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Abstract: To gain a deeper understanding of the hotly contested topic of the non-thermal biological
effects of microwaves, new metrics and methodologies need to be adopted. The direction proposed in
the current work, which includes peak exposure analysis and not just time-averaged analysis, aligns
well with this objective. The proposed methodology is not intended to facilitate a comparison of
the general characteristics between 4G and 5G mobile communication signals. Instead, its purpose
is to provide a means for analyzing specific real-life exposure conditions that may vary based on
multiple parameters. A differentiation based on amplitude-time features of the 4G versus 5G signals
is followed, with the aim of describing the peculiarities of a user’s exposure when he runs four types
of mobile applications on his mobile phone on either of the two mobile networks. To achieve the goals,
we used signal and spectrum analyzers with adequate real-time analysis bandwidths and statistical
descriptions provided by the amplitude probability density (APD) function, the complementary
cumulative distribution function (CCDF), channel power measurements, and recorded spectrogram
databases. We compared the exposimetric descriptors of emissions specific to file download, file
upload, Internet video streaming, and video call usage in both 4G and 5G networks based on the
specific modulation and coding schemes. The highest and lowest electric field strengths measured in
the air at a 10 cm distance from the phone during emissions are indicated. The power distribution
functions with the highest prevalence are highlighted and commented on. Afterwards, the capability
of a convolutional neural network that belongs to the family of single-shot detectors is proven to
recognize and classify the emissions with a very high degree of accuracy, enabling traceability of the
dynamics of human exposure.

Keywords: mobile phone emission; human exposure variability; 5G signals; APD; CCDF; crest factor;
signal classification; YOLO v7

1. Introduction

The past two decades have witnessed an unparalleled surge in the use of mobile
phones, making them an integral part of our daily lives. Alongside this technological
revolution comes increased exposure to electromagnetic fields (EMFs) emitted by mobile
communication technologies [1–3]. This raises concerns regarding the potential health
effects associated with prolonged exposure to radio frequency (RF) and microwave (MW)
radiation emitted by the user’s devices.

The assessment of human exposure to EMFs in the RF and MW ranges involves
various metrics and guidelines established by international organizations [4,5]. These
metrics are designed to protect public health and ensure that exposure levels remain within
safe limits. Above 10 MHz, the effects of EMFs are primarily related to tissue heating
resulting from prolonged exposure, and specific metrics are used to address this thermal
effect [6–8]. Specific Absorption Rate (SAR) is a key metric used to assess the rate at which
RF energy is absorbed by body tissues when exposed to EMFs. Regulatory bodies, such
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as the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the
Federal Communications Commission (FCC), have established SAR limits to protect against
harmful thermal effects. International guidelines, such as those issued by ICNIRP, the World
Health Organization (WHO), and various national regulatory agencies, define exposure
limits for different frequency ranges. These limits set constraints on the maximum allowed
power density or electric field strength to avoid excessive RF exposure and potential health
risks.

While SAR and exposure limits primarily address thermal effects resulting from
prolonged exposure to RF EMF, there is ongoing research into potential non-thermal
effects [9–11]. Non-thermal effects refer to biological responses or health effects that occur
at exposure levels below those causing significant tissue heating. The evidence regarding
non-thermal effects is still a subject of debate and investigation [12,13]. Some studies
suggest possible biological effects at low-level exposures, such as alterations in cellular
activity, gene expression, and oxidative stress. However, the scientific consensus on the
significance and mechanisms of these non-thermal effects is not yet fully established.

As the field of research progresses, exposure guidelines may be adjusted to account for
new scientific findings and further understand the potential effects of RF EMF on human
health [14]. The development of the NextGEM Innovation and Knowledge Hub for EMF
and Health [15] established, starting in 2022, a partnership spanning telecommunication
engineering, cell biology, human studies, and epidemiology, and the gained knowledge
will be integrated into an evidence-based risk assessment for use by different stakeholders.

By examining relevant literature and research about the latest generations of mobile
communication standards, respectively the fourth (4G)—Long Term Evolution (LTE) and
the fifth (5G)—New Radio (NR) generations; we shed light on the unique characteris-
tics of mobile phones’ emissions, their ubiquitous presence, and the need for proactive
measures to minimize exposure risks. Recently, research has been conducted that proves
the prevalence of mobile phone human exposure due to 4G and 5G signals among all
mobile communications exposure sources [16,17]. However, studying the dynamics of 5G
signals emitted by a phone is still scarce and can be worthwhile, as it can provide valuable
information about the characteristics of the signals and their potential biological effects.

It should be mentioned that most of the research has been conducted on base station
emissions in relation to human EMF exposure to 4G and 5G signals. In this regard, measure-
ment procedures have been proposed and refined [18–21], tests and monitoring have been
settled, scenarios have been analyzed [22–24], and much knowledge has been gathered.
Opposite, the user device as a source of EMF exposure has been much less investigated,
mainly in realistic usage conditions, even if multiple studies have been devoted to dosime-
try to compare the specific absorption rate (SAR) of energy deposition in the head/brain to
the regulated safety limits [25,26].

We start our research work with the idea that the time-domain characteristics of
the waveforms emitted by mobile phones in 4G and 5G standards are somewhat differ-
ent [27,28]. The time-structure and time-dynamics of these two standards can differ due to
differences in the modulation and coding schemes (MCS), resource allocation methods, and
frequency ranges used by each standard. MCS used in wireless communication systems
can affect exposure variability to some extent. The variability of exposure refers to the
fluctuations in the intensity or pattern of EMFs to which individuals may be exposed
over time. The choice of modulation scheme can influence the temporal characteristics
of the transmitted signal. For example, some modulation schemes involve transmitting
data in bursts or packets with specific time intervals between them. This can result in
exposure patterns that are characterized by intermittent periods of high intensity followed
by periods of low or no intensity. Similarly, coding schemes can affect the efficiency of data
transmission and the duration of active transmission. More efficient coding schemes may
allow for shorter active transmission times, reducing the overall exposure duration.

Given the limited research specifically focused on the biological effects of MCS in MW
radiation, there is a need for more comprehensive studies to investigate this aspect. As
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the field progresses, new research findings may emerge that provide deeper insights into
the relationship between modulation schemes and potential biological effects. Orthogonal
Frequency-Division Multiplexing (OFDM) and Quadrature Amplitude Modulation (QAM)
are two different techniques used in modern digital communication systems to increase
data throughput and spectral efficiency. OFDM is a method of transmitting digital data over
multiple carrier frequencies that are orthogonal to each other. Each carrier is modulated
with a low data rate stream, and the subcarriers are spaced apart so that they do not
interfere with each other. This allows for more efficient use of the available frequency
spectrum. QAM is a modulation technique that combines amplitude and phase modulation
to transmit digital data over a carrier wave. It works by encoding data into different
amplitude and phase combinations, which are then transmitted as a signal. In modern
digital communication systems, OFDM is often used in conjunction with QAM to further
increase spectral efficiency [29]. QAM is used to modulate each of the subcarriers in the
OFDM system, allowing multiple bits to be transmitted simultaneously. This enables higher
data rates to be achieved without increasing the required bandwidth. The combination of
OFDM and QAM is known as OFDM-QAM, and it is widely used in technologies such as
Wi-Fi, 4G, and 5G mobile networks.

4G signals are typically divided into multiple subcarriers, each of which can carry
data at a different rate, and these subcarriers are grouped into resource blocks that are
dynamically allocated to different users based on their data needs. This allocation is
typically performed at a fixed interval, resulting in a relatively fixed time-structure and
time-dynamics for 4G signals. OFDM divides the signal into multiple subcarriers and
transmits them simultaneously. The subcarriers are modulated with different symbols
and have a relatively long symbol duration. The result is a 4G waveform with a relatively
constant envelope over time.

5G-FR1 signals (<6 GHz) are OFDM modulated, which divides the signal into multiple
narrowband subcarriers that are orthogonal to each other. These subcarriers are grouped
into resource blocks that can be dynamically allocated to different users based on their
data needs. The allocation of these resource blocks can occur more frequently than in 4G,
resulting in a more dynamic time-structure and time-dynamics of 5G-FR1 signals [30]. 5G
uses a waveform technology called Filtered-Orthogonal Frequency Division Multiplexing
(F-OFDM) or Generalized Frequency Division Multiplexing (GFDM). F-OFDM/GFDM is
similar to OFDM but includes a filter that shapes the waveform and introduces a certain
degree of variation in the envelope over time. This results in a waveform that is more
variable in the time-domain compared to 4G waveforms. Additionally, 5G also uses a
technology called Millimeter Wave (mmWave) that operates at much higher frequencies
than 4G, resulting in much shorter wavelengths. This means that the waveforms emitted
by 5G mobile phones at these higher frequencies may have more complex time-domain
characteristics due to the high-frequency components of the signal. Another key difference
between 4G and 5G-FR1 signals is that the latter can use more advanced antenna systems,
such as massive multiple input-multiple output (MIMO), which can result in a more
dynamic time-structure, so the time-dynamics of 5G-FR1 signals are larger than those of
4G signals [31].

Overall, 5G-FR1 signals tend to be more dynamic due to their use of OFDM and
advanced antenna systems; however, the peculiarities can depend on the specific imple-
mentation and network configuration.

5G NR uses several modulation types, including, in the case of the uplink signal:
(a) Quadrature Phase Shift Keying (QPSK); (b) 16-QAM; (c) 64-QAM; and (d) 256-QAM.
The choice of modulation scheme depends on various factors, such as the available band-
width, the signal-to-noise (SNR) ratio, and the distance between the transmitter and the
receiver. 5G NR uses adaptive modulation and coding techniques to dynamically adjust
the modulation and coding scheme based on channel conditions, which helps optimize the
data throughput and improve the overall system performance [32].
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Statistical techniques may be used to quantify differences in the dynamics of 4G versus
5G signals, such as calculating the mean or variance of the signal over time or analyzing
the distribution of the signal power over different time intervals. Moreover, Amplitude
Probability Density (APD) and Complementary Cumulative Distribution Function (CCDF)
analyses might help in understanding the temporal behavior of EMF signals and identifying
specific high-power events that could be relevant for exposure assessment [33,34]. APD
and CCDF will depend on various factors, including deployment scenarios, network
configurations, and measurement conditions. Therefore, conducting a detailed analysis
based on actual measurements in specific scenarios would provide more accurate and
meaningful results. However, it is essential to interpret the findings in conjunction with
comprehensive dosimetric assessments and regulatory guidelines to assess the potential
impact on human exposure and health effects [4,5].

Signals with high peak-to-average power ratios (PAPRs) can produce stronger electric
(E)-fields in certain tissues, potentially leading to higher levels of energy absorption and
increased biological effects [35]. PAPR is a measure of the amplitude variations in a signal,
and it describes how much higher the peak power of a signal is compared to its average
power. Signals with high PAPRs can have sharp peaks and rapid changes in amplitude,
which can lead to the creation of stronger electric fields in certain tissues, such as those
with high conductivity. There, the E-field generated by the signal can be much stronger
than the average power would suggest. This increased E-field strength can potentially lead
to increased energy absorption in these tissues, which can have biological effects [36]. It is
important to note, however, that the potential biological effects of 4G and 5G signals are
still the subject of ongoing research [10,37–40], and the current scientific consensus is that
the levels of exposure from 5G signals are well below the safety limits set by international
organizations.

The modulation technique used to transmit a signal is highlighted in the spectrogram,
where different modulation techniques have different spectral characteristics, which can
be visualized in the time-frequency domain. Therefore, the spectrogram can be used to
identify specific features, which can be recognized by specialized algorithms. In QAM or
OFDM, for example, the spectrogram of the signal shows a complex pattern of spectral lines
and bands, which can be analyzed to extract information about the modulation parameters,
such as the modulation order, the carrier frequency, and the symbol rate.

Using artificial intelligence (AI) in the field of signal recognition and classification
is already represented in the literature [41–44]. Machine learning and its subclass, deep
learning, have been successfully used. Related to EMF exposure, a series of papers have
been published in the last few years [45–49].

You Only Look Once (YOLO) is a deep learning algorithm that falls under the category
of object detection in computer vision [50,51]. It uses a deep (convolutional) neural network
to predict bounding boxes and class labels for multiple objects in a single pass over the
input image. It divides the image into a grid and applies convolutional layers to make
predictions at multiple spatial scales. This approach allows YOLO to detect objects of
different sizes and aspect ratios efficiently. It has been proven that YOLO v7 has the
highest speed and accuracy among all known real-time object detectors [52,53]. Based on
its features, we aimed at its application in our research work to emphasize the differences in
spectrograms of 4G versus 5G signals and, more particularly, for the recognition of different
mobile applications running on the mobile phone. The spectrogram of a 4G signal will
show a series of horizontal lines corresponding to the different subcarriers, with each line
corresponding to a particular frequency band. The spectrogram of a 5G signal will show a
more complex pattern compared to 4G, with the frequency content of the signal changing
more rapidly over time and with many more frequency bands and potentially more rapid
changes in frequency content over time.

The objectives of present work are connected with the study of the dynamics of human
EMF exposure and aim:
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(a) to analyze the amplitude-time variability of the signals emitted by mobile phones in
5G-FR1 versus 4G networks, based on the probability distribution of the amplitude of
the emitted signals, on their tail distribution function (probability that the amplitude
exceeds a given threshold) and on the channel power dynamics;

(b) to analyze the spectrograms of the emissions corresponding to four different mobile
applications running in either 5G-FR1 or 4G standards, with the aim of observing
peculiarities of changes of power or energy content in different frequency bands over
time, and to check the capability of YOLO v7 convolutional neural network algorithm
in recognizing and classifying the emission types.

The results will contribute to a deeper understanding of the role that time-variability
of EMF exposure has on dosimetric quantification and on the biological impact of mobile
communication equipment’s emissions.

2. Materials and Methods

The experimental setup used here for signal acquisition is set to emphasize the capa-
bilities of analyzing the real-life phone’s emissions. In an earlier paper of ours [54], we
applied a controlled assessment of EMF exposure based on monitoring the base station
emissions and specific software monitoring all transmission parameters on the mobile
terminal (by using QualiPoc Android tool and the TSMA6 network scanner, both by Rhode
and Schwarz, Germany). The power emitted by a mobile phone depends on several factors,
including the RSRP Reference Signal Received Power (RSRP) and the Reference Signal
Received Quality (RSRQ). However, the present approach focused on extracting differences
between emissions in a given situation based on real-life mobile usage. Using CCDF statis-
tics, for example, may reveal differences in peak exposure, which may affect mainly the
non-thermal response of biological systems.

2.1. Experimental Set-Up and Field Stregth Estimation

The emitting phones used in the work were: (a) the iphone 14pro (model A 2890,
Apple, Zhengzhou, China)—for 4G emissions; (b) the iphone 13 (model A2633, Apple,
Zhengzhou, China)—for 5G-FR1 emissions. The monitoring of the emitted power levels
was carried out in four situations of phone usage:

• File download
• Internet Video Streaming
• File upload
• Video call

The measurements of the emissions were made by two vector signal analyzers (VSAs),
namely a FSV-3013 spectrum and signal analyzer (both by Rohde&Schwarz) with a real-
time analysis bandwidth of 40 MHz (for 4G measurements) and a FSW signal analyzer
(Rohde&Schwarz) with a real-time analysis bandwidth of 160 MHz (for 5G measurements).

The receiving antenna was an Aaronia Omnilog 30800 (300–8000) MHz (by Aaronia,
Germany) with an omnidirectional azimuthal characteristic, positioned in all cases at 10 cm
from the surface of the phone, and connected to the VSA as shown in Figure 1.

The central frequency of the 4G uplink signal was f1 = 1.75 GHz with a bandwidth
of 20 MHz, while in 5G it was f2 = 3.58 GHz with a bandwidth of 100 MHz. The antenna
factors (AF) of the receiving antenna at both frequencies were available from the provider
and used in calculations.

The momentary E-field strength emitted in the air in front of a mobile phone (in the far
field) depends on several factors, such as the transmitted power, the emitting antenna gain,
the distance from the phone, and the propagation environment. An approximate estimate
can be made based on some assumptions and typical values.

The formula to estimate the E-field strength in air at a distance d from a mobile phone
(in far-field conditions), based on Friis’ equation, is [55]:

E = sqrt((30 × Pt × Gt × Gr)/(d2 × Z)) (1)
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where:
E is the electric field strength in volts per meter (V/m); Pt is the transmit power in

watts; Gt is the antenna gain of the transmitter; Gr is the antenna gain of the receiver; d
is the distance between the transmitter and the measurement point in meters; Z is the
impedance of free space, which is approximately 377 ohms.

Let us assume the following values for the example calculation: Pt = 0.2 W; Gt = Gr =
3 dBi; d = 0.1 m. Using these values, we obtain E ≈ 0.084 V/m.
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This value is still just an estimate and can vary in real-world conditions. Calculating
the exact E-field strength requires complex modeling and simulations that consider factors
such as antenna radiation pattern, multipath propagation, signal losses, and environmental
reflections and absorptions. These calculations are typically performed using specialized
software and equipment. It is important to note that even with detailed information and
precise calculations, the actual E-field strength can still vary due to real-world complexities
and uncertainties.

On the other side, to experimentally express the E-field strength in the air at the
receiving antenna site (imaginary body surface), we can use the following formula:

E = sqrt(P/AF) (2)

where:
E is the E-field strength in volts per meter (V/m); P is the channel power emitted in

watts; AF is the antenna factor in volts per square root of watt (V/
√

W). In the present
case, we expressed the E-field level based on channel power measurements made with the
analyzer.

It is important to note that the accuracy of the estimate depends on the accuracy of
the antenna factor and the assumption that the antenna is well-calibrated and suitable
for the measurement scenario. Additionally, other factors such as distance, propagation
environment, and antenna characteristics can still affect the actual E-field strength in
real-world conditions.

While the emitted signals’ amplitudes are continuously changing, statistical processing
is needed. The time-structure and time-dynamics of 4G and 5G-FR1 signals can differ in
several ways due to differences in the underlying technologies used by each standard.
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2.2. Performing Emitted Signals Statistics

The APD function describes the distribution of amplitude values in a signal. It shows
how frequently a particular amplitude occurs in the signal. CCDF is a statistical metric
used to measure the power distribution of a signal, and it shows the probability that the
mean signal power amplitude will be exceeded in percent. Practically, we will express the
mean power, the peak power, the crest factor (CF)—which is the ratio between the peak
and the mean powers; the 10% probability that the level exceeds the mean power + [x] dB,
the 1% probability, the 0.1% probability, and the 0.01% probability, respectively. In this way,
the largest power level percentages are indicated by CCDF.

The APD function and CCDF have important implications for understanding the
amplitude-time profiling of user exposure in different mobile communication technologies,
especially in terms of RF exposure. The APD function and CCDF help assess exposure
scenarios by considering rare but high-amplitude events that might lead to elevated expo-
sure levels. This information is crucial in ensuring compliance with safety guidelines and
understanding potential health risks.

For APD and CCDF measurements, we used the built-in functions of the real-time
analyzers with the settings indicated in Table 1. After a chosen number of counts, the
average histogram is presented. For each emission type out of the four, we repeated the
measurement five times and expressed the mean of the APD and CCDF curves.

Table 1. The settings of the real-time signal analyzers for the statistical functions APD and CCDF
measurements.

Network/Setting 4G 5G

Analysis bandwidth 40 MHz 120 MHz
Sweep time 2.5 ms 833.3 µs

Detector type sample sample
Number of counts 20 20

Number of samples 100,000 100,000

When a signal has a bandwidth larger than the analysis bandwidth of the VSA, the
signal may be under-sampled, which can result in aliasing. Aliasing is a phenomenon where
high-frequency components of a signal are incorrectly represented as lower-frequency
components. This can lead to inaccuracies in the APD measurement and distortion of the
signal. To avoid these issues, it is important to ensure that the analysis bandwidth of the
VSA is sufficient to cover the bandwidth of the signal of interest. This is the reason for
which we used two different VSAs for 4G and 5G signal power statistics to ensure proper
analysis bandwidths: 40 MHz for the 4G signal (of 20 MHz bandwidth) and 160 MHz for
the 5G signal (of 100 MHz bandwidth), respectively.

The findings from analyzing power distribution functions and the prevalence of the
highest power levels contribute to a better understanding of human exposure dynamics
in the following ways: a. RF exposure patterns emphasize the differences in power dis-
tribution functions between 4G and 5G emissions that can lead to variations in the RF
exposure patterns experienced by users. For example, if 5G networks tend to use higher
power levels more frequently for shorter bursts, the exposure dynamics might differ from
4G networks that have more consistent power levels. b. Hotspots and high exposure areas:
identifying the prevalence of the highest power levels helps in locating areas with potential
hotspots of high RF exposure. Understanding these hotspots is crucial for implementing
appropriate mitigation strategies to reduce exposure levels in specific locations. c. Safety
assessments enable detailed knowledge of power distribution and the prevalence of the
highest power levels, which is vital for safety assessments. Regulatory bodies set exposure
limits based on these metrics, and ensuring compliance with these limits is crucial for
protecting public health. d. Network Optimization is possible by understanding how
power is distributed in both 4G and 5G networks, which can guide network optimization
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efforts. By fine-tuning power allocation strategies, network operators can achieve better
coverage, improved efficiency, and potentially lower overall RF exposure levels for users.

2.3. Performing Channel Power Measurements

Channel power measurements have also been performed. The main objective of
this measurement was to express the E-field strength in air, the incident field level on a
hypothetic tissue situated 10 cm from the phone, and its time-variability. In order to make
an accurate assessment, a number of things should be taken into account.

The minimum time at which the channel power changes in a frequency band depends
on several factors, such as the channel bandwidth, the modulation scheme, and the sig-
naling rate. In general, the minimum time at which the channel power changes is equal
to the reciprocal of the symbol rate (SR), which is the symbol duration (SD). For example,
if SR = 1 Msps, SD = 1/106 = 1 µs. However, the actual time at which the channel power
changes may be longer than the SD due to factors such as pulse shaping, filtering, and
guard intervals. These factors are used to minimize the impact of inter-symbol interference
and improve the spectral efficiency of the communication system.

SD can be calculated for each modulation type used, for example, in 5G, based on the SR
and the number of bits per symbol (Bps). Therefore, in QPSK-2 Bps, SD = 1/(2 × SR); in 16-
QAM-4 Bps, SD = 1/(4× SR)); in 64-QAM-6 Bps, SD = 1/(6× SR)); in 256-QAM-8 Bps, SD =
1/(8 × SR). For a SR = 100 kHz, we would have the following symbol durations: (a) QPSK:
SD = 5 µs; (b) 16-QAM: SD = 2.5 µs; (c) 64-QAM: SD = 1.67 µs; (d) 256-QAM: SD = 1.25 µs.
These symbol durations are theoretical and may be longer in practice due to the factors
mentioned above. In 5G, the symbol rate is determined by the specific modulation and
coding scheme (MCS) used in the transmission.

In general, the symbol rate can be calculated as the product of the channel bandwidth
and the number of bits per symbol divided by the coding rate. For example, if the channel
bandwidth is 100 MHz, the modulation scheme is 256-QAM (8 bits per symbol), and the
coding rate is 0.9, the symbol rate would be:

Symbol rate = (100 MHz) × (8 bits per symbol)/0.9 = 888.89 Msps (mega-symbols per second).

If we measure the channel power in 5G with a measurement time longer than the
SD, we can still obtain an accurate result. In fact, in many cases, it is common practice to
measure the channel power over a longer period of time in order to obtain a more accurate
average power value. During a longer measurement period, of the order of milliseconds,
multiple symbols are transmitted, and the channel power should be averaged over these
symbols. It is worth noting that the longer measurement time may also include other factors
that can affect the measured power level, such as fading, interference, and noise. These
factors can cause the measured power level to fluctuate and result in higher measurement
uncertainty. To minimize the effects of these factors, we performed multiple measurements
over a longer period of time and took the average value to obtain a more accurate estimate
of the channel power level. If we had used the “max hold” function, this would have
led to an overestimation of the power level, particularly when the measurement time is
longer than the SD. This is because the “max hold” function only records the highest power
level and does not take into account the fluctuations in the power level that occur over the
measurement period.

Practically, as shown in Table 2, we used RMS power measurement for both 4G and 5G
emissions, with 20 sweeps to provide one average value. We repeated the measurements
five times and indicated at the end the mean channel power along with the standard
deviation (Stdev). Using the AF values and the relation (2), we then calculated the mean
E-field strength in air at 10 cm from the phone +/− Stdev. The settings of the analyzer for
the channel power measurements are presented in Table 2.

One important indicator of exposure level is connected to data rates, as we have shown
in an earlier paper [56]. Higher data rates typically require the use of higher MCS values,
which might impact RF exposure levels. 5Gs ability to provide higher data rates with more
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advanced MCS might result in shorter transmission times and potentially reduced overall
exposure. Understanding exposure patterns is crucial: differences in MCS, frequency bands,
and network densification can lead to variations in user exposure patterns between the
two networks.

Table 2. The settings of the signal analyzers for the channel power measurements.

Network/Setting 4G 5G

Channel bandwidth 25 MHz 110 MHz
Resolution bandwidth 1 MHz 1 MHz

Video bandwidth 10 MHz 10 MHz
Sweep time 1 ms 1 ms

Detector RMS RMS
Mode Auto sweep Auto sweep

Number of counts 20 20
Number of points 1000 1000

Analyzing exposure metrics can help identify areas with potentially higher RF ex-
posure levels, allowing for targeted optimizations or regulatory interventions. Insights
into 5Gs use of beamforming, MIMO, and higher frequency bands can provide a better
understanding of how these technologies affect user exposure compared to traditional 4G
deployments. Comparing exposure metrics against established safety guidelines can ensure
that both 4G and 5G networks adhere to the prescribed limits to protect public health.

2.4. Performing Spectrograms Recordings and Signal Classification

During the measurements, RF signal data may be logged over a certain time period.
The data are then analyzed to assess the time variability of the emissions. In a previous
work of ours, we applied time series analysis to 4G and 5G signals using the Poincare plots
method [57]. The temporal patterns and fluctuations of mobile phone emissions showed
a more intensive dynamic in 5G than in 4G uplink signals, while short-term variability
and long-term variability were different in the two networks. Here we concentrated
only on the short-term variability, and we proposed spectrogram use and deep learning
for exposimetric variability profiling. Such analysis, together with theoretical dosimetry
studies, may provide essential knowledge on the potential biological consequences.

Convolutional neural network usage supports traceability and understanding of
exposure dynamics by accurately recognizing and classifying emissions from different
mobile communication technologies (e.g., 4G and 5G). The collected data can be analyzed
over time and space to identify exposure patterns, hotspots, and areas with potential
elevated exposure levels. Through deep learning techniques, our understanding of human
exposure dynamics is enhanced in several ways: a. by exposure mapping, the maps
of RF emissions can help identify regions with higher exposure levels, leading to more
targeted investigations and potential optimizations; b. by variability analysis, the changes
in emission patterns can help us understand factors influencing exposure levels, such as
network usage, traffic, or network upgrades; c. safety assessments: by correlating exposure
levels with human activity patterns, it is possible to assess potential risks and ensure
compliance with safety standards.

An analysis of the time-domain characteristics of 4G and 5G signals was made by
spectrogram recordings for all the cases of emission. Since spectrograms are essentially
2D representations of signals that show the frequency content of a signal over time, by
converting a signal into a spectrogram, we can analyze the frequency content of the signal
at different points in time, which can be useful for identifying certain characteristics of the
signal. Due to the noise and interference present, we manually settled a reference level of
the VSA that enabled the observation of just the 4G and 5G signals of the traced mobile
phone. This was possible because it was obviously the highest signal in the band. To record
the spectrogram of 5G versus 4G emissions in a way that emphasizes the main differences
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in the time-domain, we adjusted the settings of the spectrogram recording software to
achieve the desired results. The tips we followed were:

i. Setting the time resolution appropriately: The time resolution of the spectrogram
determines the time interval between successive snapshots of the signal. A shorter
time resolution will result in a more detailed view of the signal in the time-domain;
however, it may sacrifice frequency resolution. Therefore, we adjusted the time
resolution to a value that allowed us to capture the main differences in the time-
domain without sacrificing frequency resolution.

ii. Adjusting the window size and shape: The window size and shape determine how
the signal is sliced into segments for Fourier analysis. A smaller window size will
give a more detailed view of the signal in the time-domain; however, it may sacrifice
frequency resolution. The choice of window shape can also have an impact on the
quality of the spectrogram. We used a Hanning window shape.

iii. Setting the frequency range: The frequency range of the spectrogram should be set
appropriately to capture the relevant frequency bands for 5G and 4G emissions.

iiii. Normalizing the spectrogram: It can help to emphasize the main differences in the
time-domain. This was achieved by applying a logarithmic scale to the amplitude
values in the spectrogram, which made small differences more visible.

By adjusting the above settings, we could record spectrograms that emphasized
the main differences in the time-domain for 5G versus 4G emissions. The spectrograms
formed the dataset used for signal detection and classification. The YOLO object detection
algorithm, which uses deep learning techniques to identify objects in images, was used in its
seventh version. To use YOLO on the spectrograms, we first preprocessed the spectrograms
to make them suitable for object detection. We resized them to a standard size, normalized
the pixel values, and applied other transformations to enhance certain features. YOLO
works by dividing the input image into a grid and predicting bounding boxes for objects
within each grid cell. It then applies non-maximum suppression to remove redundant
bounding boxes and produces a final set of detections.

The YOLOv7 object detection algorithm was tested here with spectrograms. New
architectural advancements and optimizations for better performance were available. The
following steps were taken: a. data preparation is provided by collecting/generating the
dataset of annotated spectrograms where the objects of interest are labeled with bounding
boxes; b. data augmentation was not employed here, however it may be used to increase
the diversity of the spectrogram dataset with the aim of model generalization; c. model
architecture of YOLOv7 was adapted to process spectrogram data by adjusting the input
layer to accommodate the dimensions of the spectrogram images and potentially tweaking
other layers to work well with this type of data; d. training of the model on the annotated
spectrogram dataset followed; the loss function was adjusted to consider the detection
accuracy of objects within the spectrograms; e. inference was produced, because once the
YOLOv7 model was trained on the spectrogram data, it can be used for real-time or batch
processing to detect objects of interest within new, unseen spectrograms.

We trained the YOLO model on a dataset of 300 spectrograms per type of emission
out of four and per each of the two communication standards. The YOLO model learned to
identify the features that distinguish 5G and 4G signals from other signals in the environ-
ment and use this knowledge to classify new spectrograms that it encounters. The objects
to be detected included features related to 4G and 5G emissions, such as signal peaks,
frequency bands, or other signal patterns specific to the mobile application. Afterwards,
we validated the model with 30 spectrograms for each of the eight situations. At the end,
10 spectrograms per situation were presented for classification, and the probability of
recognition was computed as the average +/− Stdev.
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3. Results and Discussion
3.1. Signal Statistics and Prevalence of Peaks and Highest Power Levels in 4G versus 5G Emissions
of the Mobile Phone

The APD distributions of 4G and 5G signals differ due to several factors, including
differences in modulation schemes, frequency ranges, transmission power, and other signal
parameters. By comparing the APD curves, we can assess whether there are differences
in the average power levels, peak power levels, or likelihood of occurrence for specific
power levels between the two technologies. This comparison can help determine if there
are notable differences in the power distribution of the uplink emissions.

Figure 2 shows the average APD curves for the whole captured power range (upper
row) and for just the uplink signals, which are the most powerful (lower row). In all figures,
there are four traces, corresponding to the four mobile applications used as emitting sources:
file download, Internet video streaming, file upload, and video call.

Technologies 2023, 11, x FOR PEER REVIEW 12 of 24 
 

 

  

(a) (b) 

 
 

(c) (d) 

Figure 2. Amplitude probability density of the signals emitted at 10 cm from the phone’s surface in 
the analysis bandwidth of 4G and 5G signals: (a) 4G-whole band; (b) 5G-whole band; (c) 4G-uplink 
signals alone; (d) 5G-uplink signals alone. 

The differences observed between the APD traces of 4G and 5G signals expressed by 
the curve forms of probability versus power and by their spreading are due to: (a) the 
different modulation scheme used; (b) the frequency range, with consequences on the 
distribution of amplitude values due to differences in path loss, propagation, and 
interference; and (c) 5G signals typically use higher transmission power levels than 4G 
signals, which led to a net different distribution of amplitudes. The maximum received 
powers in 4G were situated in the range (−17…−10) dBm, while the ones in 5G are much 
more grouped, in the range (−12…−11.5) dBm. We have to underline at this stage that the 
values of the received powers should not be used as a reference for comparison because 
the antenna factor of the receiving antenna is different at the two frequency ranges. 
Therefore, later in the paper we will refer to the E-field strength in the emitting band, and 
this will be the proper indicator for a correct comparison of absolute amplitudes and 
respective exposure levels. 

To expand the discussion, we can mention some examples of distinguishing 
characteristics of the APD distributions between 4G and 5G emissions. 5G networks are 
designed to handle a wide range of applications, including both low-latency and high-
data-rate services. This diversity of applications can lead to more sparsity and burstiness 
in the APD distributions. For example, applications requiring periodic transmission, such 

Figure 2. Amplitude probability density of the signals emitted at 10 cm from the phone’s surface in
the analysis bandwidth of 4G and 5G signals: (a) 4G-whole band; (b) 5G-whole band; (c) 4G-uplink
signals alone; (d) 5G-uplink signals alone.

Figure 2a,b correspond to the whole analysis bandwidths around the 4G and 5G
signals, respectively. They present two humps: the one corresponding to lower power
levels (left hump) corresponds to other signals, interferences, and noise. The second
hump (right hump) corresponds to the distribution of emitted power levels of the targeted
uplink signals.
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To better observe the peculiarities, in Figure 2c,d a zoom is made on just the second
hump of the 4G and 5G signals emitted by the phone. To accurately compare the APD of 4G
and 5G signals, we measured the signals under similar conditions and with similar settings.
Therefore, we can clearly identify the differences between the types of mobile applications
belonging to the same standard of communication and the differences between the two
standards, respectively. In 4G, the allure of the curve for file upload is clearly detached,
showing a much higher probability of the apparition of higher power levels (Figure 2c).
Internet video streaming and video calls present very similar power distributions, while
file download presents higher power emissions; however, its probabilities of apparition
are consistently smaller than for file upload. 5G emissions are much more similar to each
other. File upload and file download traces are practically the same, which is also true
for the other tandem of traces, respectively for Internet video streaming and video calls.
So, each of these two groups presents the same probabilities of the apparition of the same
emitted powers. Probabilities are approximately double for file upload and download than
for video streaming and video calls.

The differences observed between the APD traces of 4G and 5G signals expressed by
the curve forms of probability versus power and by their spreading are due to: (a) the
different modulation scheme used; (b) the frequency range, with consequences on the dis-
tribution of amplitude values due to differences in path loss, propagation, and interference;
and (c) 5G signals typically use higher transmission power levels than 4G signals, which
led to a net different distribution of amplitudes. The maximum received powers in 4G were
situated in the range (−17. . .−10) dBm, while the ones in 5G are much more grouped, in the
range (−12. . .−11.5) dBm. We have to underline at this stage that the values of the received
powers should not be used as a reference for comparison because the antenna factor of the
receiving antenna is different at the two frequency ranges. Therefore, later in the paper we
will refer to the E-field strength in the emitting band, and this will be the proper indicator
for a correct comparison of absolute amplitudes and respective exposure levels.

To expand the discussion, we can mention some examples of distinguishing character-
istics of the APD distributions between 4G and 5G emissions. 5G networks are designed
to handle a wide range of applications, including both low-latency and high-data-rate
services. This diversity of applications can lead to more sparsity and burstiness in the APD
distributions. For example, applications requiring periodic transmission, such as voice calls
in 4G or ultra-reliable low-latency communication (URLLC) in 5G, may exhibit specific
patterns in the APD due to their different transmission characteristics. Differences in traffic
load and user density between 4G and 5G networks can also impact APD distributions. As
5G deployment expands and user adoption increases, the distribution of user activities and
traffic patterns may differ from those in mature 4G networks. This, in turn, can affect the
temporal characteristics of APD distributions, particularly during periods of high network
utilization. The lower latency capabilities of 5G make it suitable for real-time applica-
tions such as augmented reality (AR) and virtual reality (VR). These applications may
require continuous and high-speed data transmission, resulting in specific APD patterns
characterized by frequent bursts and higher signal amplitudes.

High-Power Events: CCDF analysis is particularly useful for analyzing high-power
events and extreme power levels. Comparing the CCDF curves of 4G and 5G uplink
emissions can indicate differences in the occurrence of high-power events. This comparison
can provide insights into whether there are variations in the tail of the power distribution
and the probability of exceeding specific power levels between the two technologies.

The differences between the experimental CCDF traces of 4G and 5G signals can be
observed in Figure 3. They are due to several factors, including modulation schemes,
resource allocation techniques, and power control mechanisms. In 4G, the high tail power
levels exceed the mean power by (5.7–12.5) dB, while in 5G, this range covers (4.6–15.8) dB.
Moreover, the differences between mobile applications are larger in 5G than in 4G, and the
corresponding curves are ordered differently. The minimum exceedance of mean power
belongs to file upload in 4G and to video calls in 5G. The maximum exceedance over mean
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power belongs to Internet video streaming in 4G and to file upload in 5G. Moreover, in
5G emissions, video calls and Internet video streaming show the steepest CCDF curves,
with probabilities of the tail powers decreasing abruptly beyond approx. 5 dB and 10 dB,
respectively.
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The differences between the CCDF functions of 5G and 4G signals may be explained
based on the following phenomena:

i. Signal waveforms: 5G uses more complex modulation schemes such as QPSK, 16-
QAM, and 64-QAM, while 4G primarily uses QPSK and 16-QAM. These modulation
schemes have different power distributions, which can result in different CCDF
functions.

ii. Resource allocation: 5G uses a more flexible and dynamic resource allocation mech-
anism, allowing for more efficient use of available spectrum. This can result in a
different power distribution compared to the fixed allocation mechanism used in 4G.

iii. Power control: 5G uses advanced power control mechanisms to optimize the transmis-
sion power and reduce interference, which can result in a different power distribution
compared to 4G.

Referring now to a comparison between the mobile application emissions in 5G-FR1
(Figure 3b), the following modulation schemes are generally preferred on a 100 MHz
bandwidth in the 3.5 GHz band: (a) for file download the preferred modulation scheme is
typically 256-QAM which allows high data rates; (b) for Internet streaming the preferred
modulation scheme is typically 64QAM that provides a good balance between data rate and
robustness to channel impairments, such as noise and interference; (c) for file upload the
preferred modulation scheme is typically 16-QAM or 64-QAM, depending on the channel
conditions, which allow for a moderate data rate while maintaining good reliability; (d) for
video call the preferred modulation scheme is typically Quadrature Phase Shift Keying
(QPSK) or 16-QAM, depending on the required data rate and the channel conditions, these
schemes providing a good balance between data rate and reliability, which is important for
real-time video communication. In general, the higher the modulation and coding scheme
used, the higher the data rate that can be achieved. However, as the modulation and coding
scheme increase, the transmitted signal becomes more sensitive to noise and interference.
This means that in order to maintain a certain level of signal quality and reliability, the
transmitted signal may need to be amplified, which can increase the emitted field strength.
The choice of modulation and coding schemes also depends on the requirements of the
service being used. For example, services that require low latency and high reliability,
such as mission-critical communications, may use lower-order modulation schemes such
as QPSK or 16QAM, even if this results in lower data rates. On the other hand, services
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that require high data rates, such as video streaming, may use higher-order modulation
schemes such as 256QAM, even if this results in higher error rates.

Observing Figure 3b, we are entitled to note that the following modulation schemes
have been used in our case: file upload–256-QAM (or 64-QAM); Internet streaming and file
download–64-QAM (or 16-QAM); video call–16-QAM (or QPSK). In practice, 5G-FR1 uses
adaptive modulation and coding techniques to dynamically adjust the modulation and
coding scheme based on channel conditions, which helps optimize the data throughput
and improve the overall system performance.

The temporal behavior of emissions can be indicated by both APD and CCDF analyses.
By examining the curves over time, we could identify any differences in the temporal
patterns, such as variations in power levels or the occurrence of specific events. This
analysis can help us understand how the temporal behavior of the uplink emissions differs
between 4G and 5G.

One key difference between 4G and 5G signals is that 5G signals typically have a higher
peak-to-average power ratio (PAPR) than 4G signals. Based on the CCDF curve analyses,
we extracted the average crest factors and the tails of the distributions comparatively for
all the mobile applications belonging to the same transmission technology. In Figure 4a,
we may observe the crest factor values, while in Figure 4b, we show the probabilities of
exceeding the highest emitted power levels for 4G emissions. Similarly, the same graphs
are represented for 5G signals in Figure 5a,b. CF values for 4G emissions are situated in the
range (5–11) while for 5G-FR1 emissions they are higher, between (8.5–16.2). Interesting to
note is the fact that the CFs are very similar in 4G and 5G-FR1 for Internet video streaming
and video calls, indicating very similar modulation and coding schemes in the present
situations. In contrast, CF for file upload is three times higher in 5G than in 4G, while CF
for file download is almost double in 5G than in 4G. This situation must be due to the use
of 256-QAM and 64-QAM in 5G for the two highest field levels, when the highest data rates
per unit time of transmission are also used.
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Let us consider a scenario where a 5G signal is emitted with a high CF (and PAPR),
such as the 256-QAM signal. Due to the high PAPR, the peak power of the signal can be
significantly higher than its average power. This means that in certain tissues of the head
with high conductivity, such as the eyes or the skin, the electric field generated by the signal
can be much stronger than the average power would suggest. If the tissue absorbs more
energy than it can dissipate, this can lead to a local temperature increase and potential tissue
damage or other biological effects. In [37], the authors specify that “there are knowledge
gaps with respect to local heat developments on small living surfaces, e.g., on the skin or on
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the eye, which can lead to specific health effects. In addition, the question of any possibility
of non-thermal effects needs to be answered”.

The trend of extreme values of power levels is depicted in Figure 4b versus Figure 5b.
Differences in power tail distributions are evident between the two communication stan-
dards and also between mobile applications. The maximum exceedance of mean power in
5G versus 4G belongs to file upload mobile applications, and the value is 9.5 dB.
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3.2. Electric Field Strengths in Air, at 10 cm from the Mobile Phone in 4G versus 5G Emissions

Channel power was another interesting indicator of the EMF exposure because, based
on its value and its dynamics, we expressed the E-field strength incident on the body part
hypothetically situated at a 10 cm distance and its variability. Figure 6 depicts the E-field
strengths due to the four mobile applications used in the 4G standard (Figure 6a) and
the 5G standard (Figure 6b). The general observation is that 5G emissions are stronger
than 4G emissions, and the differences between applications are different between the two
communication technologies. Standard deviations around the average are the same in both
standards, proving the large variability of exposure. In 4G, the largest E-field strength is
produced during video calls, while in 5G, it is produced during Internet video streaming.
However, one must take into account that the emissions in 4G and 5G used different models
of mobile phones. Even if it had been the same model, due to the fact that the phone’s
antennas have different gains at the two frequencies, the realistic emitted power could
be different.

Reliable assessments of EMF exposure require more sophisticated setups, such as the
use of dedicated base stations where the channel power requested by the mobile terminal
can be set and controlled or specific software that monitors all transmission parameters on
the mobile terminal (e.g., QualiPoc by Rhode and Schwarz). Otherwise, the measurements
risk being random numbers.

It is difficult to make a general statement about whether 5G signals in FR1 generally
conduct to a higher E-field strength than 4G signals in exactly the same situation, as it
depends on a range of factors such as the frequency band, the transmission power, the
antenna configuration, and the propagation environment.

That being said, there are some factors that may lead to higher E-field strengths for 5G
signals in FR1 compared to 4G signals. For example:

• Frequency band: 5G signals in FR1 typically operate at higher frequencies than 4G
signals, which may lead to higher E-field strengths due to higher path loss and greater
attenuation through obstacles.
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• Transmission power: 5G technology enables higher transmission power levels com-
pared to 4G, which may lead to higher E-field strengths in some situations.

• Antenna configuration: The antenna configuration for 5G is more complex than for
4G, with more antennas and potentially more directional beams, which may lead to
higher E-field strengths in certain directions or at certain locations.

On the other hand, there are also factors that may lead to lower E-field strengths for
5G signals in FR1 compared to 4G signals, such as:

• Antenna beamforming: 5G technology utilizes advanced beamforming techniques to
direct the signal towards the user, which may reduce the overall E-field strength in
some directions.

• Spectrum sharing: 5G may share spectrum with other services, which may limit
the available transmission power and result in lower E-field strengths compared to
4G signals.

Overall, the answer to whether 5G signals in FR1 generally conduct to a higher E-field
strength than 4G signals in exactly the same situation is complex and depends on a range
of factors, as demonstrated.
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3.3. Classification of Mobile Application Emissions in 4G and 5G Networks Based on the YOLO v7
Object Detection Algorithm

Examples of spectrograms recorded for 4G and 5G signals are given in Figure 7a–e.
Figure 7a,b depict the visual conformation of a spectrogram corresponding to file download
in 4G (Figure 7a) and in 5G (Figure 7b). Notable differences are observed. In addition
to the detailed differences in modulation schemes, the main distinction between 4G and
5G signals lies in the adopted duplexing mode (FDD vs. TDD), resulting in a noticeable
difference in the resources allocated to uplink and downlink. This difference is reflected
in the spectrogram of a 5G signal compared to a 4G signal. Figure 7c–e show examples
of 5G spectrograms corresponding to Internet streaming, file uploads, and video calls,
respectively. File upload and video call spectrograms seem very similar visually. In QAM,
the spectrogram of the signal shows a set of spectral lines at equally spaced frequencies,
corresponding to the different phase and amplitude states of the modulated signal. The
number and spacing of these lines depend on the modulation order, with higher-order
QAM schemes having more lines. In OFDM, the spectrogram of the signal shows a set of
closely spaced subcarriers, each carrying a narrowband modulated signal. The spacing
and number of subcarriers would depend on the system parameters, such as the carrier
frequency, the symbol rate, and the guard interval.
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After the Yolo v7 algorithm was trained on 300 spectrograms and 15 spectrograms were
used for validation, it ran on the 10 spectrograms per mobile application for identification
and classification of the respective emission. The rate of success, measured by recognition
rate, was very high, generally higher than 95%, with one single exception: 4G Internet video
streaming had a very low recognition rate of only 57%, as can be seen in Figure 8a. Anyway,
Internet video streaming was the hardest to recognize in 5G, too; however, the rate of
success was higher, at 90%. Uncertainties were generally larger for 5G emissions (Figure 8b)
than for 4G, and they are indicated by error bar lengths. It results in the fact that, with
proper manual settings, the prepared spectrograms are very successfully classified by the
YOLO v7 algorithm, even if the training and validation were made on a reduced number
of samples. Therefore, YOLO v7 proved to be a very powerful algorithm in recognition of
the features of power spectrum variability.
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4. Conclusions

In this present work, we aim to quantify the time variability of emissions in the
proximity of a mobile phone connected to either a 4G or a 5G-FR1 network when using
four different mobile applications. The central objective was to provide knowledge on
human exposure dynamics that completes the dosimetric studies necessary to describe the
potential biological effects.

The main contribution of this study to current knowledge belongs to the topics of the
effects of EMF exposure on humans that are not limited to induced heating, while non-
thermal effects remain subjects of debate and investigation. To gain a deeper understanding
of this aspect, new metrics and methodologies need to be adopted. The direction proposed
in this work, which includes peak exposure analysis and not just time-averaged analysis,
aligns well with this goal.

A supplementary benefit is the possibility to discern between exposure dynamics
corresponding to one specific mobile application based on the capability of a real-time
detection algorithm to successfully classify the emission type.

The proposed methodology is not intended to facilitate a comparison of the general
characteristics between 4G and 5G signals. Instead, its purpose is to provide a means for
analyzing specific real-life exposure conditions that may vary based on multiple parameters.

Synthetically, our results showed that:

• Electric field strengths in the air at 10 cm from the phone were higher for 5G-FR1
emissions than for 4G, on average by 60%. None of the values exceeded human
health and safety levels. The highest difference between technologies corresponded to
Internet video streaming emissions, where 5G field strength was three times higher
than 4G.

• 4G and 5G-FR1 amplitude probability density distributions differ; 4G traces depend
much more on the type of mobile application used, while 5G traces are more similar
one to another and more independent of the mobile application. The same probability
range of power level distribution was covered by a larger window of power values in
5G than in 4G.

• Crest factors were higher for 5G-FR1 emissions than for 4G emissions; the highest
difference (almost double) evolved during file download applications, while the lowest
difference was observed during Internet video streaming.

• The prevalence of the highest power levels (superior tail emissions) appeared much
more frequent for 5G-FR1 emissions than for 4G, and a difference of as much as 9.5 dB
over mean power was encountered in 5G versus 4G emissions.

• The recorded spectrograms emphasized peculiarities that have been excellently cap-
tured and valorized by the YOLO v7 deep learning algorithm. Practically, excellent
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recognition and classification rates were obtained for each technology and each cate-
gory of mobile application with a minimum of training.

Overall, the contribution of the present approach consists in the provision of an
exposimetric tool that underlines the differences in amplitude-time profiling of a user’s
exposure when running various applications on the mobile phone in two different mobile
communication technologies. Due to the limitations of the methodology employed, the
data presented cannot be considered to be of total generality. However, realistic exposure
and time-variability analysis need further investigation in varied situations.
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