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Abstract: This paper focuses on the economic power dispatch (EPD) operation of a microgrid
in an OPAL-RT environment. First, a long short-term memory (LSTM) network is proposed to
forecast the load information of a microgrid to determine the output of a power generator and
the charging/discharging control strategy of a battery energy storage system (BESS). Then, a deep
reinforcement learning method, the deep deterministic policy gradient (DDPG), is utilized to develop
the power dispatch of a microgrid to minimize the total energy expense while considering power
constraints, load uncertainties and electricity price. Moreover, a microgrid built in Cimei Island of
Penghu Archipelago, Taiwan, is investigated to examine the compliance with the requirements of
equality and inequality constraints and the performance of the deep reinforcement learning method.
Furthermore, a comparison of the proposed method with the experience-based energy management
system (EMS), Newton particle swarm optimization (Newton-PSO) and the deep Q-learning network
(DQN) is provided to evaluate the obtained solutions. In this study, the average deviation of the
LSTM forecast accuracy is less than 5%. In addition, the daily operating cost of the proposed method
obtains a 3.8% to 7.4% lower electricity cost compared to that of the other methods. Finally, a
detailed emulation in the OPAL-RT environment is carried out to validate the effectiveness of the
proposed method.

Keywords: economic power dispatch (EPD); microgrid; long short-term memory (LSTM); deep
deterministic policy gradient (DDPG); energy management system (EMS); Newton-particle swarm
optimization (Newton-PSO); deep Q-learning network (DQN)

1. Introduction

The use of microgrids has drawn significant attention in recent years due to their
potential to improve the stability and reliability of power distribution systems. A microgrid
is a small-scale power grid that can operate independently or in connection with the
main power grid [1,2]. Each microgrid can not only operate independently using its
own control mechanism, but also can integrate the renewable energy resources, isolate
the failed grid and save operation costs through peak shaving. A microgrid typically
includes a combination of renewable energy resources (RERs), such as a photovoltaic (PV)
plant, wind turbine generator (WTG) and battery energy storage system (BESS), as well as
distributed energy sources (DESs), such as a gas turbine and diesel generators. Although
the microgrid with RER integration provides flexibility and sustainability benefits, it also
faces challenges in stable and power dispatch due to the uncertainties of intermittency that
are unexpected and dynamic power variations resulting in real-time balancing operation.
To solve these problems and ensure the cost effectiveness of microgrid systems, it is essential
to minimize the operation costs via economic power dispatch (EPD). The EPD problem
arises in microgrid systems and involves minimizing the total fuel cost of power generation,
while ensuring that the power demand is met, and the generation limits are respected [3–5].
The objective is to optimize the generation schedule of multiple generators in the microgrid,
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such that the overall fuel cost is minimized without violating any operational constraints.
The EPD problem can be formulated with different fuel cost functions, depending on the
type of generators used in the microgrid. However, the complexity of the EPD problem
increases with the integration of more RERs in the microgrid system. Therefore, it is
necessary to develop an efficient and effective method to solve the EPD problem.

The EPD problem has been extensively studied in the literature, and various techniques
have been proposed to solve the problem. Traditional methods such as linear programming
(LP), quadratic programming (QP), and mixed-integer programming (MIP) have been
widely used for solving the EPD problem in power systems [6–8]. However, these methods
have some limitations, such as high computational complexity and the inability to handle
the nonlinearities of the system [9–11]. Moreover, metaheuristic algorithms, such as the
genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE),
have shown good performance in solving the EPD problem in microgrid systems [12–14].
Nevertheless, it is worth noting that these methods may converge to suboptimal solutions
and suffer from slow convergence rates [15–17].

Load forecasting is an important component of microgrid operation, as it can help
predict the power demand of a microgrid in advance. Accurate load forecasting allows
microgrid operators to plan and allocate resources effectively, which can improve the
efficiency and reliability of microgrid operation [18,19]. In recent years, deep learning
algorithms have shown promising results in solving various optimization problems in
power systems. Long short-term memory (LSTM) networks are a type of recurrent neural
network (RNN) that are well-suited for time series data, such as load forecasting. LSTM
networks can capture long-term dependencies in time series data and are able to remember
information from previous time steps. In this study, an LSTM network is utilized to predict
the load demand of a microgrid. The LSTM network is trained on historical load data and
can predict the load demand for the next time step based on the current and previous load
values [20,21].

Deep reinforcement learning (DRL) has shown great potential for solving complex
control problems in various domains. It combines the power of deep neural networks
with the principles of reinforcement learning to enable agents to learn complex decision-
making policies directly from high-dimensional inputs, without the need for hand-crafted
features. Some popular DRL algorithms, such as the deep Q-network (DQN) and deep
deterministic policy gradient (DDPG), have been applied to optimize the EPD strategy
of microgrids [22,23]. The DQN is a model-free, off-policy algorithm that uses a deep
neural network to approximate the Q-value function. The Q-value function estimates the
expected total reward an agent will receive by taking a certain action in a certain state.
Moreover, the DQN employs experience replay, and this helps to break the correlation
between consecutive samples and stabilize the learning process [24,25]. On the other hand,
the DQN aims to obtain the Q-value estimates in discrete action space. Therefore, in the
continuous action domains, such as the EPD problem, the performance of the DQN is
less than outstanding. In addition, the DDPG is an actor–critic algorithm that learns a
deterministic policy function and a Q-value function simultaneously. The policy function
maps states to actions, while the Q-value function estimates the expected total reward an
agent will receive by taking a certain action in a certain state, following the policy function.
DDPG uses a target network, a delayed copy of the Q-network and the policy network,
to update the networks, which reduces the variance of the gradients and stabilizes the
learning process [26–28]. Since DDPG can learn the policies in high-dimensional space
and possess great potential to process continuous action problems, it will achieve better
performance on the EPD problem than the DQN will.

DRL algorithms have several advantages in solving the EPD problem of power systems.
Firstly, they can learn from experience and adapt to changes in a microgrid system, making
them more flexible and adaptable than traditional methods. Secondly, DRL algorithms can
handle stochastic and uncertain conditions, which are common in renewable energy sources
such as solar and wind power. Thirdly, DRL algorithms can handle non-linear and non-
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convex optimization problems, which are often encountered in microgrid systems. Lastly,
DRL algorithms can provide near-optimal solutions in a relatively short time, which is
important for real-time applications. These advantages make DRL algorithms a promising
solution for efficient and sustainable microgrid operation [29–31]. Therefore, this study
proposes a novel approach that combines LSTM-based load forecasting with the DDPG
algorithm to optimize the EPD strategy of microgrid systems. The proposed method uses
historical load data to train the LSTM network to forecast the load demand for the next
time step. The forecasted load demand is then used as input to the DDPG algorithm to
determine the optimal dispatch strategy for the microgrid system. The objective of this
research is to minimize the overall fuel cost of a microgrid while meeting the demand and
supply constraints.

This study focuses on the EPD of a microgrid system on Cimei Island [32], which is
connected to the main grid via submarine power cables. The microgrid system includes
PV and WTG sources with a predetermined output power provided by a Taiwan power
company (Taipower). To optimize the EPD strategy of the microgrid system, control
strategies are developed for the efficient operation of the diesel generator, gas turbine
generator, and the BESS to minimize electricity bills. Moreover, the proposed method
is implemented using a hardware-in-the-loop (HIL) mechanism developed with OPAL-
RT real-time simulator OP4510 and a floating-point digital signal processor (DSP) from
Texas Instruments TMS320F28335 for BESS control. The rest of this study is organized as
follows. The modeling, formulations and configurations of the microgrid are presented
in Section 2, and the DDPG with LSTM method for EPD is proposed in Section 3. Some
test cases with different EPD methods are investigated to verify the performance of the
proposed methodology in Section 4. The emulation in an OPAL-RT real-time environment
is presented in Section 5. Finally, some conclusions are presented in Section 6.

2. Microgrid Model

The microgrid model of Cimei Island [32] is utilized in this study. A single-line
diagram of the island is shown in Figure 1, which includes a diesel generator, a gas turbine
generator, a 355 kWp PV system, a 1000 kWh BESS, a wind farm with a 305 kW WTG
system, loads, and some demand response resources. The BESS is capable of charging or
discharging power from/to the microgrid, where the negative and positive signs indicate
the charging and discharging power of the BESS, respectively. Moreover, power variations
of PV and WTG systems for a day are provided by Taipower. Furthermore, the microgrid
is connected to the main grid and actively participates in real-time electricity markets to
take advantage of the real-time electricity prices. Thus, the power can flow between the
main grid and the microgrid, where the positive sign indicates power consumption in the
microgrid, and the negative sign indicates power flowing into the main grid. Table 1 lists
the three-stage electricity rates of Taipower in USD. This study aims to minimize the costs
of fuel generators and electricity bills to ensure profitability for microgrid operators while
providing additional support to the main grid. The mathematical formulations used to
solve this problem are presented below.

Table 1. Three-stage electricity cost of Taipower.

Plan USD/kWh Time

On-Peak USD 0.207 13:00~17:00 18:00~20:00
Half On-Peak USD 0.207 7:00~13:00 17:00~18:00 20:00~22:00

Off-Peak USD 0.06 0:00~7:00 22:00~24:00
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Figure 1. Single-line diagram of Cimei Island power system.

2.1. Conventional Power Generator

The microgrid system model, shown in Figure 1, involves the control of the total
cumulative power consumption and the peak power to minimize the expenses incurred
from fuel generators and electricity bills. The model encompasses a comprehensive repre-
sentation of the DESs, the BESS, main grid, and power balance, along with their respective
physical properties and technical constraints. Detailed descriptions of the model are
presented below.

2.1.1. Diesel Generator

To take into account technical constraints, the power output of the diesel generator at
each time slot, t, is represented as PDG

t and formulated as follows:

PDG
min ≤ PDG

t ≤ PDG
max (1)

The minimum and maximum power limits of the diesel generator are denoted as
PDG

min and PDG
max, respectively. To calculate the generation cost of the diesel generator, a

conventional quadratic cost function is used as follows:

CDG
t =

[
ad ·

(
PDG

t )2 + bd · PDG
t + cd

]
∆t (2)

where ∆t is the duration of a time slot; ad, bd and cd are positive coefficients.

2.1.2. Gas Turbine Generator

The power output of the gas turbine generator at each time slot, t, is represented as
PGT

t and formulated as follows:

PGT
min ≤ PGT

t ≤ PGT
max (3)
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where the minimum and maximum power limits of the gas turbine generator are denoted
as PGT

min and PGT
max, respectively. To calculate the generation cost of the gas turbine generator,

a conventional quadratic cost function is used as follows:

CGT
t =

[
ag ·

(
PGT

t )2 + bg · PGT
t + cg

]
∆t (4)

where ∆t is the duration of a time slot; ag, bg and cg are positive coefficients.

2.2. Renewable Power Generator and Loads

The power generation curves of PV and WTG systems are shown in Figure 2, and
they are downsized proportionally to meet the capacity of the systems in this study. These
curves are based on the daily average solar and wind power production curves provided by
Taipower for the Taiwan area. Moreover, the hourly power output of PV and WTG systems
varies according to the corresponding values shown in Figure 2. Let PPV

t and PWTG
t denote

the power production of PV and WTG systems, respectively. The load connected to the
microgrid varies according to the predicted value of the LSTM load forecasting model and
is denoted by Pd

t . The net load of the microgrid at time slot t is defined by Equation (5):

Pnet
t = Pd

t − PPV
t − PWTG

t (5)
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2.3. BESS

To control the charging or discharging of the BESS in each time slot, t, the power
output is denoted by Pb

t , with negative values indicate charging and positive values
indicate discharging. The power output is constrained by Equation (6) to prevent over
charging or discharging.

−Pb,ch
max ≤ Pb

t ≤ Pb,dis
max (6)

where Pb,dis
max is the maximum discharging power and Pb,ch

max represents the maximum charging
power. Moreover, the BESS has a state of charge (SOC) denoted as Sb

t , which follows a
certain dynamic behavior described by the following:

Sb
t = Sb

t−1 − Pb
t · ∆t/Eb (7)

where Eb is the capacity of BESS. Additionally, to ensure safe operation, it is important to
maintain the SOC of the BESS within a secure range via the following:

Sb
min ≤ Sb

t ≤ Sb
max (8)
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where, to prevent over-discharging or over-charging, the lower and upper limits of SOC of
the BESS are denoted as Sb

min and, respectively, and they represent the acceptable minimum
and maximum SOC values.

2.4. Electricity Trade and Power Balance
2.4.1. Purchase/Sell Electricity from/to Main Grid

The microgrid in this research has the option to purchase electricity from or sell
electricity to the main grid through a contract with the utility. The real-time purchasing
price at time slot t is denoted as ρt in the formulation, while the selling price is represented
as β. As a result, the microgrid’s transaction cost can be expressed as Equation (9):

CGrid
t =

 ρtP
Grid
t · ∆t , PGrid

t ≥ 0

−β
∣∣∣PGrid

t

∣∣∣ · ∆t , PGrid
t < 0

(9)

The power flow between the main grid and microgrid is denoted by PGrid
t . The cost

of purchasing electricity from the main grid is represented by CGrid
t = ρtP

Grid
t · ∆t, and the

cost of selling electricity to the main grid is denoted by CGrid
t = −β

∣∣∣PGrid
t

∣∣∣ · ∆t. At each

time slot, t, the microgrid can either purchase or sell electricity. Therefore, PGrid
t is subject

to the following constraints:
−PGrid

max ≤ PGrid
t ≤ PGrid

max (10)

The maximum power that the microgrid can handle at the point of common coupling
(PCC) is denoted as PGrid

max .

2.4.2. Ancillary Services

To maintain the operation of the main grid during power shortages, the microgrid
can offer ancillary services such as a demand response, which can be purchased by the
main grid at a price denoted by α. Moreover, the aggregator can be found in Figure 1. The
payment for the transaction can be expressed as follows:

CAS
t = αPDLs

t · ∆t (11)

The aggregate power consumed by the dispatchable loads within the microgrid is
denoted as PDLs

t .

2.4.3. Power Balance

To ensure the reliable and secure operation of the microgrid system, it is crucial to
schedule sufficient power generation to meet the demand. An energy management strategy
is employed for the coordinated control of the generating units to maintain the power
balance. In this study, as the main objective is to optimize the energy management of a
grid-connected microgrid, the power generation dispatch at each time slot must satisfy the
following power balance constraint:

PDG
t + PGT

t + PGrid
t + Pb

t = Pnet
t − PDLs

t (12)

Equation (12) represents the power balance constraint, where the left-hand side repre-
sents the total power supplied by the generating units and the right-hand side represents
the total power consumed by the loads. It is necessary to ensure that the power balance
constraint is always satisfied.

In order to verify the performance of the proposed method for optimal EPD and
power generation using the HIL mechanism, the active/reactive power control structure
of the BESS proposed in [32] is adopted, and the controllers of the BESS are modeled in
the DSP board control system. Additionally, since synchronous generators are typically
used in diesel generator and gas turbine generator systems, the active/reactive power
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control structures of these systems are designed using virtual synchronous generators with
inertia [33,34]. The controllers of the diesel generator and gas turbine generator systems
are modeled in OP4510.

3. Proposed Methodology
3.1. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is the combination of deep learning (DL) and
reinforcement learning (RL) approaches. DL, which consists of a deep neural network
divided into three parts, input, hidden and output layers, is able to perform learning in a
complex and comprehensive data environment. RL includes the agent, environment, action
and reward. The agent explores the environmental state, takes action under the dynamic
environment, and looks forward to maximizing the reward.

The DQN, one of the DRL algorithms, can provide a stable solution to deep value-
based RL. It has three main components, replay buffer, Q-network and target network as
shown in Figure 3. The DQN employs experience replay, a technique that stores past expe-
riences of the agent in a replay buffer and randomly samples batches of these experiences
to update the Q-network. Moreover, the Q-network and target network comprise three
main components: input, hidden and output layers. The input layer receives the state of
the environment, which is usually represented as a set of features or raw sensory data. The
hidden layer uses nonlinear functions as the activation function to transform the input
into a high-level representation that captures the relevant information for decision-making.
Finally, the output layer computes the Q-values for each action in the action space, which
represents the expected future rewards if that action is taken.

Technologies 2023, 11, x FOR PEER REVIEW 7 of 26 
 

Equation (12) represents the power balance constraint, where the left-hand side rep-

resents the total power supplied by the generating units and the right-hand side repre-

sents the total power consumed by the loads. It is necessary to ensure that the power bal-

ance constraint is always satisfied. 

In order to verify the performance of the proposed method for optimal EPD and 

power generation using the HIL mechanism, the active/reactive power control structure 

of the BESS proposed in [32] is adopted, and the controllers of the BESS are modeled in 

the DSP board control system. Additionally, since synchronous generators are typically 

used in diesel generator and gas turbine generator systems, the active/reactive power con-

trol structures of these systems are designed using virtual synchronous generators with 

inertia [33,34]. The controllers of the diesel generator and gas turbine generator systems 

are modeled in OP4510. 

3. Proposed Methodology 

3.1. Deep Reinforcement Learning 

Deep reinforcement learning (DRL) is the combination of deep learning (DL) and 

reinforcement learning (RL) approaches. DL, which consists of a deep neural network di-

vided into three parts, input, hidden and output layers, is able to perform learning in a 

complex and comprehensive data environment. RL includes the agent, environment, ac-

tion and reward. The agent explores the environmental state, takes action under the dy-

namic environment, and looks forward to maximizing the reward. 

The DQN, one of the DRL algorithms, can provide a stable solution to deep value-

based RL. It has three main components, replay buffer, Q-network and target network as 

shown in Figure 3. The DQN employs experience replay, a technique that stores past ex-

periences of the agent in a replay buffer and randomly samples batches of these experi-

ences to update the Q-network. Moreover, the Q-network and target network comprise 

three main components: input, hidden and output layers. The input layer receives the 

state of the environment, which is usually represented as a set of features or raw sensory 

data. The hidden layer uses nonlinear functions as the activation function to transform the 

input into a high-level representation that captures the relevant information for decision-

making. Finally, the output layer computes the Q-values for each action in the action space, 

which represents the expected future rewards if that action is taken. 

 

Figure 3. Workflow of DQN algorithm. 

Replay Buffer

System 

Environment Soft update

Update 

Epsilon-greedy

Figure 3. Workflow of DQN algorithm.

3.2. MDP Model

In this section, the EPD operation of a microgrid is formulated as a Markov decision
process (MDP). Firstly, the agent observes the state, st, of the environment, and then it
selects and takes an action, at, which is based on the observed state. After that, the agent
receives a reward, rt, from environment and observes a new state, st+1, of the environment.
The MDP model of EPD operation is defined by the tuple {S, A, T, R}, and the elements for
the MDP model are defined in the following.

• System sate

The system state, st ∈ S, of the microgrid at time step t is denoted as st = (Pd
t ,

Sb
t , PPV

t , PWTG
t , ρt) including the total load demand of the microgrid, Pd

t , the SOC of BESS,
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Sb
t , the power output of PV, PPV

t , the power output of wind turbine, PWTG
t , and the present

electricity price, ρt.

• Action

at ∈ A denotes the action at time step t and is taken by the agent under the current
system state. It is described as at = (PGT

t , PDG
t , Pb

t ) including the output power of the
gas turbine generator, PGT

t , the output power of the diesel generator, PDG
t and the BESS

charging or discharging power, Pb
t .

• Transition probability

The transition function, probt, denotes the transition probability from the system state,
st−1, to state st under the action at−1 as Equation (13):

probt : st−1 × at−1 → st (13)

As the above distribution is determined, the state transition is determined by system state
st−1 and action at−1.

• Reward function

The reward function, rt, is the negative equivalent of the microgrid operational cost at
time step t. It consists of three parts: (1) CDG

t defined in (2), which is the operational cost
of the diesel generator at time step t, (2) CGT

t defined in (4), which is the operational cost
of gas turbine generator at time step t, and (3) the electricity cost from power grid CGrid

t
defined in (9). Thus, the reward function can be defined as Equation (14):

rt = −
(

CDG
t + CGT

t +CGrid
t

)
× 0.01 (14)

In order to ensure the safety of the microgrid system, the power utility operator should
guarantee enough power to supply the demand, so the power supplied from power grid,
which is calculated as CGrid

t , shall satisfy the power balance defined in (5).

3.3. Proposed DDPG with LSTM Method

A LSTM network is utilized to forecast the load demand information of the proposed
microgrid model. It will be treated as one of the system state variables in the MDP model.
Then, the DRL algorithm DDPG, which follows the MDP model to come out from the
optimal power dispatch of power grid, is applied.

3.3.1. LSTM Network

The LSTM network architecture consists of one or several memory cells, with each
cell comprising three main gates: the forget gate, the input gate, and the output gate. Each
gate performs a specific function within the LSTM network [35]. In the LSTM network, the
first step, forget gate ft, is to decide whether the information coming from the previous
timestamp should be kept or forgotten as the definition in Equation (15):

ft = σ
(

W f ·[ ht−1 , xt] + b f

)
(15)

where σ is the activation function; xt is the input information at time step t; ht−1 is the
information coming from the previous time step, t − 1; W f and b f represent the weight and
bias of the forget gate. A sigmoid function is adopted as the activation function that will
make ft a number between 0 and 1, and the previous information, Ct−1, will be forgotten if
ft = 0. In the next step, the input gate is used to decide the new information to be stored in
the cell state. The equation of the input gate, it, at time step t is defined in Equation (16):

it = σ(Wi·[ ht−1 , xt] + bi ) (16)
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where Wi and bi represent the weight and bias of the input gate. A sigmoid function is
also adopted as the activation function of the input gate, which will let the value of it be
between 0 and 1. At the same time, an activation function, tanh, will be applied to new
information as Ĉt denotes in Equation (17), so that the new information will be a value
between −1 and 1. However, the new information will not be memorized directly in the
cell state, and it will be calculated and updated to the cell state as the equation defined in
Equation (18).

Ĉt = tanh(WC·[ ht−1 , xt] + bC ) (17)

Ct = ft·Ct−1 + it·Ĉt (18)

As the last step, the output gate is used to decide what would be the output. Also, the
equation of the output gate, ot, at time state t is defined in Equation (19):

ot = σ(Wo·[ ht−1 , xt] + bo ) (19)

where Wo and bo represent the weight and bias of the output gate. Again, a sigmoid
function as an activation function is adopted in the output gate. The cell state, Ct, using the
tanh function and being multiplied by the output gate, ot, is the output information, ht, as
defined in Equation (20):

ht = ot·tanh(Ct) (20)

Following the configuration in the LSTM network and using a single-layer memory
cell with a mean squared error (MSE) loss function, the whole year hourly training data
as the input information is denoted as xt = (Dt, Pd

t ), where Pd
t is the load demand of the

microgrid in Cimei Island at timestamp Dt. The result of one particular day of forecast
performance is shown in Figure 4, and the average deviation is less than 5%.
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3.3.2. Procedure of DDPG with LSTM Method

The proposed DDPG with LSTM method for the power dispatch optimization of the
microgrid will be described in detail as follows with the workflow shown in Figure 5. The
DDPG is an actor–critic, model-free algorithm which operates over continuous action spaces
to learn a Q-function and uses the Q-function to learn the policy. It includes four neural
networks, the evaluated actor µ(s|θµ) with θµ weights, the evaluated critic Q

(
s, a
∣∣θQ) with
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θQ weights, the target actor µ
(

s
∣∣∣θµ′

)
with θµ′ weights and the target critic Q

(
s, a
∣∣∣θQ′

)
with θQ′ weights. The weights of the evaluated actor, θµ, and evaluated critic network,
θQ, are randomly initialized and the weights of the target network are set as θQ′= θQ and
θµ′= θµ. Moreover, an additional experience replay buffer, B, which stores the past transition
tuple (st , at , rt , st+1), is used and cleared at the beginning. At the first of each episode,
E = {1, 2, 3 . . . M}, and the normal distributed noise, Nt(0, 1), is initialized and obtains
the initial observation state s1. Following each time step, t = {1, 2, 3 . . . T}, of the episode,
the evaluated actor selects and executes an action, at = µ(st|θµ), with exploration noise,
Nt(0, 1). Then, it observes a reward, rt, and new state, st+1, from the system environment
of the microgrid with the load demand forecast from the LSTM network. This transition
(st , at , rt , st+1) will be stored in the experience replay buffer, B. In the next step, a
minibatch of size N is sampled from the experience replay buffer, and the evaluated critic
network calculates the estimation Q-value, Q

(
si, ai

∣∣θQ), with the input information, (si , ai ),

and the target actor network chooses a target action, ai+1 = µ
(

si+1

∣∣∣θµ′
)

. After that, target
action ai+1 and state si+1 are treated as the inputs of the target critic network. By adding
the discounted target Q-value, which comes from the target critic network to the immediate
reward, ri, the target critic network will come out the moving target, yi, that the evaluated
critic tries to achieve. In addition, yi is denoted as Equation (21):

yi = ri + γQ′
(

si+1, µ′
(

si+1

∣∣∣θµ′
)∣∣∣θQ′

)
(21)
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Then, the loss function, L, based on temporal difference error computation is defined
in Equation (22):

L =
1
N ∑i

(
yi −Q

(
si, ai

∣∣∣θQ
))2

(22)

It is used to minimize the loss and update the weights of the evaluated critic network.
Also, the policy gradient for updating the evaluated actor network can be calculated using
Equation (23):

∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a
∣∣∣θQ
)
|s=si ,a=µ(si)

∇θµ µ(s|θµ)|si (23)

The weights of the evaluated critic and actor networks are updated sequentially as
defined in Equation (24):
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{
θQ ← θQ + γQ∇θQ L
θµ ← θµ + γµ∇θµ J

(24)

where γQ and γµ represent the learning rates for the gradient descent algorithm. In the last
step, the target critic network and target actor network are also updated sequentially and
softly at each episode defined in Equation (25):{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ (25)

where τ is a tiny gain value for the weight replacement between 0 and 1 that is based on
the running average method, and the state machine will keep on going until the time step
equal to T and then return to the first step when starting the next episode. The following
Algorithm 1 are the pseudo codes of the training process for the proposed DDPG with
LSTM method.

Algorithm 1: Proposed DDPG with LSTM method

1. Initialize and train the LSTM network with xt = (Dt, Pd
t ).

2. Randomly initialize evaluated actor network, µ(s|θµ), and critic network, Q
(
s, a
∣∣θQ), with

weights θµ and θQ.
3. Initialize target actor and critic network θµ′ and θQ′ with weights θQ′ ← θQ and θµ′ ← θµ .
4. Initialize experience replay buffer, B.
5. For episode E = 1 to M, carry out the following.
6. Initialize the Gaussian exploration noise, Nt(0, 1).
7. Receive the initial observation state s1.
8. For time step t = 1 to T, carry out the following:
9. Select action at = µ(st|θµ) with Nt for the exploration noise.
10. Execute action at in the system environment with the load demand forecast

from the LSTM network and observe reward rt and new state st+1.
11. Store transition (st , at , rt , st+1) into experience replay buffer B.
12. Sample a random minibatch of the size N transition, (si , ai , ri , si+1), from

experience replay buffer B.

13. Set yi = ri + γQ′
(

si+1, µ′
(

si+1

∣∣∣θµ′
)∣∣∣θQ′

)
14. Update the evaluated critic network by minimizing the loss, L, as follows:

L = 1
N ∑i

(
yi −Q

(
si, ai

∣∣θQ))2

θQ ← θQ + γQ∇θQ L
15. Update the evaluated actor policy using the sampled policy gradient:

∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a
∣∣θQ)|s=si ,a=µ(si)∇θµ µ(s|θµ)|si

θµ ← θµ + γµ∇θµ J
16. Softly update the target actor and critic network with the update rate, τ, as follows:{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

17. End for.
18. End for.

To improve the understanding of the proposed DDPG with LSTM method, the flowchart
of the kernel of the DDPG algorithm is shown in Figure 6. Moreover, Figure 7 shows the
training process of the DDPG with LSTM method for the EPD of the Cimei Island power
system. The maximum value of episode E is set to be 20,000 and one can see the trend of
the average reward reaching convergence.
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based on these input data, which are then 

passed to the critic networks.

Updating target networks

Use running average method to update 

target networks.

 
 𝜃𝑄

′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

 𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′

where 𝜏 is a tiny gain value for the weight 

replacement between 0 and 1.

End

Computing

The target action, denoted as 𝜇′ 𝑠𝑖+1 𝜃
𝜇′ , and state, denoted as 𝑠𝑖+1, 

are considered as inputs to the target critic network. By combining the 

discounted target Q value 𝛾𝑄′ 𝑠𝑖+1, 𝜇
′ 𝑠𝑖+1 𝜃

𝜇′ 𝜃𝑄
′

, obtained from 

the target critic network, with the immediate reward 𝑟𝑖, the target critic 

network produces the moving target 𝑦𝑖.

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′ 𝑠𝑖+1, 𝜇
′ 𝑠𝑖+1 𝜃

𝜇′ 𝜃𝑄
′

The loss function 𝐿 is denoted as:

𝐿 =
1

𝑁
∑ 𝑦𝑖 − 𝑄 𝑠𝑖 , 𝑎𝑖 𝜃

𝑄 2

𝑖
 

The sampled policy gradient ∇𝜃𝜇 𝐽 is denoted as:

∇𝜃𝜇 𝐽 ≈
1

𝑁
∑∇𝑎𝑄 𝑠, 𝑎 𝜃𝑄 |𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇 𝑠 𝜃𝜇 |𝑠𝑖
𝑖

Updating evaluation networks

Use gradient descent algorithm with the 

learning rate 𝛾𝑄 and 𝛾𝜇 to update the 

evaluation networks

 
 𝜃𝑄 ← 𝜃𝑄 + 𝛾𝑄∇𝜃𝑄𝐿

 𝜃𝜇 ← 𝜃𝜇 + 𝛾𝜇∇𝜃𝜇𝐽
Storing experience

Store transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1  in the 

experience replay buffer 𝐵
for training purpose.

𝑡 = 𝑡 + 1
Check if  𝑡 = 𝑇 ?

Yes

No

𝑡 = 1

Figure 7. Training process of DDPG with LSTM method.
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4. Benchmarking

In this study, the proposed method is compared with the experience-based EMS,
Newton-PSO, and DQN methods in terms of optimization performance. Additionally, to
use the experience-based EMS and Newton-PSO method, reasonable assumptions must
be made about the stochastic and uncertain conditions in the microgrid. Therefore, the
power output of the BESS needs to be scheduled and processed as shown in the flowchart
in Figure 8 and is described as below.
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• Set the initial values

Import the purchasing price of the main grid, and the SOC of the last hour with
Sb

t=0 = 30% at hour 0; the average purchasing price is denoted as Equation (26)

ρavg = ∑T
t=0

ρt

T
(26)

where T is the total duration of the economic dispatch operation. The objective of this study
is to minimize the overall fuel cost within one day, so T is set to 24.

• Check the purchasing price of the main grid. Check if the purchasing price of the main
grid is cheaper than the average purchasing price.

• Make the decision. If the purchasing price of the main grid is cheaper than the average
purchasing price, the BESS will charge at 100 kW; otherwise, the BESS will discharge
at 100 kW. Check the SOC and decide the power output of the BESS.

• The SOC of the BESS is set to be 10%
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100%. If the SOC is not within the range
of the constraint conditions, the BESS does not charge or discharge; otherwise, the
BESS follows the decision to charge or discharge. Moreover, the SOC of the BESS will
carry on over to the next hour and proceed to the next optimization calculation.

4.1. Experience-Based EMS

The experience-based EMS is designed based on the power company expert who in
charge of the power dispatch process. Its flowchart is shown in Figure 9 and described
as follows.

• Set the initial values. Import the predictive load of the microgrid, the value of PV, the
value of WTG, and the power output of the BESS.

• Check the purchasing price of main grid. Examine the purchasing price of main grid,
and then calculate the fuel cost of the diesel generator and that of the gas turbine
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generator separately. Check if the buying price of the main grid is between the fuel
cost of the diesel generator and that of the gas turbine generator.

• Make the decision. If the buying price of the main grid is between the fuel cost of the
diesel generator and that of the gas turbine generator or the buying price of the main
grid is the most expensive, then the output powers will be shared by the gas turbine
and diesel generators; otherwise, the main grid will predominantly supply the load of
the microgrid.

• Output the power of generator. The results of the EMS consist of the power commands
of the diesel generator, gas turbine generator and the BESS and then are sent to the
individual control blocks.
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4.2. Newton-PSO

The Newton–Raphson method has been a standard solution algorithm to use for the
power flow problem for decades. Newton’s method is a useful solution algorithm but has
the disadvantage of slow convergence if it is not near the solution. Moreover, PSO is a
population stochastic global optimizer, in which several particles form a swarm that evolve
or fly throughout the problem hyperspace to search for an optimal or near-optimal solu-
tion. Many studies on Newton–Raphson-based power flow programs combined with PSO,
i.e., Newton-PSO, have been proven to be effective in economic power dispatch [36,37].
Figure 10 explains the implementation of the Newton-PSO method. Initially, a swarm of
random particles is created, and random positions of generator voltages are assigned to
them; then, the best position is stored when they move through the search space. The
best-fit particle of the minimum operation cost, F, shown in Equation (27) is tracked by
the algorithm, and the position of each particle is affected by that of the best-fit particle
in the entire swam. Information regarding the best solution is shared throughout the
swarm by updating the position and velocity. Furthermore, the loop is ended when the
predefined voltage error is met, or the maximum iterations are obtained. A series of exper-
iments are conducted to properly tune the Newton-PSO parameters to suit the targeted
optimal economic dispatch problem, which considers the fuel cost and electricity billing as
an objective.
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min : F = CDG
t + CGT

t + CGrid
t − CAS

t (27)
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4.3. DQN

The classic DQN method is a value based DRL algorithm that has shown remarkable
performance in various domains. The DQN algorithm architecture is shown in Figure 3.
It employs experience replay, target network, and epsilon-greedy exploration to enhance
learning stability and efficiency. It is an extension of the Q-learning algorithm that uses a
Q-network, which is a deep neural network with weight parameters, ϕ, as an approximator
for the action value function, Qπ(s, a), as shown by Equation (28):

Q(s, a|ϕ) ≈ Qπ(s, a) (28)

Based on the Bellman equation, the expression of the Q-network model can be repre-
sented as Equation (29):

Q(s, a|ϕ) = Q
(
s, a
∣∣ϕ−)+ α[r + γmax

a∗
Q∗(s∗, a∗|ϕ∗)−Q

(
s, a
∣∣ϕ−)] (29)

where s∗ and a∗ are the training state and the action to be performed at the next time step; r
is the reward received by the agent during the training process at each step; α is the learning
rate of the Q network; γ is the discount factor. The target network is a separate neural
network that is periodically updated to provide stable targets for the Q-value function as
in Equation (30):

y = r + γmax
a∗

Q∗(s∗, a∗|ϕ∗) (30)

The Q-value targets are computed using the target network and subsequently define
the objective function using the mean square error as the loss function of the neural network
as in Equation (31):

L(ϕ)= E[(y−Q(s, a|ϕ)) 2
]

(31)

which has its weights fixed for a certain number of iterations, and then is updated using
the soft update technique as in Equation (32):
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cϕ + (1− c)ϕ∗ → ϕ∗, c ∈ (0, 1) (32)

where c is the soft update rate between 0 and 1; ϕ∗ is the weights of target network.

4.4. Performance Comparison

In this study, three different scenarios, Case A, Case B, and Case C, are designed
to compare the impact of the experience-based EMS, Newton-PSO, DQN, and the pro-
posed DDPG with LSTM methods on the optimization performance of a microgrid. The
coefficients of the cost functions shown in Equations (2) and (4) and the minimum and
maximum values of the generators are shown in Table 2. The values of different limits and
coefficients in Table 2 are selected based on the nominal specifications of gas turbines and
diesel generators with a similar capacity to that of Taipower generators.

Table 2. Coefficients of fuel cost and power limits of generators in microgrid.

Generator Pmin Pmax a b c

Gas turbine 60 kW 1250 kW 0.4969 0.0116 0.0001987
Diesel 50 kW 1250 kW 18.3333 0.10157 0.000000661

The load variation throughout the day, as depicted in Figure 4, is obtained from a
well-trained LSTM load prediction model. The hourly solar and wind power generation
curves shown in Figure 2 are utilized as the values for the PV and WTG system’s output
powers. To quantify the outcomes, both the experience-based EMS and Newton-PSO meth-
ods employ the same SOC policy for charging and discharging the BESS as illustrated in
Figure 8. For the quantification process, a particle count of 40 is set, and 5 independent runs
are executed with a maximum of 100 iterations for each parameter variation. Moreover,
the velocity settings shown in Figure 10, including the inertia weight and two accelera-
tion constants, are set to −0.1618, 1.8903, and 2.1225, respectively. These parameters are
determined through trial and error, considering the requirements of optimal performance
and reasonable convergence speed within a maximum of 100 iterations. Furthermore, in
the DQN method, the network consists of 2 fully connected hidden layers with 256 and
256 rectified linear unit (ReLU) neurons, respectively. The output layer is also a fully
connected layer with 75 linear neurons. In addition, Case A and Case B represent the
operation of the Cimei Island microgrid without selling electricity to the main grid and
with the sale of electricity to the main grid, respectively. Case C is designed for a scenario
in which the microgrid experiences sudden fuel shortage, requiring the gas turbine and
diesel generator in the microgrid to operate at a minimum load of 60 kW and 50 kW,
respectively, from 18:00 to 07:00. Additionally, the microgrid is obligated to participate in a
load-shedding assistance program of 136.61 kW from 20:00 to 22:00 and transfer the load to
the gas turbine and diesel generator units upon receiving the assistance instruction from
the power company.

Figures 11–13 represent the comparison of optimization results using the experience-
based EMS, Newton-PSO, DQN, and DDPG with LSTM methods under three different
scenarios: Case A, Case B, and Case C. Owing to the multiple particle optimization of the
Newton-PSO method and the end-to-end learning capabilities of the DQN method, the
total cost is well-reduced compare to that of the experience-based EMS method. Moreover,
the degree of convergence of the DDPG with the LSTM method is more stable than that
of the DQN method in continuous action space. Thus, the DDPG with LSTM method has
the lowest average cost compared to that of the other methods. Furthermore, the results
of optimization based on the DDPG with LSTM method are shown in Tables 3–5. Table 3
presents the results for Case A, where the utility company implements a peak-shaving
strategy with three different electricity prices. The main grid purchases electricity at a
lower price than the average price from 22:00 to 07:00, while during the high or semi-high
peak periods from 07:00 to 22:00, the main grid purchases electricity at a higher price than
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the average. In addition, Table 4 displays the outcomes for Case B, where the microgrid,
based on the generation plan from Case A, fulfills its contractual obligation with the utility
company by selling 500 kW of electricity to the main grid from 13:00 to 17:00 at an agreed
price of 0.149 USD/kWh. In Case C, as illustrated in Table 5, a simulation is conducted
to represent a sudden fuel shortage in the microgrid. During this period, the gas turbine
and diesel generators operate at the minimum power output from 18:00 to 07:00 on the
next day to conserve the fuel inventory. The microgrid purchases electricity from the main
grid to supply the load. Additionally, the microgrid operator receives a notification to
implement an auxiliary service plan, reducing the load by 136.61 kW from 20:00 to 22:00
at an agreed price of 0.237 USD/kWh. The load is then transferred to the gas turbine and
diesel generators without any power outage.
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Table 3. Optimization results of DDPG with LSTM method in Case A.

Time (hr) 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

Cost
(USD/hr) 70.88 75.06 76.42 74.79 74.98 74.98 74.55 74.85 66.05 54.37 49.26 50.1 49.62 50.13 54.48 63.03 74.6 88.52 95.23 100.85 106.67 106.75 75.63 70.98

GT
Generation

(kW)
60 61.6 60.45 113.2 107.1 81.2 62.76 202.75 224.98 256.88 247.12 244.03 252.89 171.9 195.83 206.64 215.53 205.09 199.69 229.16 232.76 307.54 64.64 115.36

DG
Generation

(kW)
50 50 50 50.02 50.02 50.01 50.01 446.66 339.49 191.24 151.79 163.31 149.06 230.35 253.22 327.33 432.39 578.3 648.66 675.7 728.84 639.13 50 50.02

PV
Prediction

(kW)
0 0 0 0 0 0 8.93 49.2 131.94 216.9 268.33 279.7 284 277.32 257.2 210.23 149.82 73.79 11.18 0 0 0 0 0

Grid
(kW) 759.38 827.98 851.38 783.64 792.46 813.56 818.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.87 835.67 718.08

WTG
Generation

(kW)
149.12 141.27 133.42 146.04 145.19 149.12 156.96 164.81 168.74 172.66 168.74 164.81 166.78 164.81 168.74 160.89 156.96 149.12 153.04 141.27 133.42 137.34 139.31 141.27

BESS
Generation

(kW)
−99.9 −91.58 −98.18 −99.45 −99.69 −99.88 −99.97 98.61 82.83 77.8 74.42 65.42 47.42 46.76 35.43 53.43 59.62 78.9 99.7 68.31 −0.01 −0.04 0.04 −1.13

Electricity
Price

(USD/hr)
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.133 0.133 0.133 0.133 0.133 0.133 0.207 0.207 0.207 0.207 0.133 0.207 0.207 0.133 0.133 0.06 0.06

SOC(%) 39.99% 49.15% 58.97% 68.91% 78.88% 88.87% 98.87% 89% 80.72% 72.94% 65.5% 58.96% 54.22% 49.54% 46% 40.65% 34.69% 26.8% 16.83% 10% 10% 10.01% 10% 10.11%

Load
Prediction

(kW)
918.6 989.27 997.07 993.45 995.08 994.01 997.43 962.03 947.98 915.48 910.4 917.27 900.15 891.14 910.42 958.52 1014.32 1085.2 1112.27 1114.44 1095.01 1086.84 1089.66 1023.6

Table 4. Optimization results of DDPG with LSTM method in Case B.

Time (hr) 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

Cost
(USD/hr) 70.88 75.38 75.9 75.53 75.66 75.38 74.57 83.83 64.36 51.97 46.89 46.85 44.67 20.63 24.27 34.81 48.36 96.53 105.28 107.88 106.75 105.44 76.16 72.22

GT
Generation

(kW)
60.01 68.98 97.3 61.47 62.24 61.37 61.71 258.4 241.33 212.63 187.19 186.46 175.19 225.89 232.71 229.32 239.94 242.81 231.65 241.26 209.01 221.13 67.41 99.58

DG
Generation

(kW)
50 50 50 50 50 50 50 478.33 306.15 213.29 186.14 186.3 174.18 623.12 651.77 758.08 879.22 619.48 716.4 731.91 752.62 728.37 50.07 50.1
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Table 4. Cont.

Time (hr) 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

PV
Prediction

(kW)
0 0 0 0 0 0 8.93 49.2 131.94 216.9 268.33 279.7 284 277.32 257.2 210.23 149.82 73.79 11.18 0 0 0 0 0

Grid
(kW) 759.38 828.71 816.28 835.91 837.64 833.52 819.83 0 0 0 0 0 0 −500 −500 −500 −500 0 0 0 0 0 842.63 752.88

WTG
Generation

(kW)
149.12 141.27 133.42 146.04 145.19 149.12 156.96 164.81 168.74 172.66 168.74 164.81 166.78 164.81 168.74 160.89 156.96 149.12 153.04 141.27 133.42 137.34 139.31 141.27

BESS
Generation

(kW)
−99.91 −99.69 −99.93 −99.97 −99.99 −100 −100 11.29 99.82 100 100 100 100 100 100 100 88.38 0 0 0 −0.04 0 −9.76 −20.23

Electricity
Price

(USD/hr)
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.133 0.133 0.133 0.133 0.133 0.133 0.149

(selling)
0.149

(selling)
0.149

(selling)
0.149

(selling) 0.133 0.207 0.207 0.133 0.133 0.06 0.06

SOC(%) 39.99% 49.96% 59.95% 69.95% 79.95% 89.95% 99.95% 98.82% 88.84% 78.84% 68.84% 58.84% 48.84% 38.84% 28.84% 18.84% 10% 10% 10% 10% 10% 10% 10.98% 13%

Load
Prediction

(kW)
918.6 989.27 997.07 993.45 995.08 994.01 997.43 962.03 947.98 915.48 910.4 917.27 900.15 891.14 910.42 958.52 1014.32 1085.2 1112.27 1114.44 1095.01 1086.84 1089.66 1023.6

Table 5. Optimization results of DDPG with LSTM method in Case C.

Time (hr) 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

Cost
(USD/hr) 70.87 75.43 76.54 75.37 75.6 75.37 74.61 79.66 78.71 62.43 53.94 52.98 53.76 46.44 50.49 59.85 71.16 86.77 177.85 183.04 83.54 85.8 75.75 72.53

GT
Generation

(kW)
60 60 60 60 60 60 60 221.83 295.26 242.52 216.31 216.45 220.59 193.71 217.33 249.77 280.61 273.26 60 60 196.6 196.59 60 60

DG
Generation

(kW)
50 50 50 50 50 50 50 475.9 384.33 285.98 229.08 219.55 223.24 176.15 194.29 252.92 328.41 490.08 50 50 50.01 50.02 50 50

PV
Prediction

(kW)
0 0 0 0 0 0 8.93 49.2 131.94 216.9 268.33 279.7 284 277.32 257.2 210.23 149.82 73.79 11.18 0 0 0 0 0

Grid
(kW) 759.13 835.19 853.62 834.09 837.99 834.16 821.44 0 0 0 0 0 0 0 0 0 0 0 738.05 763.17 614.98 631.98 840.43 786.79

WTG
Generation

(kW)
149.12 141.27 133.42 146.04 145.19 149.12 156.96 164.81 168.74 172.66 168.74 164.81 166.78 164.81 168.74 160.89 156.96 149.12 153.04 141.27 133.42 137.34 139.31 141.27
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Table 5. Cont.

Time (hr) 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

BESS
Generation

(kW)
−99.65 −97.19 −99.97 −96.68 −98.1 −99.27 −99.9 50.29 −32.29 −2.58 27.94 36.76 5.54 79.15 72.86 84.71 98.52 98.95 100 100 100 70.91 −0.08 −14.46

Electricity
Price

(USD/hr)
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.133 0.133 0.133 0.133 0.133 0.133 0.207 0.207 0.207 0.207 0.133 0.207 0.207 0.237

(AS)
0.237
(AS) 0.06 0.06

SOC(%) 39.97% 49.68% 59.68% 69.35% 79.16% 89.09% 99.08% 94.05% 97.28% 97.53% 94.74% 91.06% 90.51% 82.6% 75.31% 66.84% 56.99% 47.09% 37.09% 27.09% 17.09% 10% 10.01% 11.45%

Load
Prediction

(kW)
918.6 989.27 997.07 993.45 995.08 994.01 997.43 962.03 947.98 915.48 910.4 917.27 900.15 891.14 910.42 958.52 1014.32 1085.2 1112.27 1114.44 1095.01 1086.84 1089.66 1023.6
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Table 6 is the comparison of the daily total operating costs for the four methods
using the experience-based EMS, Newton-PSO, DQN and DDPG with LSTM. As one can
see, in Table 6, the performance judged according to the daily total cost of the proposed
DDPG with LSTM method is better than that of the experience-based EMS, Newton-PSO
and DQN methods. Though the Newton-PSO and DQN methods can possibly achieve
overall optimization results, the proposed DDPG with LSTM method is still able to find the
best results.

Table 6. Comparison of fuel cost and electricity billings of various methods in Case A, B and C.

Method Experience-Based EMS Newton-PSO DQN DDPG

Cost of Case A (USD) 1830.78 (base) 1770.17 (−3.31%) 1769.75 (−3.33%) 1752.78 (−4.26%)

Cost of Case B (USD) 1791.9 (base) 1692.76 (−5.53%) 1678.69 (−6.32%) 1660.2 (−7.35%)

Cost of Case C (USD) 1973.79 (base) 1941.28 (−1.65%) 1964.38 (−0.48%) 1898.49 (−3.81%)

5. Experimentation
5.1. OPAL-RT Environment and Implementation

Figure 14 depicts the experimental setup of HIL utilized to optimize the energy man-
agement of a microgrid. Testing the performance of a real microgrid system is challenging
due to the complexity of power components and consumer loads. To overcome this, a
real-time simulator is employed as a crucial tool for exploring the power system’s char-
acteristics. In this study, the OPAL-RT real-time high-speed simulator, manufactured by
OPAL-RT Co., Ltd., in Montreal, QC, Canada, is chosen for its excellent integration capabil-
ities with simulation software such as MATLAB and LabVIEW. The proposed method’s
optimal solutions are verified through the HIL mechanism, making it practical for the
Cimei Island microgrid. Moreover, the testing platform consists of various components,
including an oscilloscope, a host computer equipped with an EMS containing different EPD
methods, peripheral circuits, a CANalyst SN65HVD230 CAN bus transceiver communica-
tion module, and a DSP TMS320F28335 control board integrated with the HIL mechanism
built with the OPAL-RT real-time simulator OP4510 and the RT-LAB environment. The
OP4510 simulator features two 16-channel digital-to-analog converter modules (OP5330),
one 16-channel analog-to-digital converter module (OP5340), and one 32-channel digital
signal conditioning module (OP5353). The BESS controller is implemented using the C
language on Texas Instruments TMS320F28335 DSP, and the observed signals are trans-
ferred to the oscilloscope via the serial peripheral interface (SPI). Furthermore, a dedicated
CAN bus transceiver communication module is employed to receive active/reactive power
commands of the BESS from the EMS.

Technologies 2023, 11, x FOR PEER REVIEW 21 of 26 
 

RT Co., Ltd., in Canada, is chosen for its excellent integration capabilities with simulation 

software such as MATLAB and LabVIEW. The proposed method’s optimal solutions are 

verified through the HIL mechanism, making it practical for the Cimei Island microgrid. 

Moreover, the testing platform consists of various components, including an oscilloscope, 

a host computer equipped with an EMS containing different EPD methods, peripheral 

circuits, a CANalyst SN65HVD230 CAN bus transceiver communication module, and a 

DSP TMS320F28335 control board integrated with the HIL mechanism built with the 

OPAL-RT real-time simulator OP4510 and the RT-LAB environment. The OP4510 simu-

lator features two 16-channel digital-to-analog converter modules (OP5330), one 16-chan-

nel analog-to-digital converter module (OP5340), and one 32-channel digital signal condi-

tioning module (OP5353). The BESS controller is implemented using the C language on 

Texas Instruments TMS320F28335 DSP, and the observed signals are transferred to the 

oscilloscope via the serial peripheral interface (SPI). Furthermore, a dedicated CAN bus 

transceiver communication module is employed to receive active/reactive power com-

mands of the BESS from the EMS. 

 

Figure 14. Experimental setup of HIL. 

Figure 15 provides an illustration of the OPAL-RT structure and its peripherals. The 

entire Cimei Island microgrid, with the exception of the BESS controller, is modeled in the 

host system and then transferred to OP4510 through Ethernet communication. In HIL, the 

inverter models are designed by the authors based on specifications [32–34]. The mi-

crogrid components, including the inverters of the BESS and the virtual synchronous gen-

erators of the diesel generator and gas turbine generator, are modeled in the field pro-

grammable gate array (FPGA) of OP4510. On the other hand, the PV, the BESS, WTG 

modules, and the diesel generator and gas turbine generator are modeled in the CPU of 

OP4510. Additionally, the active/reactive power commands for the diesel generator and 

gas turbine generator are transmitted from the EMS in the host system to the OP4510 CPU 

using Ethernet communication as well. The control blocks of the BESS operate with a sam-

pling time of 1 ms, and the PWM switching frequency for the BESS inverter is set at 16 

kHz.  

Figure 14. Experimental setup of HIL.



Technologies 2023, 11, 96 22 of 26

Figure 15 provides an illustration of the OPAL-RT structure and its peripherals. The
entire Cimei Island microgrid, with the exception of the BESS controller, is modeled in
the host system and then transferred to OP4510 through Ethernet communication. In
HIL, the inverter models are designed by the authors based on specifications [32–34]. The
microgrid components, including the inverters of the BESS and the virtual synchronous
generators of the diesel generator and gas turbine generator, are modeled in the field
programmable gate array (FPGA) of OP4510. On the other hand, the PV, the BESS, WTG
modules, and the diesel generator and gas turbine generator are modeled in the CPU of
OP4510. Additionally, the active/reactive power commands for the diesel generator and
gas turbine generator are transmitted from the EMS in the host system to the OP4510 CPU
using Ethernet communication as well. The control blocks of the BESS operate with a
sampling time of 1 ms, and the PWM switching frequency for the BESS inverter is set at
16 kHz.
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5.2. Emulation Result

To minimize fuel costs based on changes in predictive load, PV, and WTG power, this
study designed three cases and used the proposed DDPG with LSTM method to emulate
the optimization results in real time using the HIL system depicted in Figure 14. In Case A,
where no electricity is sold to the main grid, Figure 16a presents the emulated responses
of the predictive load, Pd, PV PPV , and WTG PWTG around 07:00. Moreover, the power
outputs of the gas turbine generator, PGT , and diesel generator, PDG, are illustrated in
Figure 16b, while the power flow in the main grid, PGrid, and the power output of the BESS,
Pb, are depicted in Figure 16c. In Case B, where 500 kW of power is supplied to the main
grid from 13:00 to 17:00, Figure 17a presents the emulated responses of the predictive load,
Pd, PV PPV , and WTG PWTG around 13:00. Furthermore, the power outputs of the gas
turbine generator, PGT , and diesel generator, PDG, are illustrated in Figure 17b, while the
power flow in the main grid, PGrid, and the power output of the BESS, Pb, are depicted in
Figure 17c. In addition, Case C involves a load reduction agreement between the microgrid
and power company, transferring 136.61 kW of the load to the gas turbine and diesel
generator units from 20:00 to 22:00. Figure 18a presents the emulated responses of the
predictive load, Pd, PV PPV , and WTG PWTG around 22:00. The power outputs of the gas
turbine generator, PGT , and diesel generator, PDG, are illustrated in Figure 18b, while the
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power flow in the main grid, PGrid, and the power output of the BESS, Pb, are depicted in
Figure 18c.

Technologies 2023, 11, x FOR PEER REVIEW 23 of 26 
 

 
(a) 

  
(b) (c) 

Figure 16. Emulated responses of DDPG with LSTM at 7 a.m. in Case A. (a) Power command of PV, 

WTG, and predictive load; (b) power outputs of gas turbine and diesel generator; (c) power flow in 

main grid and power output of BESS. 

 

(a) 

  

(b) (c) 

Figure 16. Emulated responses of DDPG with LSTM at 7 a.m. in Case A. (a) Power command of PV,
WTG, and predictive load; (b) power outputs of gas turbine and diesel generator; (c) power flow in
main grid and power output of BESS.

Technologies 2023, 11, x FOR PEER REVIEW 23 of 26 
 

 
(a) 

  
(b) (c) 

Figure 16. Emulated responses of DDPG with LSTM at 7 a.m. in Case A. (a) Power command of PV, 

WTG, and predictive load; (b) power outputs of gas turbine and diesel generator; (c) power flow in 

main grid and power output of BESS. 

 

(a) 

  

(b) (c) 

Figure 17. Emulated responses of DDPG with LSTM at 1 p.m. in Case B. (a) Power command of PV,
WTG, and predictive load; (b) power outputs of gas turbine and diesel generator; (c) power flow in
main grid and power output of BESS.
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Figure 18. Emulated responses of DDPG with LSTM at 10 p.m. in Case C. (a) Power command of PV,
WTG, and predictive load; (b) power outputs of gas turbine and diesel generator; (c) power flow in
main grid and power output of BESS.

6. Conclusions

In this study, a novel DRL algorithm, which is the DDPG algorithm combined with
LSTM, was proposed to obtain the optimal EPD solution for a microgrid. Compared to the
experience-based EMS, Newton-PSO and DQN methods, the proposed DDPG with LSTM
method has a much lower electricity cost and features superior optimization performance.
Moreover, the microgrid built in Cimei Island was investigated to examine the compli-
ance with the requirements of equality and inequality constraints and the performance
of the proposed method. Furthermore, the HIL mechanism was conducted to verify the
effectiveness of the proposed DDPG with LSTM method to prove it to be pragmatic. From
the emulation results, it has been verified that the proposed DDPG with LSTM method
could obtain the best optimal EPD solution owing to its capability to learn the policies
in high-dimensional space, which is very helpful to reduce costs for the operation of the
microgrid. The significant contributions of the proposed DDPG with LSTM method in-
clude (1) the easy adjustment of the mathematical models of a microgrid subjected to the
power balance constraints according to parameter and load variations; (2) the successfully
improved accuracy of load forecasting using LSTM, resulting in more efficient EPD; (3) the
successful development of solving the optimal economic dispatch solution with the ability
to handle the uncertainties and dynamic characteristics of microgrid systems effectively,
making it a promising solution for EPD in real-world microgrid systems; (4) the successful
implementation of the results of optimal economic dispatch and power generation using
the proposed method in a microgrid system built with a HIL real-time simulator to prove
to be pragmatic.
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