical load; recurrent neural network; short-term forecasting; medium-term forecasting

1. Introduction

Electric load forecasting (ELF) in a power system is crucial for the operation planning
of the system, and it also generates an increasing academic interest [1]. For the management
and planning of the power system, forecasting demand factors such as load per hour,
maximum (peak) load, and the total amount of energy is crucial. As a result, forecasting
according to the time horizon is beneficial for meeting the various needs according to their
application, as indicated in Table 1. The ELF is divided into three groups [2]:

• Long-term forecasting (LTF): 1–20 years. The LTF is crucial for the inclusion of new-
generation units in the system and the development of the transmission system.

• Medium-term forecasting (MTF): 1 week–12 months. The MTF is most helpful for the
setting of tariffs, the planning of the system maintenance, financial planning, and the
scheduling of fuel supply.

• Short-term forecasting (STF): 1 h–1 week. The STF is necessary for the data supply to the
generation units to schedule their start-up and shutdown time, to prepare the spinning
reserves, and to conduct an in-depth analysis of the restrictions in the transmission
system. STF is also crucial for the evaluation of power system security.

Various approaches can be used based on the model found. Although MTF and LTF
forecasting will rely on techniques such as trend analysis [3,4], end-use analysis [5], neural
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network technique [6–10], and multiple linear regressions [11], STF requires an approach
based on regression [12], analysis of time series [13], implementation of artificial neural
networks [14–16], expert systems [17], fuzzy logic [18,19], and support vector machines [20,21].
STF is important for both the Transmission System Operators (TSOs) in the case of extreme
weather conditions to maintain the reliable operation of the system [22,23] and for the
Distribution System Operators (DSOs) due to the constant increase of microgrids affecting
the total load [24,25] as well as the difficulty of matching varying renewable energy to the
demand with diminishing margins.

Table 1. Applications of the forecasting processes based on time horizons.

Time Horizon Area of Application

12 months–20 months Planning of the Power System

1 week–12 months Scheduling the maintenance of the power system elements

1 min–1 week Commitment analysis of the power units
Automatic Generation Control (AGC)
Economic load dispatch (ELD)

ms–s Power system dynamic analysis

ns–ms Power system transient analysis

The MTF and LTF require both expertise in data analysis and experience of how power
systems and the liberated markets function, but the STF relies more on data modeling
(trying to fit data into models) than on in-depth knowledge of how a power system
operates [26]. The load forecast of the day ahead (STF) is a work that the operational
planning department of every TSO must establish every day of the year. The forecast must
be as accurate as possible because its accuracy will depend on which units will participate
in the power system energy production the next day, to produce the required amount of
energy to cover the requested system load. The historical data on load patterns, the weather,
air temperature, wind speed, calendar seasonal data, economic events, and geographical
data are only a few of the many variables that influence load forecasting.

The strategic actions of several entities, including companies involved in power
generation, retailers, and aggregators, depend on the precise load projections, nevertheless,
as a result of the liberalization and increased competitiveness of contemporary power
markets. Additionally, a robust forecasting model for prosumers would result in the best
resource management, such as energy generation, management, and storage.

The augmentation of “active consumers” [27] and the penetration of renewable en-
ergy sources (RES) by 2029–2049 [28] will result in very different planning and operation
challenges in this new scenario [29]. Toolboxes from the past will not function the same
way they do now. For instance, it becomes increasingly difficult for the future energy mix
to match load demands whenever creating intriguing prospects for new players on both
the supply and demand sides of a power system. The literature raises questions about how
to handle the availability of energy outputs from RES and the adaptability of customers
in light of the uncertainty and unpredictability concerns associated with power consump-
tion. An imperfect solution to this problem can be found in the new and sophisticated
forecasting techniques [30–32]. To assess and predict future electricity consumption, a deep
learning (DL) forecasting model was developed, investigating electricity-load strategies in
an attempt to prevent future electricity crises.

In this work, we suggest a framework based on a recurrent neural network (RNN) for
the prediction of energy consumption in Greece. The RNN consists of two simpleRNN
layers and a dense layer, using the Adam optimizer and tanh as loss function during the
training process. The dataset consists of the hourly energy consumption in Greece for
746 days. We provide the results for several values of the time step parameter, i.e., 12,
24, and 48, which is responsible for the inclusion of that number of previous points, in



Technologies 2023, 11, 70 3 of 14

the prediction of the following value. Our experiments show that a time step equal to 24
provides the best results in the test set. In other words, this time step results in the least
root mean square error (RMSE), illustrating that there is a strong periodicity every 24 h.

The rest of the paper is organized as follows: Section 2 presents the Theoretical
Background. Section 3 presents the dataset and the proposed methodology, and Section 4
describes the experimental results, discusses the work and presents a comparison between
the proposed methodology and other state-of-the-art neural networks, while Section 5
presents a conclusion and future work.

2. Theoretical Background

In this paper, the underlying model of predicting energy consumption is that of
Artificial Neural Network (ANN) and, specifically, that of RNN [33,34]. The theory of RNN
was brought up in 1986, while the well-known Long Short-Term Memory (LSTM) [35]
networks were initially presented in 1997. The proposed literature architectures of RNN
are fewer than the Convolutional Neural Network (CNN) [36] architectures. The evolution
of RNN may be divided into three phases, the Overloaded Single Memory for Vanilla
RNN [37], the Multiple Gate Memories for LSTM, and the Pay Attention for Encoder-
Decoder architecture with RNN, respectively. Through these three phases, researchers were
making an effort to recall the biggest amount of past information to predict the future more
accurately. Gated Recurrent Unit (GRU) [38] is a type of recurrent neural network (RNN)
architecture used for processing sequential data. Unlike traditional RNNs, GRUs have two
memory gates (Update gate and Reset gate) that control the flow of information in and
out of the memory cell, allowing them to efficiently capture long-term dependencies in
sequential data. GRUs are widely used in natural language processing, speech recognition,
and time-series forecasting tasks.

2.1. RNN for Variable Inputs/Outputs

The task of handling input and output of varied sizes is considered to be challenging
in the field of normal neural networks. Part of the use cases that normal neural networks
are incapable of handling are shown in Figure 1, where “many” does not stand for a fixed
number for each input or output to the models.

Figure 1. RNN for Variable Inputs/Outputs.

The cases presented in Figure 1 may be summarized in the following three categories.

• One to Many, applied in fields of image captioning, text generation
• Many to One, applied in fields of sentiment analysis, text classification
• Many to Many, applied in fields of machine translation, voice recognition

However, RNN may deal with the above-mentioned cases as it includes a recursive
processing unit with single or multiple layers of cells) plus a hidden state extracted from
past data.

The use of a recursive processing unit has advantages and disadvantages. The main
advantage is that the network may handle inputs and outputs of varied sizes. Unfortunately,
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the main disadvantages are the difficulty of storing past data and the complication of
vanishing/exploding gradients.

2.2. Vanilla RNN

A Vanilla RNN is a type of neural network that can process sequential data, such as
time-series data or natural language text, by maintaining an internal state. In a vanilla
RNN, the output of the previous time step is fed back into the network as input for
the current time step, along with the current input. This allows the network to capture
information from previous inputs and use it to inform the processing of future inputs.
The term “vanilla” is used to distinguish this type of RNN from more complex variants,
such as LSTMs (Long Short-Term Memory) and GRUs (Gated Recurrent Units), which
incorporate additional mechanisms to better handle long-term dependencies in sequential
data. Despite their simplicity, vanilla RNNs can be effective for a range of tasks, such
as language modeling, speech recognition, and sentiment analysis. However, they can
struggle with long-term dependencies and suffer from vanishing or exploding gradients,
which can make training difficult. In Figure 2 the main RNN architecture incorporating
self-looping or recursive pointer is presented. Let us consider input, output, and hidden
state as x, o, and h, respectively, while U, W, and V are the corresponding parameters. In
this architecture, an RNN cell (in green) may include one or more layers of normal neurons
or other types of RNN cells.

The main concept of RNN is the recursive pointing structure which is based on the
following rules:

• Inputs and outputs are of variable size
• In each stage the hidden state from the previous stage as well as the current input is

utilized to compute the current hidden state that feeds the next stage. Consequently,
knowledge from past data is transmitted through the hidden states to the next stages.
Hence, the hidden state is a means of connecting the past with the present as well as
input with output.

• The set of parameters U, V, and W as well as the activation function are common to all
RNN cells.

Figure 2. Basic RNN architecture.

Unfortunately, the shared among all cells set of parameters (U, V, W) constitutes a
serious bottleneck when the RNN raises enough. In this case, a brain consisting of only
one set of memory may be overloaded. Therefore, Vanilla RNN cells that have multi-layers
may easily enhance the performance.

2.3. Long Short-Term Memory

LSTM networks are a type of RNN designed to handle long-term dependencies in
data. LSTMs were first introduced by Hochreiter and Schmidhuber in 1997 and have since
become widely used due to their success in solving a variety of problems. Unlike standard
RNNs, LSTMs are specifically created to address the issue of long-term dependency, making
it their default behavior.

LSTMs consist of a chain of repeating modules, similar to all RNNs, but the repeating
module in LSTMs is structured differently. Instead of a single layer, LSTMs have four
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interacting layers. The key component of LSTMs is the cell state, a horizontal line that runs
through the modules and enables an easy flow of information. The LSTMs regulate the flow
of information in the cell state through gates, which consist of a sigmoid neural network
layer and a pointwise multiplication operation. The sigmoid layer outputs numbers
between 0 and 1 to determine the amount of information to let through.

LSTMs have three gates to control the cell state: the forget gate, the input gate, and the
output gate. The forget gate uses a sigmoid layer to decide which information to discard
from the cell state. The input gate consists of two parts: a sigmoid layer that decides which
values to update, and a tanh layer that creates new candidate values. The new information
is combined with the cell state to create an updated state. Finally, the output gate uses a
sigmoid layer to decide which parts of the cell state to output, then passes the cell state
through tanh and multiplies it by the output of the sigmoid gate to produce the final output.

2.4. Convolutional Neural Network

CNN [36] is a type of deep learning neural network commonly used in image recogni-
tion and computer vision tasks. It is based on the concept of convolution operation, where
the network learns to extract features from the input data through filters or kernels. The
filters move over the input data and detect specific features such as edges, lines, patterns,
and shapes, which are then processed and passed through multiple layers of the network.
These multiple layers allow the CNN to learn increasingly complex representations of the
input data. The final layer of the CNN outputs predictions for the input data based on the
learned features. In addition to image recognition, CNNs can be applied to various other
tasks including natural language processing, audio processing, and video analysis.

2.5. Gated Recurrent Unit

The GRU [38] operates similarly to an RNN, but with different operations and gates
for each GRU unit. To address issues faced by standard RNNs, GRUs incorporate two gate
mechanisms: the Update gate and the Reset gate. The Update gate determines the amount
of previous information to pass on to the next stage, enabling the model to copy all previous
information and reduce the risk of vanishing gradients. The Reset gate decides how much
past information to ignore, deciding whether previous cell states are important. The Reset
gate first stores relevant past information into a new memory then multiplies the input and
hidden states with their weights, calculates the element-wise multiplication between the
Reset gate and the previous hidden state, and applies a non-linear activation function to
generate the next sequence.

3. Materials and Methods
3.1. Dataset

The dataset consists of the hourly energy consumption in Greece for 746 days starting
from 31 November 2020 to 16 December 2022, according to IPTO S.A. (Independent Power
Transmission Operator S.A.) [39]. IPTO S.A. is the Owner and Operator of the Hellenic
Electricity Transmission System (HETS). The IPTO mission is the operation, control, main-
tenance, and development of the Hellenic Electricity Transmission System. Each data point
indicates the hourly energy consumption in terms of MWh, i.e., for each day, there are
24 energy indices in MWh showing the energy consumption per hour.

3.2. Proposed Methodology

Toward the prediction of energy consumption, we propose an artificial neural network,
specifically, an RNN. An RNN is specialized in extracting patterns and making predictions
for time series and sequential data. Contrary to a dataset with independent data points,
where a feed-forward neural network is the best choice, the existence of data points that
depend upon the previous ones, demands the incorporation of a memory concept. This
memory provides the prediction model with the capability of storing the previous states
and considering them for the prediction of the following output. At the first stage of our
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pipeline, there is an input layer where the raw data are imported and scaled appropriately
to be fed into the hidden layers described previously. The data are scaled in the range (0, 1)
and, in turn, divided into train and test sets. After experimentation, we conclude with an
80–20 split, meaning that the train set is the 80% and the test set is the 20% of the whole
dataset, respectively. Our network consists of two simpleRNN layers and a dense layer
as shown in Figure 3. A simpleRNN layer has a feedback loop that can be unrolled in x
time steps as shown in Figure 2 where x is the number of previous observations taken into
account for the prediction of the next point.

Figure 3. The proposed prediction pipeline.

In our case, the time step parameter is equal to 24, assuming there is a periodicity
every 24 h. The network has 50 hidden units created via the SimpleRNN layers and one
dense unit created via the dense layer. The model has 7.701 trainable parameters, i.e., 2600,
5050, and 51 for the first simpleRNN layer, the second simpleRNN layer, and the dense
layer, respectively. For training purposes, a root mean square error (RMSE) function was
applied as a loss function and the network was trained for 40 epochs.

4. Results and Discussion

In this Section, a comparison between the variations of the proposed methodology,
the RNN network, is presented along with a comparison with the other neural networks.
As mentioned above, the procedure of performance evaluation was divided into four
variations, i.e., time steps equal to 12, 24, 48, and 72. In all those variations 80% of the data
set was initially used as a training set and the rest 20% as a test set. Given that the dataset
consists of 17,904 measurements of the hourly energy consumption in Greece for 746 days
(31 November 2020 till 16 December 2022) according to IPTO S.A. [39], the proposed
framework may handle mainly the two load-forecasting categories, i.e., short-term and
medium-term on the time horizon.

In Figures 4 and 5 the actual ground truth values against the predicted ones for a
parameter time step equal to 24 are presented during the training and testing process,
respectively. All variations of the proposed network capture the underlined patterns and
present a small test error in terms of RMSE and MAE.



Technologies 2023, 11, 70 7 of 14

Figure 4. Actual ground truth values against the predicted ones during the training process for a
parameter time step equal to 24 for the proposed RNN.

Figure 5. Actual ground truth values against the predicted ones during the testing process for a
parameter time step equal to 24 for the proposed RNN.

Our experiments show that a time step equal to 24 provides the best results in the
test set. Time step equal to 24 results in the least RMSE, illustrating that there is a strong
periodicity every 24 h. When the time step is equal to 24, then RMSE = 0.033 in the test
set, while for the time step equal to 12 and 48, RMSE is 0.048 and 0.041, respectively. In
addition, when the time step is equal to 12, then MAE = 0.163 in the test set, while for the
time step equal to 12 and 48 MAE is 0.165 and 0.187, respectively. Subsequently, at a time
step of 72, the RNN network demonstrates proficiency within the training set; however, the
outcomes within the testing set lack encouragement, indicating an overfitting occurrence
within the system. RMSE and MAE in training and test set for all four time steps are shown
in Table 2, as well as in Figure 6.

Table 2. RMSE and MSE in training and test set for all three neural networks and four time steps.

Time Step 12 24 48 72

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

RNN Training set 0.032 0.161 0.038 0.171 0.051 0.210 0.032 0.163
Testing set 0.048 0.165 0.033 0.163 0.041 0.187 0.070 0.244

LSTM Training set 0.024 0.129 0.030 0.145 0.030 0.153 0.054 0.219
Testing set 0.050 0.162 0.055 0.228 0.051 0.207 0.115 0.324

GRU Training set 0.026 0.137 0.032 0.143 0.029 0.148 0.031 0.141
Testing set 0.057 0.188 0.033 0.165 0.040 0.182 0.040 0.186
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Figure 6. RMSE and MSE in training and test set for GRU, LSTM and RNN for time steps 12 (a), 24
(b), 48 (c) and 72 (d).

In Figures 7–12 the actual ground truth values against the predicted ones are presented, for
a parameter time step equal to 12, 48, and 72 during the training and testing process, respectively.
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Figure 7. Actual ground truth values against the predicted ones during the training process for a
parameter time step equal to 12 for the proposed RNN.

Figure 8. Actual ground truth values against the predicted ones during the testing process for a
parameter time step equal to 12 for the proposed RNN.

Figure 9. Actual ground truth values against the predicted ones during the training process for a
parameter time step equal to 48 for the proposed RNN.

The experimental results of the previous Section attest that all variations of the pro-
posed network capture the underlined patterns and present a small test error in terms
of RMSE and Mean Absolute Error (MAE). To highlight its performance, a comparison
with two more complex neural networks, a Long Short-Term Memory (LSTM) and a Gated
Recurrent Unit (GRU), is demonstrated in Table 2. The GRU network consists of a Gated
Recurrent Unit (GRU) layer followed by a dropout layer, a second Gated Recurrent Unit
(GRU) followed by a dropout layer, and a dense layer. The dropout rate was set to 0.2
in both dropout layers and the network counts 23,301 trainable parameters. The Long
Short-Term Memory (LSTM) network has a similar structure with an LSTM layer followed
by a dropout layer and a second LSTM layer followed by a dropout layer and a dense
one. The dropout rate was also equal to 0.2 and the network counts 30,651 parameters. All
variants, i.e., time step equal to 12, 24, 48 and 72, trained for 40 epochs.
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Figure 10. Actual ground truth values against the predicted ones during the testing process for a
parameter time step equal to 48 for the proposed RNN.

Figure 11. Actual ground truth values against the predicted ones during the training process for a
parameter time step equal to 72 for the proposed RNN.

Figure 12. Actual ground truth values against the predicted ones during the training process for a
parameter time step equal to 72 for the proposed RNN.

All networks show lower RMSE and MAE for time step equal to 24, declaring it as
the best choice for the examined task. In general, the RNN network outperforms both the
LSTM and GRU networks except for time steps 48 and 72, where the GRU has a slightly
lower RMSE and MAE. For a time step equal to 12 RNN outperforms both networks in
RMSE and MAE, with the LSTM performing better than GRU in both metrics.

Considering the best variation for time step equal to 24, RNN outperforms the LSTM
and GRU networks regarding MAE, while it shows lower RMSE than the LSTM network
and equal to the GRU network, i.e., RMSE = 0.033. The LSTM is a more complex network
than the GRU, with three gates and far more trainable parameters, and it is a very efficient



Technologies 2023, 11, 70 11 of 14

solution for long-lasting dependencies. Though, GRU performs better for smaller datasets
and dependencies, as is shown in our study. RNN measurements are the most promising,
indicating that for specific tasks such as electricity-load consumption with few features,
RNNs with the appropriate architecture and parameters can perform better than more
complex and sophisticated networks.

Finally, Figure 13 includes three subfigures, one for each model: RNN, LSTM, and GRU,
illustrating the evolution of the loss function throughout the training epochs. The observed
trend in most cases demonstrates a continuous decrease in the loss function, followed by a
plateau, indicating the convergence of the proposed networks towards a stable solution.
This suggests that the models have successfully captured the underlying patterns and are
performing well on the training data. The convergence of the loss function curve indicates
an appropriate selection of the learning rate, as it exhibits a smooth convergence pattern.
However, in a few instances, slight fluctuations are observed, suggesting the possibility
of an excessively large learning rate. These fluctuations, however, are transient as the loss
function converges to a low value within one to five epochs. Thus, it can be concluded that
these fluctuations represent momentary instabilities during the training process.

Figure 13. Loss function evolution throughout the training epochs for RNN (a), LSTM (b), GRU (c)
for time steps 12, 24, 48, and 72.
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5. Conclusions

In this study, an RNN was trained on a dataset of electricity-load data and was able
to accurately predict future energy load values. Performance was evaluated using RMSE
and MAE metrics, and compared with other well-known neural networks such as LSTM
and GRU that handle time dependencies and sequential data. The models were examined
at four different time steps and all performed best with a time step of 24. The RNN had
the best performance (RMSE of 0.033 and MAE of 0.163), demonstrating its ability to learn
the underlying patterns and trends in the data series and make accurate predictions, even
better than more complex neural networks. It should be noted that with only 17,904 hourly
energy consumption measurements in the dataset, long-term forecasting of electricity load
is not possible due to insufficient training data. Additionally, to improve the accuracy of
short- and medium-term forecasting, social, economic, or environmental factors such as
temperature, precipitation, humidity, and wind should be taken into consideration in the
model training and prediction processes.
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The following abbreviations are used in this manuscript:

AGC Automatic Generation Control
ANN Artificial Neural Network
CNN Convolutional Neural Network
DSO Distribution System Operators
ELD Economic Load Dispatch
GRU Gated Recurrent Unit
HETS Hellenic Electricity Transmission System
IPTO Independent Power Transmission Operator
LD Linear dichroism
LSTM Long Short-Term Memory
LTF Long-term forecasting
MAE Mean Absolute Error
MTF Medium-term forecasting
RMSE Root Mean Square Error
RNN Recurrent Neural Network
STF Short-term forecasting
TSO Transmission System Operator
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