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Abstract: Interferon-beta is one of the most widely prescribed disease-modifying therapies for
multiple sclerosis patients. However, this treatment is only partially effective, and a significant
proportion of patients do not respond to this drug. This paper proposes an alternative fuzzy logic
system, based on the opinion of a neurology expert, to classify relapsing–remitting multiple sclerosis
patients as high, medium, or low responders to interferon-beta. Also, a pipeline prediction model
trained with biomarkers associated with interferon-beta responses is proposed, for predicting whether
patients are potential candidates to be treated with this drug, in order to avoid ineffective therapies.
The classification results showed that the fuzzy system presented 100% efficiency, compared to an
unsupervised hierarchical clustering method (52%). So, the performance of the prediction model
was evaluated, and 0.8 testing accuracy was achieved. Hence, a pipeline model, including data
standardization, data compression, and a learning algorithm, could be a useful tool for getting
reliable predictions about responses to interferon-beta.

Keywords: fuzzy logic system; pipeline prediction model; multiple sclerosis

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous sys-
tem (CNS) [1]. Although MS can take several different forms, the most common type is
relapsing–remitting MS (RRMS), characterized by alternating periods of remission and
intensification of symptoms [2]. The etiology of MS can include several factors, such as
genetic susceptibility and viral infections [3–5], which activate the immune system, generat-
ing immune dysregulation, and producing an immune attack against the myelin covering
of the CNS [6]. Studies have shown that susceptibility to MS is genetically dependent,
but the specific gene factors remain largely unknown. It is known that peripheral self-
antigen-specific immune cells are activated during the antigen presentation process, and
that they enter the CNS through the disrupted blood-–brain barrier (BBB) [7]. The route of
entry depends on the phenotype and activation state of the T cells. T cells play important
roles in cellular immunity [8]. T cells are divided into helper T cells (Th) and regulatory T
cells (Treg).

The autoimmune etiology of MS has been the target of the therapeutic approach to
patients. Treatment of MS can be divided into treatment of MS symptoms, treatment of MS
relapse, and treatment modifying disease progression. The main target of MS treatment
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is delaying the disease progression [9]. Interferon-beta (IFN-β) is one of the most widely
prescribed disease-modifying therapies for RRMS patients. IFN-β has multiple pathways
of action on the immune system. IFN-β inhibits the activated proliferation of T cells,
and prevents the migration of activated immune cells through the BBB. Also, this drug
inhibits the production of pro-inflammatory cytokines (e.g., IL-2, IL-12, IFN-γ), induces an
increase in anti-inflammatory cytokines (e.g., IL-4, IL-5, IL-10 and TGF-β), and promotes
re-myelination in CNS [10,11]. IFN-β can also prevent the differentiation of inflammatory
Th1/Th17 cells, and it can change the phenotype of Th cells from inflammatory Th1 to
anti-inflammatory Th2 cells. Studies have shown that IFN-β can significantly improve the
clinical symptoms of patients, reduce the annual recurrence rate, and delay the progress
of the disease [12]. However, IFN-β is only partially efficient, and a significant proportion
of MS patients do not respond to this treatment, with the proportion of non-responders
ranging from 20 to 50% [13]. Hence, in this paper, a pipeline model based on potential
biomarkers associated with the response to IFN-β is proposed, to predict whether MS
patients are potential candidates to be treated with this drug. Studies have researched
the effect of gene polymorphisms on therapeutic responses to IFN-β, which can affect the
efficacy of this therapy. Bustamante et al. [14] analyzed the relationship between single-
nucleotide polymorphisms (SNPs) disposed in type I IFN-induced genes, genes becoming
the toll-like receptor (TLR) pathway, and genes encoding neurotransmitter receptors, and
the response to IFN-β treatment in MS patients. Martinez et al. [15] evaluated the effect
of polymorphisms in some genes (CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRBRB3,
MxA, PELI3, and ZNF697) on responses to IFN-β treatment among RRMS patients. From
seven selected SNPs, PELI3 and GABRR3 polymorphisms were exposed, to be related to
IFN-β responses.

Genome-wide research is generated in large numbers of data, and there is a need
for soft computing methods (SCMs)—such as artificial neural networks, fuzzy systems,
evolutionary algorithms, or metaheuristic and swarm intelligence algorithms—that can
deal with this amount of data [16]. Studies of fuzzy systems have only focused on MS
diagnosis. Ayangbekun & Jimoh [17] designed a fuzzy inference system for diagnosing
five brain diseases: Alzheimer’s, Creutzfeldt–Jakob, Huntington’s, MS, and Parkinson’s.
Hosseini et al. [18] developed a clinical decision support system (CDSS), to help specialists
diagnose MS with a relapsing–remitting phenotype. Matinfar et al. [19] proposed an expert
system for MS diagnosis, based on clinical symptoms and demographic characteristics.
However, it is necessary to design new expert systems that can classify the possible re-
sponses to treatments in MS patients. Other studies have applied machine learning (ML)
techniques to diagnose early MS. Goyal et al. [20] trained a random forest (RF) model with
the serum level of eight cytokines (IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ, and TNF-α) in
MS patients, to detect predictors for disease. Chen et al. [21] implemented a support vector
machine (SVM) model, using gene expression profiles to identify potential biomarkers
for MS diagnosis. CXCR4, ITGAM, ACTB, RHOA, RPS27A, UBA52, and RPL8 genes
were detected. Among the studies that suggest genetics can predict the pharmacological
response to a treatment, Fagone et al. [22] trained an uncorrelated reduced centroid (UCRC)
algorithm to identify a subset of genes that could predict the responses to natalizumab
in RRMS patients. A specific gene expression profile of CD4+ T cells could characterize
the responsiveness.

Although the studies presented above have shown the efficiency of IFN-β at improving
the clinical symptoms of MS patients, a proportion of patients did not respond to this
treatment. Genome-wide analytical studies have been conducted, in order to identify
genetic factors associated with the responses to IFN-β treatment. Gurevich et al. [23]
identified a subgroup of secondary progressive MS (SPMS) patients presenting a gene
expression signature similar to that of RRMS patients who are clinical responders to IFN-
β treatment. SPMS patients were classified using unsupervised hierarchical clustering,
according to IFN-inducible gene expression profiling identified in RRMS clinical responders
to treatment. Although, the hierarchical clustering method is easy to implement, it rarely
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provides the best solution, due to lots of arbitrary decisions. Clarelli et al. [24] detected
genetic factors that affect the long-term response to IFN-β. The found pathways associated
with inflammatory processes and presynaptic membrane, i.e., the genes related to the
glutamatergic system (GRM3 and GRIK2), play a potential role in the response to IFN-β.
Jin et al. [25] implemented a feature selection method based on differentially correlated
edges (DCE), to identify the most relevant genes associated with the response to IFN-β
treatment in RRMS patients. Of the 23 identified genes, 7 had a confidence score > 2:
CXCL9, IL2RA, CXCR3, AKT1, CSF2, IL2RB, and GCA. Because the analyzed data were
unlabeled, the responder category was restricted to patients whose first relapse time was
more than five years (60 months), resulting in nine responders and nine non-responders.
So, seven patients were excluded from the analysis. Hence, we attempt to address some of
the issues above in this research. The main contributions of this paper are as follows:

• An alternative fuzzy system based on expert knowledge, with linguistic rules to
classify RRMS patients as high, medium, or low responders to IFN-β treatment.

• A pipeline prediction model, including a data preprocessing technique, a transforma-
tion technique for data compression, and a learning algorithm for making predictions
on new data. The prediction model is trained with biomarkers associated with the
IFN-β response for predicting whether MS patients are potential candidates to be
treated with this drug, in order to avoid ineffective therapies.

2. Materials and Methods

The strategy followed in this research is described in the flowchart of Figure 1, which
divides the proposal into four stages.

2.1 Data collection
• GSE24427 experiment

2.2 Fuzzy logic system
• RRMS patients clasification

2.3 Pipeline prediction model
• Data preprocesing 

(Standardization)
• Data compression (Principal 

component analysis, PCA)
• Prediction algorithm (Multi-

layer Perceptron, MLP)

High-responder 
to IFN-β

2.4 Performance evaluation
• k iterations cross-validation (CV)

Low-responder 
to IFN-β

Medium-responder 
to IFN-β

Figure 1. Proposed methodology. The gene data, demographic, and clinical characteristics are
collected. Then, the RRMS patients are classified by the fuzzy logic system. A pipeline prediction
model is implemented, including data standardization, PCA for data compression, and an MLP
algorithm for making predictions. Finally, the k-iterations CV is implemented, for evaluating the
model prediction performance.
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2.1. Data Collection

The dataset was collected from the GSE24427 expression profiling by array experiment,
available in the public repository of genomic data GEO [26]. Through the GPL96 [HG-
U133A] platform (Affymetrix Human Genome U133A Array), the genome-wide expression
profiles of peripheral blood mononuclear cells from 25 RRMS patients were obtained.
Patients were treated with subcutaneous IFN-beta-1b (Betaferon, Bayer Healthcare) at the
standard dose (250 µg every other day). Patient blood samples were drawn before first-
dose, second-dose, 1st-month, 12th-month, and 24th-month IFN-β injection. The expression
summary values were analyzed by GEO2R, an interactive web tool that allows viewing
of a specific gene expression through the profile graph tab. On the one hand, the GPL96
platform enabled us to see demographic and clinical characteristics of RRMS patients,
which were used as input variables for the proposed fuzzy system, and these are presented
in Table 1.

Table 1. Demographic and clinical characteristics.

Sample Gender Age EDSS 1 1st Month EDSS 1 24th Month

1 Female 63 4 5.5
2 Male 45 1 1
3 Female 25 1 1
4 Female 27 4 3.5
5 Female 51 3 2.5
6 Female 41 2 4.5
7 Female 44 4 3
8 Male 30 1.5 2
9 Female 26 4 3.5

10 Male 42 1 1
11 Male 29 2 2.5
12 Female 28 1.5 2.5
13 Female 48 1 1
14 Female 47 3.5 3
15 Female 42 2 3
16 Female 50 3.5 3.5
17 Male 37 1.5 4.5
18 Female 43 2 2
19 Male 54 3 2
20 Male 40 1 1
21 Female 48 2 2
22 Female 38 2 3
23 Male 18 1.5 2
24 Female 24 1 1
25 Male 38 1 1

1 Expanded disability status scale.

On the other hand, through the GPL96 platform, the expression values of 15 biomark-
ers associated with the response to IFN-β—IL-2, IL-12, IFN-γ, TNF-α, IL-4, IL-10, TGF-β,
CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRM3, and GRIK2—were collected and inte-
grated into an Excel spreadsheet, for training the proposed pipeline prediction model. For
example, the IL-2 and IL-4 cytokines expression values are displayed in Figures 2 and 3.
The database is the same as the one used by Jin et al. [25]. However, the biomarkers are a
little different.
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Figure 2. IL-2 cytokine. The expression values of 25 RRMS patients corresponding to five doses:
before first-dose, second-dose, 1st-month, 12th-month, and 24th-month IFN-β injection.
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Figure 3. IL-4 cytokine. The expression values seem more scattered than IL-2 cytokine.

2.2. Fuzzy Logic System

Fuzzy systems are structures based on fuzzy sets and fuzzy logic theories for pro-
cessing inaccurate information [27]. Their main property includes symbolic knowledge
representation in a form of fuzzy conditional (if-then) rules. The typical structure of a fuzzy
system is described in Figure 4.
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Fuzzyfier Defuzzyfier

Knowledge
base

Aproximate
reasoning

Numeric
inputs

Numeric
output

Figure 4. Fuzzy system structure. The fuzzyfier transforms the values of input variables into an
N-dimensional fuzzy set A (linguistic values of the output variable) defined on the universe X, by
means of approximate reasoning (inference engine) using expert knowledge, which is represented as
a set of fuzzy conditional rules (knowledge base). The result of the approximate reasoning is a fuzzy
set B(y). The defuzzyfier computes a representative numerical output y0 from the result of fuzzy set
B(y) defined on the universe Y.

The fuzzyfier can be defined as the membership function µA(x) of the fuzzy set A.
Demographic and clinical characteristics of RRMS patients are used as input variables
for the fuzzyfier. The numerical output y0 is computed using the center of gravity (COG)
method [28], as in Equation (1):

y0 =
∑n

i=1 yiµB(yi)

∑n
i=1 µB(yi),

(1)

where µB(y) represents the membership function of fuzzy set B(y). The proposed fuzzy
system is designed through the Fuzzy Logic Designer App of MATLAB R2023a software.
The structure of the proposed fuzzy system is based on the Mamdani-–Assilan fuzzy system
(MAFS) [29], which includes a set of conditional fuzzy rules, in the form of Equation (2),
that can be determined by a human expert:

R = {Ri}N
i=1 = {i f andN

n=1 (Xn is L(i)
An
), then Y is L(i)

B }
I
i=1, (2)

where I is the number of rules, Xn represents the input linguistic variables, Y is the
output linguistic variable, and LAn and LB are the linguistic values, defined by fuzzy
sets AN , and B on universes XN and Y, respectively. In this paper, the input linguistic
variables describing the demographic characteristics—including gender and age—and the
clinical characteristics—including expanded disability status scale (EDSS) 1st month and
24th month—are defined: N1 = “mean gender”; N2 = “mean age”; N3 = “mean EDSS
1st month”; N4 = “mean EDSS 24th month”. The sets of possible linguistic values are
collections of different labels describing the gender, age, EDSS 1st month, and EDSS 24th
month: LA1 = {“female”, “male”}; LA2 = {“pediatric”, “adult”, “elderly”}; LA3 = {“low”,
“medium”, “high”}; LA4 = {“low”, “medium”, “high”}, and response to IFN-β: LB = {“low”,

“medium”, “high”}. To each one of the labels, the fuzzy sets A(i)
N are assigned, defined on

the universe XN , which represents the range of possible values. The whole description of
the defined linguistic variables is presented in Table 2.

For example, the graphics of the membership functions µ
A(1)

2
(age), µ

A(1)
4

(EDSS 24th month), and µB(Response to IFN − β) of the fuzzy sets A(1)
2 , A(1)

4 , and B(y)
are displayed in Figures 5–7, respectively.
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Table 2. Linguistic variables description.

Membership Function Fuzzy Set Universe of Discourse Parameters and Type

µ
A(1)

1
(gender) A(1)

1 X1: [0 a 1] Female: [−0.75; −0.083;
0.083; 0.75] Trapezoidal
Male: [0.25; 0.916; 1.083;

1.75] Trapezoidal

µ
A(1)

2
(age) A(1)

2 X2: [0 a 100] years Pediatric: [−37.5; −4.167;
4.167; 37.5] Trapezoidal

Adult: [8.333; 50; 91.666]
Triangular

Elderly: [62.5; 95.83; 104.2;
137.5] Trapezoidal

µ
A(1)

3
(EDSS 1 1st month) A(1)

3 X3: [0 a 10] units Low: [−3.75; −0.416; 1.0;
5.0] Trapezoidal

Medium: [1.0; 5.0; 9.0]
Triangular

High: [5.0; 9.0; 10.42; 13.75]
Trapezoidal

µ
A(1)

4
(EDSS 1 24th month) A(1)

4 X4: [0 a 10] units Low: [−3.75; −0.416; 1.0;
5.0] Trapezoidal

Medium: [1.0; 5.0; 9.0]
Triangular

High: [5.0; 9.0; 10.42; 13.75]
Trapezoidal

µB(Response to IFNb) B(y) Y: [0 a 1] units Low: [−0.375; −0.04167; 0.1,
0.5] Trapezoidal

Medium: [0.1; 0.5; 0.9]
Triangular

High: [0.5; 0.9; 1.042; 1.375]
Trapezoidal

1 Expanded disability status scale.
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Pedriatic Adult Elderly

Figure 5. Set of linguistic values, which are three labels describing the “age” input variable, corre-

sponding to fuzzy set A(1)
2 .
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Figure 6. Set of linguistic values, which are three labels describing the “EDSS 24th month” input

variable, corresponding to fuzzy set A(1)
4 .
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Figure 7. Set of linguistic values, which are three labels describing the “Response to IFN-β” output
variable, corresponding to fuzzy set B(y).

The fuzzy conditional rules (knowledge base) are meant to decide the influence of
the input variables on responses to IFN-β treatment. Tables 3 and 4 display the 36 defined
rules, according to the opinion of a neurology expert:

Table 3. Fuzzy rules definition (first part).

# Rule

1 If gender is female and age is adult, and if EDSS 1st month is low and EDSS 24th
month is low, then response to IFNb is medium.

2 If gender is female and age is adult, and if EDSS 1st month is medium and EDSS
24th month is medium, then response to IFNb is medium.
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Table 3. Cont.

# Rule

3 If gender is female and age is adult, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

4 If gender is female and age is elderly, and if EDSS 1st month is low and EDSS after
24th month is low, then response to IFNb is medium.

5 If gender is female and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is medium, then response to IFNb is medium.

6 If gender is female and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

7 If gender is male and age is adult, and if EDSS 1st month is low and EDSS 24th
month is low, then response to IFNb is medium.

8 If gender is male and age is adult, and if EDSS 1st month is medium and EDSS 24th
month is medium, then response to IFNb is medium.

9 If gender is male and age is adult, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

10 If gender is male and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is low, then response to IFNb is medium.

11 If gender is male and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is medium, then response to IFNb is medium.

12 If gender is male and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is high, then response to IFNb is medium.

13 If gender is female and age is adult, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

14 If gender is female and age is adult, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

15 If gender is female and age is adult, and if EDSS 1st month is medium and EDSS
24th month is high, then response to IFNb is low.

16 If gender is female and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

17 If gender is female and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

18 If gender is female and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is high, then response to IFNb is low.

Table 4. Fuzzy rules definition (second part).

# Rule

19 If gender is male and age is adult, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

20 If gender is male and age is adult, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

21 If gender is male and age is adult, and if EDSS 1st month is medium and EDSS 24th
month is high, then response to IFNb is low.

22 If gender is male and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is medium, then response to IFNb is low.

23 If gender is male and age is elderly, and if EDSS 1st month is low and EDSS 24th
month is high, then response to IFNb is low.

24 If gender is male and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is high, then response to IFNb is low.

25 If gender is female and age is adult, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.

26 If gender is female and age is adult, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

27 If gender is female and age is adult, and if EDSS 1st month is medium and EDSS
24th month is low, then response to IFNb is high.

28 If gender is female and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.
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Table 4. Cont.

# Rule

29 If gender is female and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

30 If gender is female and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is low, then response to IFNb is high.

31 If gender is male and age is adult, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.

32 If gender is male and age is adult, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

33 If gender is male and age is adult, and if EDSS 1st month is medium and EDSS 24th
month is low, then response to IFNb is high.

34 If gender is male and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is medium, then response to IFNb is high.

35 If gender is male and age is elderly, and if EDSS 1st month is high and EDSS 24th
month is low, then response to IFNb is high.

36 If gender is male and age is elderly, and if EDSS 1st month is medium and EDSS
24th month is low, then response to IFNb is high.

2.3. Pipeline Prediction Model

A pipeline is a tool for setting a learning model, including a data preprocessing
technique (for instance standardization for feature scaling), a transformation technique
(such as PCA for data compression), and a learning algorithm (like MLP) for making
predictions on new data. The structure of the proposed pipeline is shown in Figure 8.

Training set Test set

Scaling (Standard Scaler)

Pipeline

Dimentionality reduction (PCA)

Learning algorithm (MLP)

Response to IFN-β

80% 20%

Prediction model

Class labels

Figure 8. Structure of proposed pipeline model, including feature scaling, data compression, and
prediction algorithm.

PCA is a technique of dimensionality reduction, which transforms data from a high-
dimensional space to a space of lower dimensions. The dimension reduction is achieved
by selecting the principal components (directions of maximum variance) as a basis set
for the new space [30]. Applications of PCA include analysis of genome data and gene
expression levels. For extracting the principal components, the data are standardized; then,
the covariance matrix is built, to store the pairwise covariances between features. For
example, the covariance between two features xj and xk can be computed by Equation (3):

σjk =
1
n

n

∑
i=1

(x(i)j − µj)(x(i)k − µk), (3)

where µj and µk are the representative samples of the j and k features, respectively (µk,
µj = 0, because of the standardization). The eigenvectors of the covariance matrix represent
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the principal components, and the eigenvalues define the magnitude of the eigenvectors,
so the eigenvalues have to be ordered by decreasing the magnitude [31]. The ratio of an
explained variance of an eigenvalue λj is the fraction of the eigenvalue and the total sum of
the eigenvalues, as shown by Equation (4):

λj

∑d
j=1 λj

(4)

MLP is a supervised learning algorithm that uses the backpropagation technique
for learning. The structure of MLP consists of an input layer of neurons that receive the
X = x1, x2, . . . , xm sample inputs, one or more hidden layers of neurons that convert the
values from the previous layer to a weighted linear summation, w1x1 + w2x2 + . . . + wmxm,
followed by a non-linear activation function that is used to learn the weights, and then
the output layer that predicts the class label of the samples [32]. During the learning
stage, MLP compares the true class labels to the continuous output values of the non-
linear activation function, to compute the prediction error and update the weights. The
hyperparameters of MLP are arbitrarily set as follows: solver = ’sgd’, activation = ’tanh’,
and learning_rate_init = 0.01.

2.4. Performance Evaluation

One of the key steps in building an ML or deep learning (DL) model is estimating
its performance with new data. A model can suffer underfitting (high bias) if the model
is too simple, or can suffer overfitting (high variance) if the model is too complex for the
subjacent training data [31]. In order to get an acceptable bias–variance rate, the k-iterations
cross-validation (CV) technique is implemented, which can obtain reliable estimates of the
model’s generalization performance.

In the k-iterations CV, the training dataset is randomly split into k iterations without
replacement, where k− 1 iterations are used for model training, and 1 iteration is used
for performance evaluation. This process is repeated k times, to obtain k models and
performance estimates. Then, the average performance of the models is computed by
Equation (5), based on the independent iterations, to obtain a performance estimate:

E =
1
k

k

∑
i=1

Ei (5)

Typically, the k-iterations CV is used for model fitting, to find the optimal values of the
hyperparameters that produce satisfactory generalization performance. Also, the confusion
matrix (CM) is computed, which reports the count of the predictions of a classifier [33]:
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

3. Results

For this paper, a fuzzy logic system based on MAFS was implemented, to classify
RRMS patients as high, medium, or low responders to IFN-β treatment. Also, for compari-
son purposes, a hierarchical clustering technique was implemented, to classify the same
patients. After the dataset outputs were labeled, the gene features were used as training
inputs for the proposed pipeline prediction model.

3.1. Fuzzy Logic System

At fuzzification stage, the membership values were computed for each one of the
input variables. Tables 5 and 6 display the computed values of each membership function
for all the samples.
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Table 5. Fuzzification results (gender and age).

Sample µFemale(Gender) µMale(Gender) µPediatric(Age) µAdult(Age) µElderly(Age)

1 1 0 0 0.687 0.015
2 0 1 0 0.88 0
3 1 0 0.375 0.4 0
4 1 0 0.315 0.448 0
5 1 0 0 0.975 0
6 1 0 0 0.784 0
7 1 0 0 0.856 0
8 0 1 0.225 0.479 0
9 1 0 0.345 0.424 0

10 0 1 0 0.808 0
11 0 1 0.255 0.496 0
12 1 0 0.258 0.472 0
13 1 0 0 0.952 0
14 1 0 0 0.928 0
15 1 0 0 0.808 0
16 1 0 0 1 0
17 0 1 0.015 0.688 0
18 1 0 0 0.832 0
19 0 1 0 0.903 0
20 0 1 0 0.76 0
21 1 0 0 0.952 0
22 1 0 0 0.712 0
23 0 1 0.585 0.232 0
24 1 0 0.405 0.376 0
25 0 1 0 0.712 0

Table 6. Fuzzification results (EDSS 1st month and EDSS 24th month).

Sample µLow(EDSS 1) µMed(EDSS 1) µHigh(EDSS 1) µLow(EDSS 2) µMed(EDSS 2) µHigh(EDSS 2)

1 0.25 0.75 0.0 0.0 0.875 0.125
2 1.0 0.0 0.0 1.0 0.0 0.0
3 1.0 0.0 0.0 1.0 0.0 0.0
4 0.25 0.75 0.0 0.375 0.625 0.0
5 0.5 0.5 0.0 0.625 0.375 0.0
6 0.75 0.25 0.0 0.125 0.875 0.0
7 0.25 0.75 0.0 0.5 0.5 0.0
8 0.875 0.125 0.0 0.75 0.25 0.0
9 0.25 0.75 0.0 0.25 0.75 0.0

10 1.0 0.0 0.0 1.0 0.0 0.0
11 0.75 0.25 0.0 0.625 0.375 0.0
12 0.875 0.125 0.0 0.625 0.375 0
13 1.0 0.0 0.0 1.0 0.0 0.0
14 0.375 0.625 0.0 0.5 0.5 0.0
15 0.75 0.25 0.0 0.5 0.5 0.0
16 0.375 0.625 0.0 0.375 0.625 0.0
17 0.875 0.125 0.0 0.125 0.875 0.0
18 0.75 0.25 0.0 0.75 0.25 0.0
19 0.5 0.5 0.0 0.75 0.25 0.0
20 1.0 0.0 0.0 1.0 0.0 0.0
21 0.75 0.25 0.0 0.75 0.25 0.0
22 0.75 0.25 0.0 0.5 0.5 0.0
23 0.875 0.125 0 0.75 0.25 0.0
24 1.0 0.0 0.0 1.0 0.0 0.0
25 1.0 0.0 0.0 1.0 0.0 0.0

1 1st month. 2 24th month.
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At the approximate reasoning stage, each one of the 36 inference rules from the
knowledge base were evaluated with the obtained membership values from Tables 5 and 6.
For example, considering the input values of #7 sample (gender: “female”, age: “44”, EDSS
1st month: “4”, and EDSS 24th month: “3”), the inference engine results are shown in
Table 7. In this case, only four rules—1, 2, 13, and 27—had an inference result different to
zero. Figure 9 displays the evaluation graph of previous inference rules.

Table 7. Inference results for #7 sample.

# Rule Inference Engine

1
If gender is “female” and age is “adult”, and if EDSS 1st
month is “low” and EDSS 24th month is “low”, then the

response to IFNb is “medium”.
min(1.0, 0.856, 0.25, 0.5) = 0.25

2
If gender is “female” and age is “adult”, and if EDSS 1st
month is “medium” and EDSS 24th month is “medium”,

then the response to IFNb is “medium”.
min(1.0, 0.856, 0.75, 0.5) = 0.5

13
If gender is “female” and age is “adult”, and if EDSS 1st
month is “low” and EDSS 24th month is “medium”, then

the response to IFNb is “low”.
min(1.0, 0.856, 0.25, 0.5) = 0.25

27
If gender is “female” and age is “adult”, and if EDSS 1st
month is “medium” and EDSS 24th month is “low”, then

the response to IFNb is “high”.
min(1.0, 0.856, 0.75, 0.5) = 0.5

0                              1

Input values [0 44 4 3]

Gender = 0 Age = 44 EDSS 1st month = 4 EDSS 24th month = 3 Response to IFNb = 0.554

AND
(min)

AND
(min)

1

2

AND
(min)

AND
(min)

13

27

Figure 9. Evaluation graph of the 1, 2, 13, and 27 inference rules. The result graph consists of the
combination of the four rules’ inference values.

At defuzzification stage, the numerical outputs were computed, substituting the
inference engine results into Equation (1), based on the inference result graphs. For example,
for the inference results of #7 sample according to the result graph of Figure 10, the
numerical output was computed as follows:

y0 =
0 ∗ 0.25 + 0.1 ∗ 0.25 + 0.2 ∗ 0.25 + 0.3 ∗ 0.5 + 0.4 ∗ 0.5 + · · ·+ 0.9 ∗ 0.5 + 1 ∗ 0.5

0.25 + 0.25 + 0.25 + 0.5 + 0.5 + · · ·+ 0.5 + 0.5
(6)

y0 =
2.675
4.75

= 0.563 ≈ 0.554 (7)
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The small difference in calculation was due to the fuzzy system implementation in
Matlab software providing more accurate results than by hand.

Low Medium High

0 10.1 0.40.2 0.3 0.5 0.6 0.7 0.8 0.9
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Figure 10. Inference result graph of #7 sample, which includes the values of the “Low”, “Medium”,
and “High” linguistic labels.

Finally, a classification of high, medium, and low responders to the IFN-β drug was
carried out, by three different methods: (1) opinion of a neurology expert, (2) proposed
fuzzy system, and (3) agglomerative clustering model. The results are displayed in Table 8.

Table 8. Classification of response to IFN-β. The resulting numerical values of defuzzification less
than 0.5 are considered as low responder (LR), those equal to 0.5 as medium responder (MR), and
those greater than 0.5 as high responder (HR). For comparison purposes, the input data of Table 1
were preprocessed by the StandardScaler technique, and they were used to train a prediction model
of agglomerative clustering (n_clusters = 3).

Sample Expert Opinion Fuzzy System
(Deffuzification)

Agglomerative
Clustering

1 LR 0.459⇒ LR HR
2 MR 0.5⇒MR LR
3 MR 0.5⇒MR MR
4 HR 0.529⇒ HR HR
5 HR 0.527⇒ HR HR
6 LR 0.337⇒ LR HR
7 HR 0.554⇒ HR HR
8 LR 0.474⇒ LR LR
9 HR 0.53⇒ HR HR

10 MR 0.5⇒MR LR
11 LR 0.472⇒ LR LR
12 LR 0.445⇒ LR MR
13 MR 0.5⇒MR MR
14 HR 0.527⇒ HR HR
15 LR 0.446⇒ LR MR
16 MR 0.5⇒MR HR
17 LR 0.302⇒ LR HR
18 MR 0.5⇒MR MR
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Table 8. Cont.

Sample Expert Opinion Fuzzy System
(Deffuzification)

Agglomerative
Clustering

19 HR 0.554⇒ HR LR
20 MR 0.5⇒MR LR
21 MR 0.5⇒MR MR
22 LR 0.446⇒ LR MR
23 LR 0.463⇒ LR LR
24 MR 0.5⇒MR MR
25 MR 0.5⇒MR LR

As Table 6 shows, 100% of the outputs were correctly labeled by the proposed fuzzy
system, while 52% were correctly labeled by agglomerative clustering according to an
expert opinion.

3.2. Pipeline Prediction Model

Once the dataset output labels had been classified, the pipeline prediction model was
implemented, for making predictions on new data. First, the gene expression values were
scaled by the StandardScaler technique. Then, the PCA technique was used, to reduce the
dimensionality of the gene dataset by compressing it into a new subspace, so that only
the subset of the eigenvectors (principal components) that contained more information
(maximum variance) were selected. Figure 11 shows the results of the explained variance
ratio of the eigenvalues.
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Figure 11. Explained variance ratio. The first principal component by itself accounts for almost
20% of the total variance. Furthermore, the first two combined principal components represent
approximately 40% of the variance.

Figure 12 shows the graph used to determine the optimal value of the number of
principal components (n_components) for the PCA technique to achieve the high testing
accuracy of the MLP prediction algorithm.
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Figure 12. Optimal value of n_components. The value of the n_components is arbitrarily set to 13,
for attaining a 0.8 average testing accuracy.

3.3. Performance Evaluation

In this paper, the k = 8-iterations CV technique was implemented for evaluating the
prediction model performance. Table 9 presents the CV accuracy results for each fold. The
maximun CV accuracy was achieved at the 7th and 8th folds, and the average estimate
performance was 0.521 +/− 0.327.

Table 9. K-iterations cross-validation results.

Fold CV Accuracy

1 0.333
2 0.667
3 0.333
4 0.333
5 0.500
6 0.000
7 1.000
8 1.000

The input data (1875 samples) were divided into 80% X_train (1500 samples) and 20%
X_test (375 samples), according to Pareto analysis [34], in order to avoid overfitting. In
addition, the output labels (25 samples) were divided into 80% y_train (20 samples) and
20% y_test (5 samples), for validation. The CM was computed with test and predicted data,
and the results are shown in Figure 13.

The CM results represents one high-responder patient who was correctly predicted
as a high responder, one low-responder patient who was correctly predicted as a low
responder, one low-responder patient who was wrongly predicted as a medium responder,
and two medium-responder patients who were correctly predicted as medium responders.
Based on previous results, the prediction model achieved 0.8 testing accuracy.
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Figure 13. Confusion matrix results: (0) high responder to IFN-β, (1) low responder to IFN-β, and (2)
medium responder to IFN-β.

4. Discussion

While binary logic generates only two output types—[0, 1]—fuzzy inference engines
use approximate reasoning based on generalized rules of inference. Hence, fuzzy systems
are convenient methods for decision support, due to their ability to process inaccurate
information. For this paper, an alternative fuzzy system based on expert knowledge was
implemented, for decision support in classification of the response to IFN-β treatment of
RRMS patients. Demographic and clinical characteristics were used as input variables to the
fuzzy system. As shown in Table 8, the classification of the proposed fuzzy system achieved
better results than the agglomerative clustering, because the latter did not consider the
intrinsic properties of the data, it simply used the distance between the data points to group
them into clusters. A software issue in the fuzzy system design was to set a small number
of input variables: the greater the number of variables, the greater the data processing time.

It is important to mention that at the beginning of the fuzzy system design, a proposal
of fuzzy rules definition was reviewed by the expert neurologist, who considered only two
output linguistic labels: “low” and “high” responder to IFN-β. Under these conditions, 88%
efficiency was obtained in the results. After validating the results, the expert recommended
adding an extra label—“medium”—to classify MS patients who had the same EDSS level at
the beginning as at the end of treatment. After redefining the fuzzy rules, 100% efficiency
was achieved.

Once the dataset output labels were classified by the fuzzy system, a pipeline predic-
tion model was implemented, including data standardization, data compression through
the PCA technique, and an MLP learning algorithm. The pipeline model was trained with
15 biomarkers associated with the response to IFN-β for predicting whether RRMS patients
were potential candidates to be treated with this drug. As shown in Figure 12, by setting
13 principal components for PCA, 0.8 testing accuracy was achieved. The use of the PCA
technique for data compression provides some advantages: (1) the reduced dimension has
the property of keeping most of the useful information, while reducing noise and other
undesirable data, (2) the time and memory used in the data processing are smaller, (3) it
provides a way to understand and visualize the structure of complex datasets. The use of
the k-iterations CV technique helps to obtain a good bias–variance rate. The highest CV
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accuracy was achieved at the 7th and 8th folds, as shown in Table 9. One disadvantage in
evaluating the prediction model performance was that the test samples size was too small.
Therefore, the number of iterations for the CV technique was limited to eight.

ML algorithms can find natural patterns in the data, and they are a useful alternative
in the field of bio-informatics. These algorithms have been implemented to improve the
MS diagnosis [20,21] and to help specialists to predict the response to drug treatments in
MS patients [22,25]. Table 10 presents a comparison of the performance results of some ML
applications in MS study.

Table 10. Performance results comparison of ML applications in MS study.

Author Prediction ML Technique Accuracy

Fagone et al. [22] Response to
Natalizumab UCRC 0.892

Goyal et al. [20] MS diagnostic RF 0.909
Jin et al. [25] Response to IFN-β SVM 0.809

Chen et al. [21] MS diagnostic SVM 0.930
Actual Paper Response to IFN-β MLP 0.521 +/− 0.327 1

1 Average estimate performance achieved by k=8-iterations cross-validation.

The results obtained in this paper could be a reference for future works, using other
genes related to the response to IFN-β treatment, as training data. Also, new prediction
models, such as evolutionary or DL algorithms, could be designed, to improve model per-
formance.

5. Conclusions

In general, IFN-β treatment effectively reduces the rate of relapse and delays the
progression of neurological disability in MS patients. However, a percentage of patients do
not respond, or partially respond to this drug. In this paper, the proposed fuzzy system,
based on the opinion of an expert, demonstrated high efficiency in decision support, and
it could be a useful tool in labeling classes, such as classification of the response to IFN-
β therapy.

Although genome research is complex, there are ML methods—for instance, the
proposed pipeline model—that can effectively deal the gene data for obtaining reliable
predictions, to guide specialists in the selection of MS patients who may obtain the greatest
benefit from IFN-β treatment. Biomarkers—in particular IL-2, IL-12, IFN-γ, TNF-α, IL-
4, IL-10, TGF-β, CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRM3, and GRIK2—can be
convenient predictive variables for improving the comprehension of the influence of IFN-β
therapy in MS patients.
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