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Abstract: Autonomous vehicles (AV) are game-changing innovations that promise a safer, more
convenient, and environmentally friendly mode of transportation than traditional vehicles. Therefore,
understanding AV technologies and their impact on society is critical as we continue this revolutionary
journey. Generally, there needs to be a detailed study available to assist a researcher in understanding
AV and its challenges. This research presents a comprehensive survey encompassing various aspects
of AVs, such as public adoption, driverless city planning, traffic management, environmental impact,
public health, social implications, international standards, safety, and security. Furthermore, it
presents emerging technologies such as artificial intelligence (AI), integration of cloud computing, and
solar power usage in automated vehicles. It also presents forensics approaches, tools used, standards
involved, and challenges associated with conducting digital forensics in the context of autonomous
vehicles. Moreover, this research provides an overview of cyber attacks affecting autonomous vehicles,
attack management, traditional security devices, threat modeling, authentication schemes, over-the-
air updates, zero-trust architectures, data privacy, and the corresponding defensive strategies to
mitigate such risks. It also presents international standards, guidelines, and best practices for AVs.
Finally, it outlines the future directions of AVs and the challenges that must be addressed to achieve
widespread adoption.

Keywords: survey; autonomous vehicles; vehicular technology; security; challenges; sensors; artificial
intelligence; federated learning; deep learning; machine learning; cloud computing; protocols; in-vehicle
systems; communication networks; cyber security risks; smart cities; automotive industry

1. Introduction

An autonomous vehicle is a self-driving vehicle that can operate independently with-
out human intervention [1]. According to a report by Allied Market Research, the global
autonomous vehicle market size was valued at $54.23 billion in 2019 and is projected to
reach $556.67 billion by 2026, with a Compound Annual Growth Rate (CAGR) of 39.47%
from 2019 to 2026 [2]. Fifty-seven percent of the global population are familiar with self-
driving cars and willing to ride inside them [3]. Currently, the market of autonomous
vehicles sits at $54 billion. By 2023, Audi, the German brand, plans on spending $16 billion.
According to a report, there will be 33 million AVs in use by 2040 [4]. All over the world,
approximately 80 companies are currently testing more than 1400 self-driving vehicles [5].

The development and deployment of autonomous vehicles (AVs) have captured the
attention of researchers, policymakers, and the public alike. AVs promise to transform how
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we travel and interact with the world. Their advanced sensors, machine-learning algo-
rithms, and sophisticated control systems offer a safer, more efficient, and more convenient
mode of transportation than traditional vehicles. AVs are expected to profoundly impact
society, with potential benefits including enhanced safety, increased efficiency, reduced
traffic congestion, and improved mobility. Driver automation provides only one automatic
feature. For instance, with the help of cruise control, speed is monitored. In partial automa-
tion, the vehicle has the feature of steering and acceleration. Conditional automation can
detect the environment, and all tasks are performed automatically, but still, human efforts
are required. In high automation, human efforts are optional but are preferable. In high
automation, zero human intervention is required [6,7].

Since the 1920s, when the radio-based vehicle-to-vehicle (V2V) communication system
was developed, researchers have been interested in automated cars. Later, in the 1930s
and 1940s, electromagnetic vehicle guidance was developed, and in the 1950s and 1960s,
magnets were added to vehicles to test smart motorways [8]. Autonomous vehicles can
view the world in a 360° range, thanks to high-precision technology, which is twice as
much as humans, who can only see 180° horizontally [4]. Vehicle-to-Everything (V2X)
communication is an essential technology for enabling the full potential of autonomous
vehicles. It enables communication between vehicles and other road users, including
pedestrians, bicyclists, and infrastructure, such as traffic signals and road signs. V2X
technology allows AVs to exchange data with other vehicles and infrastructure in real-time,
improving safety, efficiency, and environmental impact, as shown in Figure 1.

Figure 1. AVs Communication Scenarios.

Due to the autonomous nature of the vehicle and the fact that it would function with
little to no human input, even those with visual or hearing impairments can own one,
making them inclusive. The first issue is because of constant connectivity with the outside
world; data protection might develop into a cyber issue. Autonomous driving has advanced
gradually and is becoming more sophisticated in perceiving environments in everyday life
properly and quickly analyzing sensor information; thanks to the growth of the Internet of
Things and artificial intelligence technologies, it can now make complex decisions by itself.
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1.1. Motivation

The rapid advancement of AV technology has generated significant interest from
both the public and private sectors. The potential benefits of AVs are vast, ranging from
enhanced safety to increased mobility and efficiency. However, significant challenges must
be addressed before AVs can fully integrate into society. These challenges include technical
issues such as cybersecurity, machine-learning algorithms, cloud employment, and legal
and ethical concerns regarding liability and data privacy. In addition, AVs can impact
public health and the environment significantly. Given the far-reaching implications of AV
technology, there is a pressing need for research to understand better the opportunities
and challenges associated with its adoption. This paper aims to provide a comprehensive
overview of AVs, highlighting their potential benefits and challenges and offering recom-
mendations for future research and development in this critical area. Some survey papers
exist on the selected research topic, the details of which are provided in the following
paragraphs.

Authors in [9] discussed the environmental impact, data dissemination, and defensive
approaches for autonomous vehicles. Ref. [10] presented traffic management, Artificial
Intelligence approaches, and environmental impact. In the work [11], the researcher shared
standards and guidelines. Authors in [12] also provided the international standards and
guidelines for autonomous vehicles. In ref. [13], authors discussed public adoption, traf-
fic management, and international standards and guidelines. Authors in [14] discussed
the public adoption of AVs. Authors in [15] presented a survey on artificial intelligence
techniques in developing autonomous vehicles. Ref. [16] discussed security attacks and
their defensive approaches. In Ref. [17], authors discussed security attacks, defensive
techniques, and artificial intelligence techniques. Authors in [18] presented artificial intelli-
gence techniques for AVs. This survey aims to provide a 360-degree study of infrastructure
and ad hoc autonomous vehicles, including the planning and development of driverless
cities and emerging technologies such as artificial intelligence and cloud management tech-
niques. Moreover, it discusses cyber attacks and management, focusing on the limitations
of traditional security devices. Furthermore, this survey also covers forensics approaches,
including tools, standards, and challenges. Simulators and international standards are also
addressed. Table 1 compares the important existing surveys and highlights their limitations.

Table 1. Comparison of survey articles on autonomous vehicles. Key: IILAV-Infrastructure and Infras-
tructure less Autonomous Vehicle, Rou-Routing, DD-Data Dissemination, SPEV-Solar Power Electric
Vehicles, CE-Cloud Employment, PA-Public Adoption of Autonomous Vehicles, PDC-Planning
The Driverless City, TM-Traffic Management, EI-Environmental Impact, PH-Public Health, SA-
Security Attacks, DA-Defensive Approaches, TSD-Traditional Security Devices, TMA-Threat Model-
ing Approaches, AI-Artificial Intelligence Techniques, FA-Forensics Approaches, SIM-Simulators,
AS-Authentication Schemes, ISG-International Standards, and Guidelines ZT-Zero Trust Architecture.

Surveys IILAV ROU DD SPEV CE PA PDC TM EI PH SA DA TSD TMA AI FA SIM AS ISG ZT

Parekh et al., 2022 [9] X X X X X X X X X X X X X X X X X X X X

Aradi 2020 [10] X X X X X X X X X X X X X X X X X X X X

Faisal et al., 2019 [11] X X X X X X X X X X X X X X X X X X X X

Ahangar et al., 2021 [12] X X X X X X X X X X X X X X X X X X X X

Duarte et al., 2018 [13] X X X X X X X X X X X X X X X X X X X X

Gkartzonikas et al., 2019 [14] X X X X X X X X X X X X X X X X X X X X

Ma et al., 2020 [15] X X X X X X X X X X X X X X X X X X X X

Pham et al., 2020 [16] X X X X X X X X X X X X X X X X X X X X

Kim et al., 2021 [17] X X X X X X X X X X X X X X X X X X X X

Janai et al., 2020 [18] X X X X X X X X X X X X X X X X X X X X

This Survey X X X X X X X X X X X X X X X X X X X X
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1.2. Contributions

This study aims to provide a comprehensive view of the challenges and opportunities
associated with AVs. It examines the current state of AV technology. It explores various as-
pects of AVs, including their public adoption, cloud employment, standards, cybersecurity,
threat modeling approaches, artificial intelligence techniques, forensics, and public health
implications. The paper analyzes the technical, legal, ethical, and societal aspects of AVs
and identifies the key factors shaping the future of autonomous driving. Key contributions
of the paper are:

1. Presents a comprehensive survey on the current state-of-the-art of AVs and provides
an in-depth discussion of the various aspects of AVs and their impact on society.

2. Presents the infrastructure and Ad Hoc autonomous vehicles, focusing on their re-
spective technologies, routing methodologies, and data dissemination mechanisms.

3. Presents various aspects of AVs in smart cities, such as public adoption, driverless
city planning, traffic management, environmental impact, and public health, and
discusses key associated challenges.

4. Presents emerging technologies such as artificial intelligence (AI), cloud computing
integration, and solar power use in automated vehicles.

5. Presents cyber attacks that can affect autonomous vehicles, attack management, tradi-
tional security devices, threat modeling, authentication schemes, over-the-air updates,
zero trust architectures, data privacy, and the corresponding defensive strategies to
mitigate such risks.

6. Provides forensics approaches, tools used, standards involved, and challenges associ-
ated with conducting digital forensics in the context of autonomous vehicles.

7. Provides various simulators used in developing and testing autonomous vehicles.
Further, it presents international standards, guidelines, and best practices available
for autonomous vehicles (AVs).

8. The core contribution of this paper is to discuss open research problems, challenges,
and future directions.

1.3. Organisation

Figure 2 summarizes the structure of this research paper, while Table 2 provides
the list of abbreviations. The subsequent sections of the paper are organized as follows.
Section 2 provides the infrastructure and Ad Hoc autonomous vehicles. Section 3 explains
Autonomous Vehicles in cities. After that, Section 4 identifies the emerging technologies.
Then, Section 5 discusses Cyber Attacks and Management. Section 6 presents forensics
approaches for AVs. Afterward, Section 7 presents simulators. Section 8 presents Interna-
tional Standards and Guidelines. Then, Section 9 presents research challenges, open issues,
and future directions. Finally, Section 10 concludes this paper.

Figure 2. Paper Flow Diagram.
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Table 2. List of Abbreviations.

Abbreviations Description

AV Autonomous Vehicle
CAGR Compound Annual Growth Rate
CAN Controller Area Network
VCC Vehicular Cloud Computing
DFIRP Digital Forensics Investigation Readiness Procedures
DRL Deep Reinforcement Learning
ECU Electronic Control Unit
FANET Flying Ad Hoc Network
FL Fuzzy Logic
GPS Global Positioning System
GA Genetic Algorithm
LiDAR Light detection and Ranging
ML Machine Learning
MBRL Model-based RL
NLP Natural Language Processing
OTA Over-the-Air
P2P Peer to Peer Network
PKI Public Key Infrastructure
RL Reinforcement Learning
SDN Software Defined Networking
SUMO Simulation of Urban Mobility
SLAM Simultaneous Localization and Mapping
TDM Time Division Multiple Access
VANETs Vehicle Ad Hoc Network
V2X Vehicle to Everything
V2I Vehicle to Infrastructure
V2N Vehicle to Network
V2P Vehicle to Pedestrian

2. Infrastructure and Ad Hoc Autonomous Vehicle

This section comprehensively presents the topics of infrastructure and ad hoc au-
tonomous vehicles, focusing on their respective technologies, routing methodologies, and
data dissemination mechanisms. A detailed analysis and discussion will be provided for
these key components. Autonomous vehicles can be classified into two categories based on
the usage of infrastructure they use infrastructure-based autonomous vehicles and Ad hoc
(infrastructure-less) autonomous vehicles. Infrastructure-based autonomous vehicles rely
on physical infrastructure such as roads, traffic signals, and mapping systems. They use
Global Positioning System (GPS), LiDAR, RADAR, cameras, and other sensors to navigate,
but also require a well-maintained network of roads, signs, and signals to ensure safe
and efficient operation [19]. Infrastructure-based autonomous vehicles are autonomous
vehicles that rely on physical infrastructure such as roads, traffic signals, and mapping
systems to operate. These vehicles use GPS, LiDAR, RADAR, cameras, and other sensors
to navigate and make decisions. Still, they also require a well-maintained network of roads,
signs, and signals to ensure safe and efficient operation. Some key features and benefits of
infrastructure-based autonomous vehicles include [20]:

1. Improved Safety: By relying on physical infrastructure, infrastructure-based au-
tonomous vehicles can use safety features such as traffic signals, road markings, and
signs to make driving decisions and reduce the risk of accidents.

2. Increased Efficiency: Infrastructure-based autonomous vehicles can optimize their
routes based on real-time traffic data and use dedicated autonomous vehicle lanes to
reduce congestion and improve overall traffic flow.

3. Improved User Experience: Infrastructure-based autonomous vehicles can provide
a more comfortable and convenient riding experience, using amenities such as rest



Technologies 2023, 11, 117 6 of 63

stops, charging stations, and service facilities along the way. However, there are also
some limitations to infrastructure-based autonomous vehicles [21], such as:

• Cost: Implementing the necessary physical infrastructure can be expensive, and
maintaining it can also be a high ongoing cost.

• Limited Operating Environments: Infrastructure-based autonomous vehicles
are limited to operating in areas with well-defined roads and traffic signals and
may not be suitable for rural or off-road environments.

• Dependence on Human Intervention: While infrastructure-based autonomous
vehicles can use physical infrastructure to make driving decisions, they may
still require human intervention in certain scenarios, such as system failure or
road closure.

On the other hand, infrastructure-less autonomous vehicles do not rely on any physical
infrastructure to operate. Instead, they use advanced sensors and algorithms to perceive
their environment, make decisions, and navigate [22]. This allows them to operate in
environments without well-defined roads or traffic signals. However, the lack of physical
infrastructure can also pose challenges regarding safety, reliability, and scalability [23].

2.1. Technologies

Autonomous vehicles utilize several important technologies that are as follows:

• Sensors: To observe and comprehend their environment, autonomous cars use a range
of sensors, including cameras, LiDAR, radar, and ultrasonic sensors. These sensors
give the vehicle information about its surroundings, such as the location, mobility of
other cars, pedestrians, and obstacles [24].

• Computer Vision: Computer vision algorithms are used to process and analyze
the data collected by the vehicle’s sensors. These algorithms help the vehicle to
identify and track objects in its environment, as well as to understand their movement
and behavior.

• Artificial Intelligence (AI) and Machine Learning: Algorithms based on machine
learning and artificial intelligence are utilized to make choices and direct the vehicle’s
activities. For example, they can be used to determine the vehicle’s best path to follow,
predict the behavior of other road users, and react to unexpected events.

• GPS and Maps: GPS and high-definition maps are used to provide the vehicle with
information about its location and help it navigate and avoid obstacles [25].

• Communication Systems: Autonomous vehicles use a variety of communication
systems, such as cellular networks, dedicated short-range communication (DSRC),
and Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication, to
exchange information with other vehicles, road infrastructure, and the cloud.

• Actuation Systems: Autonomous vehicles use actuation systems, such as electric mo-
tors, hydraulic actuators, and pneumatic systems, to control the vehicle’s movement
and perform tasks such as steering, accelerating, and braking.

• Power and Energy Management Systems: Autonomous vehicles use power and
energy management systems, such as batteries, fuel cells, and regenerative brak-
ing, to provide the vehicle with the energy needed to operate and optimize its en-
ergy efficiency.

2.2. Routing

Routing in autonomous vehicles refers to determining the best path for the vehicle
from its starting point to its destination. This is an important aspect of autonomous vehicle
technology, enabling it to navigate safely and efficiently through its environment [26].
Several key factors are considered when determining the best route for an autonomous
vehicle, including:

• Traffic Conditions: The vehicle uses real-time traffic data to avoid congested areas
and to select the fastest and most efficient route.
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• Road Infrastructure: The vehicle considers the physical layout of the road network,
including the presence of intersections, toll booths, and other road features when
selecting a route.

• Obstacles: The vehicle uses its sensors to detect and avoid obstacles, such as other
vehicles, pedestrians, and road work that may be present along the route.

• Safety: The vehicle considers the safety of its passengers and other road users when
selecting a route. For example, it may avoid routes with a high incidence of accidents
or with poor road conditions.

• Energy Efficiency: The vehicle considers the energy consumption of different routes
and selects the route that minimizes energy usage.

The routing process in autonomous vehicles is typically performed by algorithms
running on the vehicle’s onboard computer. These algorithms use historical data, real-time
data, and predictions to determine the best route, considering the factors mentioned earlier.
Once the route has been determined, the vehicle’s navigation system provides the vehicle
with step-by-step instructions for how to reach its destination, including information on
when to turn, change lanes, or stop. The vehicle’s control systems then use this information
to control its movement and keep it on the track [27].

2.3. Data Dissemination

Data dissemination in autonomous vehicles refers to the process of sharing and dis-
tributing data within the vehicle and between vehicles. This data can include information
about the vehicle’s surroundings, such as the location of other vehicles and obstacles,
traffic signals and road signs, and the road itself. It can also include information about
the vehicle’s state, such as its speed, acceleration, and direction [28]. In autonomous cars,
data distribution aims to ensure that the appropriate information is available to the appro-
priate vehicle components at the appropriate moment. This enables the vehicle to make
informed decisions and respond to changing conditions in real-time. Data dissemination in
autonomous vehicles is a complex process that requires robust and reliable communication
protocols and algorithms to ensure the data are accurate, timely, and secure. The specific
methods used for data dissemination will depend on the requirements of the vehicle and
the specific applications being supported [29].

There are several ways in which data can be disseminated in autonomous vehicles;
autonomous vehicles use onboard networks, such as Ethernet and Controller Area Net-
work (CAN) Bus, to share data within the vehicle. This enables different systems and
components to exchange information and collaborate to make informed decisions. It uses
V2V communication to share data with other vehicles. This enables the vehicles to share
information about their surroundings, such as the location of other vehicles and obstacles,
and to coordinate their movements to improve safety and efficiency. V2I communication
shares data with road infrastructure, such as traffic signals and signs. This enables the
vehicle to receive information about traffic conditions, road closures, and other relevant
information that can be used to make informed decisions. Autonomous vehicles can also
use cloud services to access real-time data and cloud-based resources. This includes data
from remote sensors, traffic information, and weather data, which can be used to make
informed decisions and improve the vehicle’s performance [29].

3. Autonomous Vehicles in Smart Cities in a Nutshell

This section thoroughly presents various aspects of AVs in smart cities, such as public
adoption, driverless city planning, traffic management, environmental impact, and public
health. Further, it discusses key challenges associated with them.

3.1. Public Adoption

Autonomous vehicle (AV) public acceptance is a complicated subject reliant on several
variables, including technology improvements, laws, infrastructure, and customer trust,
as seen in Figure 3. AV technology is still under development and not yet completely
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prepared for wide-scale implementation [30]. Numerous businesses and governments fund
research and testing to enhance the technology and sell AVs. Many areas still develop AV
regulations, which differ by nation and region [31]. Additionally, it is necessary to construct
and enhance the AV infrastructure, which consists of dedicated lanes, charging stations,
and communication networks. Another crucial aspect of AV adoption is consumer faith in
them. According to studies, many individuals are reluctant to ride in AVs or permit them
to operate on public roads because they are concerned about their reliability and safety [32].
As technology advances and is widely recognized, the general public will likely adopt AVs.
However, it is challenging to foresee precisely when or how quickly this may occur.

Figure 3. Public Adoption of Autonomous Vehicles.

3.1.1. Technological Adoption

The complicated technology underlying AVs includes many systems and elements,
including sensors, perception algorithms, decision-making systems, etc. In concert, the
seamless and reliable operation of any of these systems poses a significant challenge. It is
expensive to develop and incorporate AV technology into automobiles [33]. As a result, AVs
might become more expensive, reducing their accessibility for the typical user. People can
have inflated expectations of what AVs are capable of, which could lead to disappointment
and mistrust when the technology falls short.

3.1.2. Consumer Trust

As it is essential for successfully adopting the technology, consumer trust is a signif-
icant issue with autonomous vehicles (AVs). If consumers believe AVs to be risky, they
might be reluctant to trust them. This can result from previous AV-related mishaps, a lack
of knowledge about the technology, or doubts regarding the dependability of the systems.
Suppose customers are unsure of how AVs operate or believe that the businesses creating
and marketing the technology need to be more honest about its capabilities and restrictions.
In that case, customers can be reluctant to trust AVs [34]. Customers could worry about the
security of AVs since they could be exposed to hacking or other online risks. Due to the pos-
sibility that the device may capture and send sensitive data, consumers may worry about
how AVs would affect their privacy. If consumers think AVs cannot handle certain scenarios
and need human involvement, they might be less likely to trust them, which could make
them feel less safe. In general, AV consumer trust must be established for the technology to
be successfully adopted. It necessitates open dialogue regarding technological possibilities
and constraints and emphasizes security, privacy, and safety [35]. Additionally, AVs must
establish a solid track record for dependability, safety, and performance to earn consumers’
trust.

3.1.3. Infrastructure Adoption

The minimal AV infrastructure now available is one of the key issues. This includes the
absence of the AVs’ necessary communication networks, charging stations, and dedicated
lanes. Standardization and interoperability are necessary for AV infrastructure to interact
with the vehicles smoothly and communicate with them to assure flawless operation [36].
As AVs have the potential to alter how we move across space and utilize it, new urban
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design methods will be necessary. When creating new infrastructure, this will need to be
considered. The required infrastructure must be created and integrated in a way that is eco-
nomical, interoperable, and responsive to the changing requirements of the transportation
system to support the safe and effective operation of AVs.

Autonomous vehicle (AV) deployment has been modest in developed nations thus
far but is anticipated to pick up. Several businesses, like Waymo and Tesla, have started
to deploy AVs in small numbers, primarily for research and development. For instance,
Tesla has been utilizing its Autopilot technology on its electric cars, while Waymo has been
testing its autonomous vehicles on public highways in California and Arizona [37]. In some
cities, businesses like Uber have also started offering ride-hailing services utilizing AVs.
Autonomous vehicle deployment in underdeveloped nations will likely encounter several
difficulties, such as a lack of infrastructure, insufficient legislation, and restricted technolog-
ical capabilities [38]. Furthermore, many developing nations might need more financial
means to invest in the infrastructure and technology needed for autonomous vehicles.
Nevertheless, autonomous vehicles may help these nations with some of their transporta-
tion issues, such as lowering traffic congestion, enhancing safety, and expanding access to
transportation for those who do not currently have it [39]. Making autonomous vehicles
possible in developing nations will require major investment in technology, infrastructure,
and laws [40].

Critical Analysis: Consumer confidence and trust pose a significant barrier to adop-
tion on a large scale. High-profile events and mishaps involving the technology have
impacted how the public views AVs and generated concerns about their dependability
and safety. It will need a persistent investment in research and development and open
and consistent communication from manufacturers and authorities about the technology’s
potential and constraints to win over the public’s faith in AVs.

3.2. Planning the Driverless City

The process of preparing cities for integrating autonomous cars and its effects on
urban life is called “Planning the Driverless City”. This considers variables including
transportation networks, urban planning, and public policy [41]. The goal is to minimize
negative effects while ensuring that cities are fully prepared to benefit from driverless
technology. Governmental organizations, transportation businesses, IT firms, and other
stakeholders might work together during the planning phase. Designing a driverless city
necessitates considering several considerations, such as infrastructure, communication and
coordination, Data and Privacy, regulations, integration with public transportation, and
social and cultural impacts, as shown in Figure 4.

Figure 4. Key Pillars of a Sustainable and Resilient Smart City Ecosystem.
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3.2.1. Infrastructure

Infrastructure plays a crucial role in deploying and operating autonomous cars since
it impacts how well they can function. To understand their surroundings and abide by
traffic laws, autonomous cars need delineated roads and traffic lights [42]. The car needs
accurate GPS and mapping data to locate and decide its course. To ensure they can run
continually and effectively, they also need facilities for charging and maintenance. A lot of
data is produced and needed by AVs, and this data needs to be processed and stored in
secure data centers. Autonomous cars rely on various sensors, including cameras, LiDAR,
and radar, to learn more about their environment. For optimum functioning, the sensors
need to be set up and maintained. AVs need high-bandwidth, low-latency communication
networks to share data with other vehicles and the infrastructure and receive real-time
updates.

3.2.2. Communication and Coordination

The deployment and operation of autonomous vehicles depend heavily on collab-
oration and communication. To coordinate their movements, exchange data about their
location, speed, and trajectory, and prevent crashes while maximizing traffic flow, au-
tonomous vehicles must be able to communicate with one another [43]. Being able to
interface with the infrastructure, such as traffic lights and road signs, to receive real-time
updates on the state of the roads and traffic patterns. For efficient decision-making and
coordination, AVs must be able to generate and consume massive amounts of data that
must be shared and analyzed in real time. Autonomous vehicle operations must be coordi-
nated and managed in real-time to ensure safe and effective transportation and address
unforeseen issues.

3.2.3. Data and Privacy

Autonomous vehicles must have access to real-time data and traffic information while
maintaining individual privacy to assure safety and effectiveness. The creation and use of
autonomous cars depend heavily on data and privacy. Safety, public trust, legal compliance,
and maintaining a competitive edge depend on safeguarding data gathered by AVs [44].
For decision-making and safe operation, AVs rely on enormous volumes of data. For
the safety of passengers and other road users, it is essential to ensure that these data are
accurate and secure. To protect citizens’ personal information, governments all around the
world are putting in place privacy legislation. To ensure that their technology is consistent
with the law, AV developers must abide by these rules.

3.2.4. Regulation

Regulations aid in making sure that AVs are built, tested, and used in a way that pro-
tects passengers and other road users and that they comply with safety requirements. It can
ensure that AVs are created and used consistently across numerous areas and legal systems.
This can make deploying AVs on a large scale easier and ensure system compatibility. By
defining standards for AV design, operation, and maintenance, as well as specific rules
for protecting the personal data gathered by AVs, regulations can aid in the protection of
consumers. Governments must establish rules to guarantee autonomous vehicles’ security
and moral use in urban settings [45].

3.2.5. Integration with Public Transportation

Autonomous vehicles can enhance the current public transit networks, giving passen-
gers more options and easing congestion. Integrating AVs with public transportation can
increase accessibility for those who cannot drive, such as the elderly, disabled, and children.
It can also make it simpler for people to access public transportation services, thereby
lowering the demand for private vehicles and easing traffic congestion [45]. Lowering
wait times and streamlining scheduling can also increase the effectiveness of public transit
networks.
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3.2.6. Social and Cultural Impact

It is necessary to consider how these changes will be handled and disseminated to
the general public because the advent of autonomous vehicles will have a big social and
cultural influence. Many occupations in the transportation industry, including those of
truck and taxi drivers, could be replaced by AVs, which could substantially affect the labor
market. It affects various groups of people differently, such as low-income neighborhoods;
thus, it is crucial to consider these consequences and deal with any inequalities that may
emerge [46].

Critical Analysis: One key challenge in planning the driverless city is the Integra-
tion of AVs into existing urban infrastructure. This requires a significant investment in
developing new technologies and systems, such as digital mapping and real-time com-
munication networks, as well as upgrading existing transportation infrastructure, such as
roads, bridges, and traffic control systems.

3.3. Traffic Management

The coordination of self-driving automobiles is referred to as traffic management in
autonomous vehicles, and it aims to improve traffic flow, lessen congestion, and boost road
safety. Numerous methods can accomplish this, including real-time traffic monitoring,
vehicle communication, traffic prediction, and routing algorithms. The infrastructure of
smart cities can also be combined with traffic management systems to create a connected
network that can react to shifting road conditions. The objective is to develop a trans-
portation system that is safer, more effective, and more sustainable. The subject of traffic
management and control in a transportation system with autonomous cars is the focus
of ref. [47]. The author analyzes the difficulties and constraints that must be solved to
fully exploit autonomous vehicle advantages, including increased safety, effectiveness, and
sustainability. The essay also highlights the necessity for a fresh strategy for managing and
controlling traffic in an environment with autonomous vehicles, including the application
of cutting-edge tools like real-time traffic monitoring and vehicle communication. Even if
there is still much to be accomplished in this area, the author concludes that incorporating
autonomous vehicles into the transportation system has great potential.

The main focus of [47] is developing a simulation-based traffic management system
for connected and autonomous cars. The author describes a traffic management system that
uses sophisticated routing algorithms, vehicle-to-traffic control center communication, and
improved traffic flow to lessen congestion. The system’s flexibility and adaptability enable
it to react quickly to shifting traffic conditions. The author also explains the outcomes of
simulations performed with the system, showing how well it works to improve traffic flow
and lessen congestion. The article’s conclusion highlights the potential of simulation-based
traffic management systems to be crucial in creating a secure and effective transportation
network for autonomous cars.

Critical Analysis: The Integration of AVs into existing traffic management systems,
such as traffic control centers, road signs, and traffic lights, is a major concern. This requires
the development of new algorithms and systems that can effectively manage the flow of
AVs and the upgrading of existing infrastructure to accommodate the new technology.

3.4. Environmental Impact and Public Health

The design and use of the vehicles, the charging and power infrastructure for electric
vehicles, and the broader transportation system in which they are incorporated are just a few
of the variables that affect how environmentally friendly autonomous vehicles are [48,49].
Autonomous cars can potentially increase overall sustainability in the transportation indus-
try by lowering emissions and energy use. The design of the vehicles, the charging and
power systems for electric vehicles, and the overall transportation system in which they are
integrated are just a few of the variables that will determine whether or not autonomous
vehicles can reduce emissions and energy consumption in the transportation sector, ac-
cording to research [47]. The authors also point out that there are still a lot of unanswered
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questions regarding how autonomous vehicles will affect the environment and that more
research is required to comprehend these effects and create workable solutions completely.
The link between automated vehicles and the environment is the subject of ref. [50,51],
emphasizing on-demand mobility services. The writers explore both the possible advan-
tages of autonomous vehicles, such as decreased energy use, emissions, and traffic, and the
disadvantages, such as increased travel demand and a decline in the use of public transit.

Several variables, such as the decline in traffic accidents, noise pollution, and changes
in physical activity, will affect how autonomous vehicles affect public health. Policy
choices, technological developments, and changes in transportation behavior and habits
likely influence these variables. To ensure that the development of autonomous vehicles
benefits society, it will be crucial to monitor and evaluate their influence on public health
closely. Increased sedentary behavior and decreased physical activity could result from
autonomous vehicles, exacerbating obesity and other health issues. The need for travel
may rise due to autonomous vehicles, resulting in more clogged roads and less physical
exercise [52,53].

An analysis of how autonomous vehicles affect public health can be found in arti-
cle [54]. The authors examine self-driving cars’ potential advantages and disadvantages,
such as increased safety, physical activity, lower pollution, and screen time. To make sure
that the development of autonomous vehicles has a good impact on public health, there is
a need for technological advancements as well as regulatory interventions. The authors
conclude that interdisciplinary research, stakeholder involvement, and evidence-based
policymaking are necessary to address the health effects of autonomous vehicles.

The significance of taking other developing technologies and transportation trends,
such as the sharing economy, electrification, and urbanization, into account when evaluat-
ing the health effects of autonomous vehicles. They point out that a variety of factors, such
as the design of the vehicles, the charging and power systems for electric vehicles, and the
entire transportation system in which they are incorporated, will affect how these trends
will affect public health [48].

The loss of jobs in the transportation industry exacerbates poverty and social problems.
Decreased amounts of physical activity as people become more dependent on driverless
vehicles. Obesity and an increase in sedentary behavior as a result of extended driving.
Autonomous vehicle data gathering and use raises privacy and security concerns. This
necessitates the creation of fresh systems and algorithms for managing the flow of AVs, as
well as the modernization of current infrastructure to support the new technology.

4. Emerging Technologies

This section presents emerging technologies in autonomous vehicles (AVs). Specifically,
it delves into the intricacies of artificial intelligence (AI) techniques, the integration of cloud
computing, and the use of solar power in electric vehicles.

4.1. Artificial Intelligence Techniques

The development of autonomous cars depends heavily on artificial intelligence (AI). It
allows the vehicle to perceive, comprehend, and act in its environment. To enhance different
areas such as communication, safety, and traffic efficiency in vehicle ad hoc networks
(VANETs), artificial intelligence approaches have been extensively investigated [55]. The
following are some typical AI methods applied in Autonomous Vehicles:

• Machine learning (ML) is utilized for anomaly detection, route optimization, and
traffic prediction [56].

• Reinforcement learning (RL) is a technique for dynamic route planning and adaptive
traffic control.

• Artificial neural networks (ANN) are used to identify, classify, and communicate
about vehicles.

• Fuzzy logic is used to make safety-critical decisions like emergency braking.
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• The use of genetic algorithms (GA) to improve network communication and en-
ergy efficiency.

• Swarm intelligence—utilized in platooning of vehicles for cooperative communication.
• Natural language processing (NLP)—utilized for hands-free operation and other human-

vehicle interactions. Figure 5 shows the graphical representation of AI techniques.

Figure 5. The Evolving Landscape of Artificial Intelligence Techniques.

4.1.1. Machine Learning

Artificial intelligence (AI) is the simulation of human intelligence by machines taught
to think and learn like people. Machine learning, a subfield of artificial intelligence, uses
statistical models and algorithms to enable computers to learn from data and improve
without explicit programming. In other words, whereas AI is a broader concept, machine
learning is a specific method for obtaining AI [57].

Machine learning is a critical component in developing and operating autonomous
vehicles (AVs). It enables AVs to perceive and interpret their surroundings, make decisions,
and interact with their environment in real-time. Table 3 summarizes the machine learning
literature. Various machine learning techniques are used in AVs, including supervised
learning, unsupervised learning, and reinforcement learning [58]. Supervised learning
trains AVs to recognize objects in their environment, such as other vehicles and pedestrians.
This is performed by providing labeled data to the AV’s machine learning algorithms,
which then learn to identify objects based on their features. Unsupervised learning is used
to identify patterns in the AV’s environment, such as traffic flow patterns or pedestrian
behavior [59]. This is performed by clustering data points based on their similarities.
Reinforcement learning trains AVs to make decisions based on rewards and penalties.
For example, an AV can be trained to avoid collisions by being penalized for collisions
and rewarded for successfully avoiding them. The development of autonomous vehicles
depends heavily on machine learning. It enables these vehicles to operate autonomously,
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making judgments and navigating their surroundings [60]. Machine learning is employed
extensively in autonomous cars, particularly in the following areas:

• Sensor Fusion: Autonomous vehicles use a variety of sensors, such as cameras,
LiDAR, radar, and ultrasonic sensors, to learn about their surroundings [61]. Machine
learning algorithms combine and interpret data from various sensors to create a more
accurate and complete image of the area around the vehicle.

• Perception: Sensor data are analyzed by machine learning algorithms to identify
environmental items like other cars, people, and traffic lights [62]. As a result, the
autonomous car can comprehend its surroundings and decide what to do depending
on them.

• Prediction: The behavior of other road users, such as pedestrians and automobiles,
can be predicted using machine learning techniques. The vehicle’s path and any
judgments regarding how to deal with other road users can be made using this
knowledge [61].

• Control: Machine learning algorithms regulate the car’s movement, including steer-
ing, stopping, and acceleration. Combining supervised and reinforcement learning
approaches can achieve this [63].

• Adaptive Cruise Control: Using sensor data to identify the speed and proximity
of other vehicles and modify speed cyber accordingly, adaptive cruise control uses
machine learning algorithms to adapt the vehicle’s speed. The creation of autonomous
vehicles depends on machine learning. It makes it possible for these vehicles to
navigate their surroundings safely and effectively. The development of autonomous
vehicles uses various technologies, including machine learning. However, it is vital
to remember that several obstacles must be overcome before they can be completely
implemented on public roads.

Critical Analysis: Overall, while machine learning is a powerful tool for developing
autonomous vehicles, several challenges still must be overcome before they can be fully
deployed on the roads. These include the need for high-quality data, robust and reliable
algorithms, explainable models, and the ability to handle uncertainty and imperfect infor-
mation.

Table 3. Key Findings from Machine Learning Literature.

Ref. Contribution
Area

Evaluation
Approach

Main Contribution Evaluation Metrics Findings

[64] Object
Detection

CNN-based Object
Detection and
Classification

Accuracy, Speed,
Computational
Complexity

Accuracy, Speed,
Computational
Complexity

Successful real-time object
detection for
autonomous vehicles

[65] Collision
Avoidance

Fuzzy Logic-based
Risk Assessment

Safety, Reliability,
Real-time
Performance

Safety, Reliability,
Real-time
Performance

Effective collision avoidance
system for autonomous
vehicles

[66] Decision-
making

Reinforcement
Learning for
Driving Policies

Efficiency,
Adaptability, Safety

Efficiency,
Adaptability, Safety

Effective decision-making
system for
autonomous vehicles

[67] Trajectory
Planning

Genetic Algorithm
for Optimal
Trajectories

Feasibility,
Optimality,
Scalability

Feasibility,
Optimality,
Scalability

Optimal trajectory planning
for autonomous vehicles

[68] Voice Control Natural Language
Processing for
Voice Commands

Accuracy, Usability,
Robustness

Accuracy, Usability,
Robustness

Successful voice-activated
control for IoT

4.1.2. Federated Learning

Federated learning is an AI approach that enables training models across multiple
decentralized devices or nodes while keeping data localized. This is particularly relevant in
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scenarios like autonomous vehicles, where data privacy, network bandwidth, and real-time
decision-making are crucial. Table 4 summarizes the federated learning literature. In the
context of autonomous vehicles, federated learning offers several benefits:

• Privacy and Data Security: Autonomous vehicles collect massive amounts of data,
including sensor readings, images, and location information. These data are sensitive
and subject to privacy regulations. Federated learning allows models to be trained
locally on individual vehicles without transmitting raw data to a central server, thus
preserving user privacy.

• Low Latency: Real-time decision-making is crucial for autonomous vehicles to navi-
gate safely. Traditional methods of sending data to a central server for training and
receiving updated models can introduce latency. With Federated Learning, models
can be updated on the vehicle or within a localized network, reducing communica-
tion delays.

• Bandwidth Efficiency: Transmitting large amounts of data to a central server for
training can be resource-intensive, especially in scenarios with limited network band-
width [69]. Federated learning mitigates this issue by sending model updates instead
of raw data, saving bandwidth and reducing the strain on communication networks.

• Adaptability: Autonomous vehicles operate in diverse environments and encounter
many scenarios. Federated learning enables models to be trained on specific scenarios
that individual vehicles encounter, leading to more accurate and robust models tailored
to real-world conditions.

• Decentralization: Autonomous vehicles often operate independently or in groups.
Federated learning fits well with this decentralized structure, allowing vehicles within
a fleet to collaborate on model training without relying on a central authority.

However, there are also a few challenges and considerations regarding federated
learning, such as:

• Heterogeneity: Vehicles in a fleet may have varying hardware capabilities, sensor
configurations, and data distributions. Ensuring that models are effectively trained
and generalized across this Heterogeneity can be challenging.

• Communication Overhead: Although federated learning reduces data transmission,
communication is still required during model aggregation and synchronization. Man-
aging this communication overhead efficiently is important.

• Data Drift: Over time, the data distribution that individual vehicles encounter may
change due to varying driving conditions, road layouts, and more. Models need to
adapt to this data drift to remain accurate and reliable.

• Model Aggregation: Combining the updates from various vehicles into a cohesive
model while accounting for potential biases and anomalies is a complex task that
requires careful algorithm design.

• Security: Federated learning introduces new security considerations, such as potential
model poisoning attacks or malicious nodes. Ensuring the integrity of the model and
the participants’ privacy is crucial.

• Promise, Despite these challenges, federated learning holds significant promise for
improving the efficiency, privacy, and adaptability of machine learning models in
autonomous vehicles. It is an area of active research and development, and its success-
ful implementation could contribute to safer and more capable autonomous driving
systems.

Authors in [70] explores the integration of Federated learning and the Blockchain
for autonomous vehicles (AVs). It addresses the challenges and design considerations of
combining these technologies. The authors discuss how federated learning can enhance
AVs’ performance while maintaining data privacy and how the Blockchain can provide
secure and transparent data sharing. The paper highlights the potential benefits of this com-
bination and offers insights into the challenges related to communication overhead, data
privacy, and Blockchain scalability [71]. Overall, the paper contributes to the understanding
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of leveraging Federated learning and the Blockchain for AVs. Authors in [72] focused on the
design of a federated learning-based autonomous controller for connected and autonomous
vehicles (CAVs). It presented a controller design that collaboratively improves over-the-
road performance using data from multiple vehicles. The authors discuss the benefits of
federated learning in enhancing CAV control while considering communication constraints.
Authors in [73] introduced "Bift", a Blockchain-based federated learning system tailored
for connected and autonomous vehicles. The authors addressed data privacy and Security
challenges in federated learning by integrating Blockchain technology. They presented a
system architecture that facilitates data sharing and model aggregation while preserving
privacy.

Table 4. Key Findings from Federated Learning Literature.

Paper Contribution Area Evaluation
Approach

Main Contribution Evaluation Metrics &
Findings

Federated Learning with
Blockchain (2020)

Federated learning
Blockchain for AVs

Challenges analysis Merge federated
learning and
Blockchain

Communication,
privacy, scalability
issues
AV performance,
security benefits

Federated Learning
Controller Design (2022)

CAV controller
design

Federated learning

Not specified Cooperative
controller with
federated learning

Over-the-road
performance,
cooperation

Bift: Blockchain-Based
Federated Learning (2021)

Blockchain for CAVs

Federated learning

Not specified AV model training
with federated
learning

Data sharing,
privacy, efficiency

WITHDRAWN: Efficient FL
with Blockchain (2020)

Federated learning

Blockchain for AVs

Not available Withdrawn paper Paper withdrawn

Privacy-Preserved FL for
Autonomous Driving (2021)

Privacy-preserving
FL
AV collaborative
improvement

Not specified Privacy-enhanced AV
model improvement

Privacy preservation
shared knowledge

4.1.3. Blockchain

Blockchain technology has the potential to revolutionize various industries, and the
automotive sector, including autonomous vehicles, is no exception. Table 5 summarizes
Blockchain in the literature. Blockchain offers several potential benefits and applications in
the context of autonomous vehicles:

• Data Integrity and Security: Autonomous vehicles generate massive amounts of
data from various sensors and systems. Blockchain’s decentralized and tamper-
resistant nature can help ensure the integrity and Security of this data. It can prevent
unauthorized access, tampering, or falsification of vehicle data, which is crucial
for safety and reliability. Authors in [74] proposed a Blockchain-based framework
to enhance the Security of connected and autonomous vehicles (CAVs). As CAVs
become increasingly prevalent, ensuring their security and data integrity is paramount
to preventing malicious attacks and accidents. A comprehensive framework has
been proposed that demonstrates how Blockchain technology can be integrated into
connected and autonomous vehicles to enhance Security, data integrity, and trust. The
proposed framework can potentially address critical security concerns associated with
CAVs, contributing to the safe deployment of these advanced vehicles on the roads.

• Supply Chain Management: Authors in [75] proposed that the Blockchain can track
the entire supply chain of automotive components, ensuring transparency and au-
thenticity. In the case of autonomous vehicles, which rely on advanced sensors and
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hardware, maintaining the integrity of components is essential for safety and perfor-
mance.

• Vehicle Identity and Authentication: Blockchain can provide a secure and tamper-
proof identity for each autonomous vehicle. This can help prevent vehicle identity
theft, unauthorized modifications, and fraudulent activities related to vehicle registra-
tion and ownership.

• Smart Contracts for Mobility Services: Smart contracts, which are self-executing
contracts with the terms directly written into code, can automate transactions and
agreements between autonomous vehicles and other parties. For instance, vehicles
could automatically pay for tolls, charging, or parking without human intervention.

• Decentralized Traffic Management: Blockchain can create a decentralized and secure
traffic management system for autonomous vehicles. It could facilitate communication
and coordination between vehicles, traffic infrastructure, and other stakeholders,
optimizing traffic flow and safety. Authors in [76] presented an innovative approach
to addressing data integrity and security challenges in autonomous vehicles through
a Blockchain-inspired event recording system. By leveraging decentralized data
organization, hashing, and time-stamping, the system aims to provide a trustworthy
and tamper-resistant record of events for post-analysis, accountability, and overall
system reliability.

• Data Sharing and Monetization: Autonomous vehicles generate valuable data that
can be shared with other vehicles, infrastructure providers, and third-party applica-
tions. Blockchain can enable secure and controlled data sharing, allowing vehicle
owners to monetize their data while retaining control over who accesses it.

• Insurance and Claims Processing: Blockchain’s transparency and traceability can
simplify the insurance process for autonomous vehicles. Smart contracts could auto-
matically trigger claims processing when predefined conditions (such as an accident)
are met, speeding up the resolution process.

• Decentralized Car-Sharing and Rentals: Blockchain can support peer-to-peer car-
sharing and rental platforms for autonomous vehicles. Smart contracts could manage
reservations, payments, and access control without relying on intermediaries.

• V2X Communication: Vehicles-to-everything (V2X) communication is crucial for
autonomous vehicles to interact with other vehicles and infrastructure. Blockchain
can enhance the Security and privacy of these communications, preventing malicious
attacks and unauthorized access.

Table 5. Key Findings from Blockchain Literature.

Paper Contribution Evaluation Main Evaluation
Area Approach Contribution Metrics & Findings

[74] Security Simulation Blockchain
framework

Data integrity, security

CAVs transparency, trust

[75] Resilience Literature review AV security
schemes

Attack analysis,

Industry 4.0 categorization, gaps

[76] Event Not mentioned Event recording
system

Data integrity,

AVs tamper resistance

4.1.4. Fuzzy Logic

Fuzzy logic is a mathematical tool that can be used in autonomous vehicles to handle
uncertainty and vagueness in the decision-making process. In autonomous vehicles, fuzzy
logic can help model the human-like decision-making process by considering various
factors that may affect the driving situation, such as weather, traffic conditions, road condi-
tions, and pedestrian behavior [77]. Fuzzy logic assigns membership functions to various
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input variables and rules that map the inputs to output variables. These membership func-
tions and rules can be derived from expert knowledge or learned from data using machine
learning techniques. The output of the fuzzy logic system is a degree of membership to a
specific category, such as a speed limit or a safe distance to another vehicle.

Fuzzy logic can be used in AI to simulate the ambiguous and imprecise information
frequently present in sensor data, natural language, and other sources. Allowing the AI
system to make conclusions based on approximate rather than precise knowledge can
produce more human-like reasoning [78]. Fuzzy logic is utilized in autonomous vehicles to
assist the vehicle in making judgments based on incomplete or ambiguous information [79].
An autonomous vehicle may use fuzzy logic to decide the best course of action when
navigating a road with plenty of other vehicles. The car may consider variables including
road conditions, traffic signals, and other vehicles’ speeds and distances from it. It can
then utilize this knowledge to decide whether to brake, accelerate, or turn [80]. The vision
system of autonomous vehicles can also use fuzzy logic. In this instance, the vehicle uses
cameras and LiDAR as sensors to learn more about its surroundings [80]. The control
system of autonomous vehicles uses fuzzy logic as well. The vehicle’s steering, accelerating,
and braking are all under the control of the control system [81]. The vehicle can employ
fuzzy logic to identify the optimal action based on the circumstances and the desired result.
Because it enables autonomous vehicles to manage imprecise and uncertain information
and make judgments based on it, fuzzy logic is a useful tool. This can make it easier for
the car to maneuver through challenging and changing circumstances, such as congested
highways or shifting weather conditions [82].

The fuzzy logic system must be carefully designed to ensure that it can effectively
handle the specific types of uncertainty and imprecision in the vehicle’s environment.
Additionally, the system must be properly calibrated and fine-tuned to ensure that it
produces accurate and reliable results. Fuzzy logic systems are sensitive to input data, and
it is essential to validate the data to ensure it is accurate and reliable. Even small errors in
the input data can lead to significant errors in the output of the fuzzy logic system. Table 6
summarizes fuzzy logic in autonomous vehicles.

Table 6. Fuzzy Logic in Autonomous Vehicles.

Paper Contribution Area Evaluation
Approach

Main
Contribution

Evaluation
Metrics

Findings

[83] Path Following Fuzzy Controller Commands Steering
Speed

Successful

[84] Lane Change Fuzzy System Commands Steering
Acceleration

Effective

[85] Obstacle Avoidance Fuzzy System Commands Steering
Speed

Promising

[86] Collision Avoidance Fuzzy System Safe Path - Efficient

[87] Adaptive Cruise Fuzzy System Optimal
Speed

Following
Distance

Improved

4.1.5. Reinforcement Learning

A subset of machine learning known as reinforcement learning (RL) is concerned
with teaching agents—such as software or robots—how to make decisions in a given
environment. The agent learns how to make better judgments in the future by using
the rewards it receives or incurs as a result of its activities [88]. To build more complex
and effective systems, reinforcement learning can be combined with other forms of AI,
such as supervised learning and unsupervised learning. For instance, an RL agent can
be taught to recognize objects in an image using a combination of supervised learning
and unsupervised learning techniques and then utilize that information to decide how to
navigate in its surroundings [10].
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One of the important uses of RL is in autonomous vehicles, where the RL agent may
adapt its driving style over time while considering traffic, road conditions, and other
variables. Robotics also uses RL to teach its agents how to carry out challenging tasks
like grabbing things or exploring uncharted territory [89]. The recent research on RL for
automobiles has focused on developing and enhancing RL algorithms to help autonomous
vehicles make prudent driving judgments. The summary of Reinforcement Learning in
Autonomous Vehicles is shown in Table 7.

Table 7. Reinforcement Learning in Autonomous Vehicles.

Paper Contribution Area Evaluation Approach Main Contribution Findings

[90] Navigation RL Controller Optimal Decisions Successful

[91] Cooperative Driving Centralized RL Traffic Flow Improved

[92] Adverse Weather RL Controller Driving Decisions Adaptive

[93] Learning from Humans RL Framework Driving Skills Mimicry

[94] Vehicle Platooning Decentralized RL Fuel Efficiency Enhanced

4.1.6. Deep Reinforcement Learning

Autonomous vehicles are trained using this technique. Deep neural networks are
used in Deep Reinforcement learning (DRL), a kind of reinforcement learning, to allow
RL agents to learn from highly dimensional, non-linear situations. According to studies,
DRL can teach autonomous vehicles to change lanes in traffic properly, navigate through
uncharted terrain, and make other driving decisions [89].

• Multi-Agent RL: This technique teaches autonomous vehicles how to communicate
with other cars and pedestrians in a shared space. Multiple agents (like autonomous
vehicles) can learn from one another and enhance their decision-making using this
kind of RL. Multi-agent RL can teach autonomous vehicles to properly negotiate
challenging traffic situations, such as roundabouts and intersections, according to
research articles [95].

• Model-based RL (MBRL): Model-based RL techniques create better judgments for the
RL agent by predicting the effects of various actions using a model of the environment.
According to studies, MBRL can be used to increase the sample efficiency of RL
algorithms, enabling the training of autonomous vehicles to happen more quickly
and with fewer data [96]. The development and enhancement of RL algorithms that
can help autonomous vehicles make prudent driving judgments has been the focus
of recent research in RL for automobiles. This encompasses the application of model-
based, multi-agent, and deep reinforcement learning approaches and the fusion of RL
with other AI methodologies [97].

RL algorithms can require a large amount of data to train effectively. Autonomous
vehicles must be able to make decisions in various conditions and environments, and it can-
not be easy to collect enough data to train the RL algorithm to handle all possible scenarios.
Ensuring that the vehicle is making safe decisions in RL can be difficult. RL algorithms are
not inherently safe, unlike traditional control systems designed to guarantee certain safety
properties. Ensuring the vehicle will not make decisions that could lead to accidents or
other dangerous situations is challenging. The summary of Deep Reinforcement Learning
in Autonomous Vehicles is shown in Table 8.
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Table 8. Deep Reinforcement Learning in Autonomous Vehicles.

Reference Contribution Area Evaluation Approach Main Contribution Findings

[98] Navigation Deep RL Controller Optimal Decisions Improved

[99] Vehicle Platooning Deep RL-based System Fuel Efficiency Enhanced

[100] Challenging Scenarios Deep RL Controller Driving Decisions Effective

[101] Learning from Humans Deep RL Framework Driving Skills Adaptive

[102] High-Speed Obstacle Avoidance Deep RL-based System Rapid Decisions Accurate

4.1.7. Genetic Algorithm

Genetic algorithm (GA) is a powerful optimization technique used in autonomous
vehicles to find optimal solutions for various problems, such as route planning, trajectory
planning, and vehicle control. The GA is based on the principles of natural selection and
evolution, and it works by creating a population of candidate solutions and evolving them
through selection, crossover, and mutation [103]. A class of optimization methods called
genetic algorithms (GAs) is motivated by the ideas of natural selection and evolution.
Genetic operators like selection, crossover, and mutation evolve a population of solutions in
GAs over several generations. Various domains, including optimization, machine learning,
and control systems, have extensively used GAs. A summary of the genetic algorithm used
in autonomous vehicles is shown in Table 9.

Table 9. Genetic Algorithm in Autonomous Vehicles.

Reference Contribution Area Evaluation Approach Main Contribution Findings

[104] Fuel Efficiency GA-based Approach Speed, Gear Optimization Savings

[105] Traffic Flow GA-based Approach Speed, Headway Optimization Improvement

[106] Obstacle Avoidance GA-based Approach Control Parameters Success Rate

[107] Vehicle Routing GA-based Approach Routing, Charging Optimization Efficiency

[108] Traffic Flow GA-based Approach Lane-Changing Optimization Reduced Time

GAs can be used to improve a number of the decision-making and control systems
in autonomous vehicles [109]. The vehicle’s course planning, control settings, and sensor
fusion algorithms can all be improved with GAs. The advantage of GAs for autonomous
vehicles is their ability to tackle difficult, high-dimensional, and non-linear optimization
issues. In addition, GAs can withstand environmental noise and uncertainty, which is a
prevalent feature of real-world driving situations. They can also optimize the trade-off
between various performance measures, including comfort, safety, and fuel efficiency.

The creation and advancement of GA-based optimization algorithms have been the
main research topics in [110]. One area of research is using multi-objective GAs to optimize
different performance indicators simultaneously. The usage of hybrid GAs, which combines
GAs with other optimization algorithms like particle swarm optimization and simulated
annealing, is another field of research. Ref. [111] presents a genetic strategy for adaptive
navigation of a robot-like simulation vehicle [112]. The recommended algorithm creates
practical paths by conducting an adaptive search on populations of plausible courses of
action. The program’s performance is demonstrated on problems involving cars driving
in two-dimensional grids and contrasted with that of a simple greedy algorithm and a
random search technique [113].

Since GAs need a lot of computing, they may not be suitable for real-time applications
like autonomous vehicles. Additionally, GAs are sensitive to halting criteria, genetic
operators, and initial population selection. It can be challenging to select an acceptable
initial population, genetic operators, and stopping criteria, and even minor mistakes in
these decisions can result in large behavioral problems.
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4.1.8. Natural Language Processing

A branch of AI called “natural language processing” (NLP) studies how computers
and human languages interact. NLP enables computers to naturally comprehend and
respond to human language by processing and analyzing human language data, such as
speech, text, and written language. NLP can be employed in autonomous vehicles to help
them comprehend and communicate with their human passengers. Additionally, it can
help the car comprehend and comply with oral instructions, like “Take me to the closest
gas station” or “What is the weather like today?” NLP can also help the car comprehend
and react to written content like emails or text messages. According to [114], NLP can let
autonomous vehicles communicate with their human passengers naturally and intuitively.
In addition, NLP can increase passenger comfort and safety by allowing cars to comprehend
and comply with verbal commands like “Take me to the closest gas station” or “What is
the weather like today?”

The topic of ref. [115] has been the creation and enhancement of NLP algorithms. They
use deep learning methods to enhance the precision and fluidity of the NLP system, such as
recurrent neural networks and transformer networks. The use of multimodal NLP, which
integrates speech, text, and additional modalities like images and videos to increase the
vehicle’s comprehension of the passenger’s intent, is another field of research [116]. NLP,
however, may have significant drawbacks and difficulties. One of its key drawbacks is that
NLP can be sensitive to differences in the human voice, and language might be an issue
in real-world settings. Background noise and other environmental elements can also be
a concern in real-world settings because NLP can be sensitive to them [117]. NLP can be
sensitive to human voice and language variations, which can be problematic in real-world
environments like Autonomous Vehicles. Additionally, NLP can be sensitive to background
noise and other environmental factors. A summary of NLP is discussed in Table 10.

Table 10. Natural Language Processing in Autonomous Vehicles.

Reference Contribution Area Evaluation Approach Main Contribution Findings

[118] Voice Assistant DNN and Rules Meaning Extraction Accuracy, Robustness

[119] Safety NLU Integration Situational Awareness Enhanced

[120] Intelligent Transportation NLP Framework User Understanding Natural Interaction

[121] Entertainment Control Speech Recognition User Intents Personalized Control

[107] Dialogue Management RL and Hierarchical Structure Multi-turn Conversations Natural Communication

4.1.9. Swarm Intelligence

The study of decentralized systems’ behavior, such as the behavior of ants, bees, or
birds, as well as the collective intelligence that develops through interactions among the
individual agents, is known as swarm intelligence. In swarm intelligence, a collection of
straightforward agents known as “swarm agents” cooperate to accomplish a single objective.
Table 11 summarizes swarm intelligence in autonomous vehicles. Swarm intelligence can be
utilized in autonomous cars to enable a collection of vehicles to collaborate to accomplish a
common objective, such as traffic flow optimization, cooperative navigation, and emergency
response. By altering the speed and spacing of the cars, a group of vehicles can cooperate
to improve traffic flow on a roadway using swarm intelligence [122]. Swarm intelligence
can allow a collection of vehicles to cooperate to accomplish a common goal, which is one
of its main benefits for autonomous cars [114]. Swarm intelligence also enables vehicles
to share information and coordinate activities, enhancing the decision-making process’s
safety and effectiveness. Developing and enhancing swarm intelligence algorithms have
been the focus of recent swarm intelligence research for autonomous vehicles. The use of
particle swarm optimization (PSO) and ant colony optimization (ACO) methods to improve
the behavior of the swarm agents is one field of research. Using swarm intelligence to
enable a collection of vehicles to cooperate and work toward a common objective, such
as traffic flow optimization, cooperative navigation, and emergency response, is another
area of research [123]. Swarm intelligence can be sensitive to variations in the behavior
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of the individual agents, which can also be a problem in Autonomous Vehicles. Careful
design, implementation, and validation are essential to ensure that the swarm intelligence
algorithm performs effectively and safely in the real-world environment.

Table 11. Swarm Intelligence in Autonomous Vehicles.

Reference Contribution Area Evaluation Approach Main Contribution Findings

[58] Vehicle Routing PSO Algorithm Route Optimization Efficiency

[124] Cooperative Perception Swarm-based Algorithm Sensing, Perception Enhanced

[125] Path Planning PSO Algorithm Cooperative Planning Efficiency

[120] Adaptive Cruise Control Swarm-based Algorithm Traffic Flow, Fuel Consumption Improved

[126] Vehicle Platooning PSO Algorithm Formation, Movement Optimization Efficiency

4.2. Cloud Computing

The technology behind autonomous cars aims to lessen our reliance on fossil fuels,
reduce traffic jams, and make it easier for the disabled and the elderly to travel. The
employment of technology in autonomous vehicles allows for a 60% reduction in pollu-
tants and a 90% reduction in road accidents. Automobiles employ AI methods for data
management and analysis to make sense of the vast volumes of information generated
by sensors and other onboard equipment. Voice recognition, picture identification, and
decision-making are just some of the many uses for machine learning algorithms, deep
learning, reinforcement learning, and simultaneous localization and mapping (SLAM) in au-
tonomous vehicles. Edge computing, vehicular cloud computing (VCC), software-defined
networking (SDN), network function virtualization (NFV), and named data networking are
all promising new developments in the field of autonomous vehicles (NDN). While NFV
emphasizes computational power, NDN facilitates efficient data transfer, edge computing
enables real-time data processing, SDN enables interoperability between different data
sources, virtualized compute infrastructure improves traffic management and road safety,
and VCC focuses on data center consolidation. These advancements in technology are
crucial to ensuring that autonomous vehicles can be used safely and effectively [127].

The hardest part of securing autonomous automobiles is designing an edge computing
infrastructure. Autonomous automobiles need enough computing power, redundancy, and
security to prevent accidents. Dealing with massive amounts of real-time data is tough.
Due to their mobility, edge computing systems have strict energy consumption constraints,
and sensor data are usually quite varied. High-speed autonomous automobile safety
demands plenty of computing power with low energy use. Vehicle-to-everything (V2X)
communications can improve peripheral performance and energy. Studying how V2X-
enabled automobiles interact with one other and infrastructure is needed. Autonomous
driving requires safeguarding edge computing systems from attacks across the sensor and
computing stack [128]. Edge YOLO is a method for detecting movable objects proposed
in the study and is adapted specifically for edge computing technology. The Edge YOLO,
based on the latest object detection network in the YOLO series, YOLOV4, is superior for
edge computing circumstances based on 5G for traffic safety monitoring and driving assis-
tance. The cloud manages timed training and automatically updates weights depending
on new data, while the edge handles model reasoning and data uploads when conditions
are idle [129].

Vehicular cloud computing (VCC), which advances cloud computing, enables in-
telligent transportation, autonomous driving, vehicle control, Internet surfing, online
documentation, and infotainment applications. The authors’ survey examined privacy and
safety issues in VCC research. The authors examine security, privacy, VCC design, feature
analysis, and application scenarios. To address VCC security and privacy challenges, the
authors first evaluate the various attack surfaces of linked VCC, including the in-vehicle
network, V2X network, and vehicular cloud [130]. A smart autonomous vehicle parking
(SAVP) system is created to help AVs find parking places indoors and outside.
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Various techniques have been explored for object detection and tracking in the lit-
erature. One common approach is using LiDAR-based object detection, where LiDAR
sensors measure the distance and position of objects in the vehicle’s vicinity. Research
works, such as [131,132], have focused on using LiDAR data for accurate object detection
and tracking. The research work of [131] proposes a comprehensive data acquisition and
analytics platform specifically designed for automated driving systems. The platform
integrates various data sources, including LiDAR data, from connected vehicles to provide
real-time and post-processing analytics. The study focuses on leveraging LiDAR-based
object detection to identify and track objects in the vehicle’s surroundings accurately. By
utilizing LiDAR sensors’ ability to measure the distance and position of objects in 3D
space, the platform aims to improve object detection and tracking accuracy, enabling more
robust and safe autonomous driving [133,134]. Additionally, datasets like “V2V4REAL: A
Real-World Large-Scale Dataset for Vehicle-to-Vehicle Cooperative Perception” have been
developed to facilitate research in cooperative perception, where multiple vehicles share
their perception data to enhance the accuracy of object detection and tracking.

The SAVP system uses Fog-computing and Blockchain technologies to improve the
collaborative IoT-cloud platform for building and administering AV SP systems. Fog nodes
connect edge devices that support the Internet of Things to parking-related services [135].
A lightweight, integrated Blockchain and cryptography (LIBC) module at each fog node
authorizes and grants AV access in every parking phase to meet privacy and security
concerns. A proof-of-concept implementation of the proposed SAVP system showed that
its average response time, efficiency, privacy, and security were very good, opening the way
for a proven system [136,137]. The authors in [138] proposed a cross-domain solution for
the Cognitive Internet of Vehicles to achieve ultra-flow delay and ultra-high dependability
in autonomous driving. This study’s two most important innovations were the global AI
fog-computing paradigm and the IoT AI service architecture.

Cloud Challenges in Autonomous Vehicles

Cyberattacks, ransomware, and vehicle theft can affect autonomous automobiles [139–143].
Radar Interference Management: Thousands of connected cars using radar technology
can cause dangerous radar blindings. Integrating disparate vehicular networks raises new
obstacles Scalability issues: A deluge of data from many connected devices can make
it difficult for the edge node to do analytics while achieving autonomous car latency
constraints [128]. Autonomous vehicles are expensive because they need sophisticated
sensors and computer systems to ensure their reliability and safety. Hence, Vehicle-to-
Everything (V2X) connectivity technology can cut autonomous car prices. Cooperative
sensing’s main challenge is sharing real-time infrastructure sensor data with autonomous
vehicles and balancing infrastructure sensor and on-vehicle sensor costs. Edge computing
could solve the challenge of real-time data sharing between infrastructure sensors and
autonomous vehicles by processing and compressing at both the edge node (car) and edge
server (infrastructure) [127].

4.3. Solar Power Electric Vehicles

Ad hoc networks provide an environment of cooperation and coordination among
self-operated nodes, which allows communication to occur typically through several hops.
Nodes sometimes refuse to work with one another because of their social likeness and
mobility. This study examines the primary causes of selfish behavior adaptation in nodes
and management strategies for such nodes. It is possible to control the selfish nodes
by restricting or encouraging their network participation. In recent literature, credit-
based incentive programs are thought to be more effective and efficient for dealing with
misbehaving or uncooperative nodes in ad hoc networks. Additionally, incentive-based
methods are designed and implemented using game theory. This study concludes that
incentive-based or evolutionary-based approaches can control a node’s selfishness [5].
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A thorough analysis of the design challenges, communication strategies, and routing
protocols of UAVs with unresolved research questions. In UAV communication, preserving
data links’ integrity is an ongoing research topic. The data-centric routing algorithm
opens up new research possibilities. The topic of UAV communication while addressing
nodes in 3D is still substantially unexplored. The distribution of audio-video data severely
constrains the FANET application scenario’s requirement for bandwidth. Noise is added to
the transmission as data transfer bandwidth is increased. Network latency reduction in
dense ad hoc network deployment remains a crucial research area. The non-Line-of-Sight
communication FANET architecture is still substantially unexplored. One of the biggest
obstacles facing FANETs is still communication. The multi-level routing protocols and data-
centric routing algorithms are promising new routing techniques. FANET communicates
using a variety of bands. FANET needs standards and a strong algorithm to maintain
stability in a hostile environment like that seen in flight. Strong algorithm design is a
popular area of research for the global scientific community [144].

Researchers have paid more attention to VANET due to its greater mobility, dynamic
connection, and decentralized administration. Security is the main issue preventing the
VANET from disseminating data effectively. Effective security frameworks are necessary
for the VANET’s secure message processing & sharing. There are several network security
issues that VANET faces that are also present in traditional wireless networks. However,
because of the unbounded network’s size, high mobility, frequent information sharing,
and regular topology changes, security issues in VANET are both inherent and unique. In
addition to these problems, privacy considerations and concerns about authentication and
non-repudiation are difficult to reconcile. This study presents a thorough literature evalua-
tion of the current data dissemination approaches and data-related traits and applications
for safety and infotainment in VANET [145].

Solar-powered electric vehicle (EV) charging in vehicular ad hoc networks (VANETs)
refers to a system for charging electric vehicles using solar energy and wireless communi-
cation technology in a decentralized manner. In this system, EVs act as mobile nodes in a
VANET and are equipped with photovoltaic panels to generate sun electricity. The gener-
ated electricity is stored in a battery to power the vehicle. When an EV needs to be charged,
it searches for other nearby EVs with excess energy stored in their batteries and requests
to be charged wirelessly. If a neighboring EV agrees to the request, it transfers some of
its stored energy to the requesting EV. This process is known as “vehicle-to-vehicle (V2V)
charging” or “peer-to-peer (P2P) charging” [146] Solar-powered EV charging in VANETs
provides several benefits over traditional centralized charging systems, including [147]:

• Decentralization: With VANETs, there is no need for a centralized charging station,
which can reduce the cost of infrastructure and increase accessibility for EVs.

• Increased efficiency: By allowing EVs to charge from each other, the system can better
use the available energy and reduce the need for additional energy generation.

• Reduced dependence on the grid: Solar-powered VANETs reduce the dependence on
the grid, which can be beneficial in areas with unreliable or absent grid infrastructure.

• Increased energy security: Having multiple energy sources available in the VANET
makes the system more resilient to failures and less susceptible to energy blackouts.

5. Cyber Attacks and Management

This section will provide an overview of cyber attacks affecting autonomous vehicles
and the corresponding defensive strategies to mitigate such risks. The following discussion
will focus on the different types of traditional security devices, threat modeling approaches,
authentication schemes, and zero trust architecture.

5.1. Cyber Attacks

Over the past few years, autonomous automobile excitement has increased quickly as
numerous major technology companies support the idea. Google established the Waymo
subsidiary to create and sell consumer-ready autonomous cars worldwide. The organiza-
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tion wagers that driverless cars will soon fundamentally alter how we travel, along with
numerous other players in the tech and automotive sectors. Safer roads, less reliance on
fossil fuels, and more affordable transportation will all be dramatic improvements. Figure 6
shows the potential attacks on sensors, protocols, and in-vehicle systems.

Figure 6. Autonomous Vehicles Attack Surface.

5.1.1. Various Sensor Attacks

The safety of autonomous vehicles is strongly dependent on the accuracy of the
sensors they use to assess the state of the road and make driving judgments. Sensor-related
heterogeneous and multi-modal features are included in the collected data, and these
characteristics are further combined to provide useful decision rules. As a result, sensors
are crucial to how AVs make decisions. Figure 7 shows different types of sensors, and
Table 12 shows the use of those types [148]. Most AV sensors can be accessed internally;
these programs ensure the car keeps going and functioning.

Just a few particular kinds of applications are associated with the perception of the
environment. The method of transforming the physical world into digital information for
further processing is called sensor perception, like calculating distances or forces. Attackers
are interested in using sensor networks to their advantage [149]. Although only focused on
intrusions through vulnerable channels for input and output, such as ports for wireless
maintenance, Bluetooth, and systems for keyless entry, the research of [63] examines
external threats.

5.1.2. Ultrasonic Sensor Attacks

The ultrasound sensor transmits and receives waves of ultrasound, which are high-
frequency sound waves humans cannot hear. Typically, sounds with frequencies greater
than 18 kHz are invisible to most individuals. It uses the propagation time of reflected
ultrasonic pulses to determine the distance to the closest barriers. This capacity makes
ultrasonic sensors suitable for automatic or partially automatic parking in Autonomous
Vehicles [150]. Similar to other attacks, jamming and spoofing threaten the ultrasonic sensor.
Spoofing attack attempts to use the expertly designed ultrasound to fabricate a barrier [151].
When no real obstacles are within the detecting range, the spoofing assault can produce
fake ones.
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Figure 7. Types of Sensors.

Table 12. Usage of Sensors.

Sensor Use of Sensor

Ultrasound Parking assistance

Camera Traffic sign recognition, Lane detection, Obstacle detection

LiDAR Collision Avoidance

MMW Radar Adaptive Cursive Control

GPS Navigation

On the other hand, if there are additional barriers, this attack might quickly lead to
confusion when Autonomous Vehicles are making decisions. Beyond this study, Authors
in [152] further illustrates the efficacy of the adaptive spoofing assaults by putting up
virtual barriers against both commercially available sensors built into Autonomous Vehicles.
Jamming attacks are less complex but dangerous because they seek to lower the ultrasonic
sensor’s Sound to Noise Ratio by continuously producing ultrasound. Tests on Volkswagen,
Audi, Ford, and Tesla revealed that jammer attacks could cause vehicles to become confused
when the driver is not given any advance notice of potential difficulties [153]. Another
investigation by [152] demonstrates that jammer attacks are successful against Tesla vehicles
operating in both the summons and self-parking modes. Both times, an automobile that is
stuck may run to avoid objects. Ultrasonic sensor attacks can also use acoustic quieting
techniques like cloaking and sound cancellation. In ref. [152], authors proved the viability
of attacks on ultrasonic sensors, including jamming attacks, adaptive spoofing, and random
spoofing. They demonstrated how they could lead to poor autonomous driving decisions
for moving vehicles.

5.1.3. Light Detection and Ranging (LiDAR) Attacks

LiDAR uses a particular type of sensor for range detection of target [154]. It operates
by emitting a light pulse and measuring the time required for light to be reflected off by
a faraway surface. As LiDAR is the primary method employed by speed measurement
devices on the (underground) market, jammers are readily confused. LiDAR, on the other
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hand, can detect objects that reflect the signal [155]. If the signal is absent, the system
concludes there is no object. Absorbing light, rain, and snow can drastically lower the
remission frequency. By relaying the initial signal from the LiDAR system of a target vehicle
from a different location, the assault, a development of a replay attack, aims to produce
phony echoes.

Perception is critical in self-driving systems, so onboard cameras and LiDARs are
examples of sensors that scan the environment. Ref. [156] has demonstrated how spoofing
assaults, in which attackers trick a self-driving car into thinking it is another vehicle by
carefully sending laser beams to the LiDAR of the victim sensor, can impair LiDAR-based
perception. However, the effectiveness and generality of existing assaults are constrained.
The vulnerability of today’s Light detection and ranging perception systems was examined
by [156], who discovered that Autonomous vehicles are prone to spoofing attacks because
occlusion patterns are ignored in LiDAR point clouds. Ref. [156] developed work based
on their recognized weakness and launched the first black box spoofing attack, which
regularly achieves a mean success rate of more than 80% on every target model. They
conducted the initial defense analysis and recommended CARLO to decrease the dangers
of LiDAR spoofing. When CARLO recognizes falsified data by interpreting occlusion
patterns ignored as invariant physical characteristics, the average attack rate of success
has dropped to 5.5 percent. At the same time, they proposed SVF as the initial step in
researching a general framework for reliable LiDAR-based perception. SVF includes the
hitherto disregarded physical factors in end-to-end learning. SVF lowers the mean attack
rate of success to around 2.3 percent.

In ref. [157], the authors examined camera–LiDAR fusion in the context of AV defense
against LiDAR spoofing attacks. According to recent research, LiDAR-only perception is
susceptible to LiDAR spoofing assaults, but they also showed that camera-LiDAR fusion is
unaffected by these attacks. They devised a brand-new, context-aware technique called the
“frustum attack” and demonstrated how all eight of the most popular perception algorithms
have been developed for three LiDAR-only designs as well as three camera-LiDAR de-
signs (Light Detection and Ranging) fusion architectures are notably vulnerable to it [158].
Additionally, they showed that the frustum attack respects consistency between camera
and LiDAR semantics, making it undetectable to conventional defenses against LiDAR
spoofing. Last but not least, they demonstrated how the frustum attack might be used
repeatedly over time to create covert longitudinal attack sequences that would compromise
the tracking module and negatively affect end-to-end autonomous vehicle control.

One area of extensive exploration involves estimating the sideslip angle of autonomous
vehicles using a consensus Kalman filter. By synthesizing the kinematics and dynamics
of the vehicle, this approach aims to collaboratively refine localization estimates from
different sensors, leading to a more robust and accurate determination of the sideslip
angle. Additionally, researchers have delved into considering signal measurement charac-
teristics in automated vehicle sideslip angle estimation. This involves accounting for the
idiosyncrasies and limitations of individual sensors to achieve more accurate fusion and
localization outcomes. Integrating inertial measurement units (IMUs) and global navigation
satellite systems (GNSS) with heading alignment has garnered significant attention. This
fusion enhances sideslip angle estimation by combining high-frequency data from IMUs
with the global positioning data from GNSS. At the same time, careful heading alignment
ensures precise localization even in challenging environments. Parallel adaptive Kalman
filters have been proposed to aid IMU-based sideslip angle and attitude estimation. This
allows the system to dynamically adjust filtering parameters for optimal accuracy in vary-
ing conditions. Moreover, research efforts have been directed toward mitigating IMU yaw
misalignment by fusing information from various sensors within the vehicle, enhancing
the overall accuracy of sideslip angle estimation. An intriguing avenue explored involves
single antenna GNSS/IMU fusion with observability analysis. This approach combines
data from a single GNSS antenna and an IMU while assessing the system’s observability,
ensuring that the fused estimates reflect the vehicle’s true state.
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5.1.4. Attacks against Cameras

Cameras are used for lane departure warnings, traffic sign recognition, and backward
cameras for parking assistance [159]. Short-range radars (SRR) detect blind spots and
provide Cross-traffic cautions [154,160]. Given its role in visual perception and translation
of video into digital signals for the vehicles’ computer systems, the camera is an important
component of the AV operational systems. The cameras have a variety of functions in the
AV systems’ operations. First, they are helpful for vehicle object tracking and traffic light
detection. It is also obvious that the numerous applications and uses of AV systems directly
reflect the various types of system threats. For instance, to ensure that the vehicles read
and identify the incorrect information, adversaries can intercept the data and light patterns
for traffic signals [148,161,162].

The cameras locate obstacles, headlights, and traffic signs, among other things. They
could also be applied. Cameras will be partially blocked by high-beam headlights or
by the headlamps of automobiles in the opposite direction. Security issues like false or
object detection may result from this [163]. The camera contains additional oxide-based
(CMOS) sensors that blow up due to the intense beams. According to an article in the
MIT Technology Review, the Google Autonomous Car is vulnerable to this issue, in which
low light causes the camera to become blind. Recent terrible events at Tesla demonstrate
that neither the car nor the driver noticed a white bottle against a well-lit sky. This is a
serious issue. This raises the question of whether a CAV’s powerful, brilliant lights will
raise concerns about the vehicle’s safety. Furthermore, a natural occurrence that disturbs
the lighting conditions for camera systems due to environmental instability may occur.

Ref. [164] demonstrates the effectiveness of using multiple light sources to blind a
commercially available camera system, the MobilEye C2-270. It demonstrates that using a
laser or LED matrix may cause the camera to go blind. Authors in [164] demonstrated that
an attacker may repeatedly turn the light ON and OFF in a lab setting to trick the camera.
Infrared light aspects were studied by [153] in 2021, who also developed the ICSL Attack.
This novel security risk can affect how an autonomous vehicle perceives its environment
and result in SLAM errors. They discovered that invisible IR lights could properly trigger
the sensor compared to human sight. In addition, the infrared light in the camera appears
magenta, which activates several visible light-sensitive pixels and can be used to identify
crucial locations for the autonomous vehicle’s SLAM process.

They investigated how to generate invisible traffic lights by utilizing these properties
and made fictitious invisible objects. The in-car user experience was ruined, and SLAM
faults were added to the AV. They carried out the ICSL Attack using readily available IR
light sources, and under various conditions, the Tesla Model 3 and an enterprise-level
self-driving platform were tested. They verified the performance of the ICSL Attack
and the fact that the self-driving vehicle industry has not yet been considered, creating
significant security risks [165]. By analyzing the unique characteristics of the IR light, they
offered a detection module based on software to protect the autonomous vehicle from the
ICSL Attack.

5.1.5. Attacks against GPS

The primary purpose of satellite systems is to give cars access to time and location
recognition. Different software and techniques have been created to improve the ability of
gadgets to know their location and time. The global positioning system is a typical example
of such a system (GPS). Coded data and signals transmit GPS data and information from the
device to the satellites. The data being shared are frequently not encrypted. To safeguard
communications, the GPS systems utilize their codes [166]. The ability to decode and
comprehend the data communicated in the devices is only available to authorized entities.
The performance of the transmission systems has been improved in the present satellite
systems, but enhancements have also been made to the security measures used throughout
the communication channels. Several strategies are now in use to properly supply the
location and time codes for the devices, in this case, the vehicles, and to supplement and
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manage the GPS data. These systems frequently employ three fundamental strategies and
methods. First, satellite-based technology is frequently employed in aircraft, namely in the
landing procedures and processes [167].

A few satellites and additional ground-based stations are used in the techniques. These
satellite-based methods only work in select places and regions. The earth’s satellites that
control these communications circle the planet, typically located about 20,000 km above
its surface. Because of their placement at such great altitudes, satellites are susceptible
to various impacts and influences [168]. The contact of the satellites with the powerful
radiation and rays of the sun, which affect the satellites’ ability to transmit signals, is one of
the natural ways they are impacted. Precise timing is necessary for the satellites to function
properly and assign positions and times. When a signal transmission is compromised, the
AVs’ ability to calculate time and distance also be negatively impacted. The GPS gives
absolute position data with an accuracy of one meter. This is difficult, though, because there
are so many recognized problems with GPS and ways that the technology is hampered [169].
These shortcomings are frequently overcome by using more satellites to provide wider
coverage. Although GPS is a widely used standard, military devices employ encrypted
communications. GPS is common, yet rogue signals are simple because of the system’s
clear deception and blocking mechanisms.

The broadcast of false GPS messages, even though they are true and legitimate, to
deceive GPS recipients is a very intricate part of the GPS spoofing mechanism. For instance,
a spoofing attack starts by delivering signals consistent with the signals the target recipient
sees. Then, the faked signals’ strength is increased while their direction is gradually altered.
In a perfect world, GPS devices would always be programmed to use the strongest signal,
making them significantly more dependable. Theoretically, this method is rather simple
due to the hardware constraints needed to generate realistic signals. The secondary satellite
navigation network can withstand jamming attempts only if the invaders do not talk at
different frequencies. Their transfer techniques are the same, and they regularly employ
different frequencies. Since an attacker must spoof numerous systems, making the attack
more challenging, various measurement mechanisms are even more crucial.

Ref. [170] demonstrated how to safeguard the platooning of autonomous cars in
the event of an attack on an unidentified vehicle in the presence of bounded system
uncertainties. A malicious attacker could freely modify the position and speed of the
targeted vehicle’s GPS data. First, two detectors are suggested to identify which car is being
attacked using relative measures (camera or radar) and the data-driven local innovation
by neighboring automobiles. Then, utilizing the saturation method and the detector data,
the measurement innovation was used to produce that each vehicle has an observer from
the local state [170]. Based on the observer’s estimates of the neighboring cars’ states, a
distributed controller is also recommended to accomplish agreement on automotive speed
and maintain the predetermined desired separation between them. In some cases, the
observer’s estimate error and the controller’s platooning error were demonstrated to be
exponential upper bounding.

5.1.6. In-Vehicle Protocol Attacks

The in-vehicle protocols, such as “CAN, LIN, and FlexRay”, have aroused much
interest from attackers. Particularly, the CAN bus security study has drawn a lot of interest.
Recent research works have shown that numerous assaults, including spoofing and denial-
of-service (DoS) attacks, have been created in opposition to in-vehicle protocols. We
thoroughly examine and present these attacks against the CAN, LIN, and FlexRay protocols.

5.1.7. Controller Area Network (CAN) Protocol Attack

When onboard electronic gadgets proliferated, when did CAN protocol become the
standard form of communication for cars? The benefits of the CAN bus, including its many
masters, low cost, and high transmit rate, are well known. However, the CAN protocol was
not created with security in mind initially, making it susceptible to attacks, like inserting
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bogus messages into the CAN bus. Any implementation of the CAN protocol will have a
variety of intrinsic flaws [171]. These are the top five security risks that the CAN protocol
poses: Because CAN packets logically and physically send messages to every node, a
suspicious network component can easily eavesdrop on all conversations or send data to
any node. CARSHARK uses this trait to enable us to watch, reverse-engineer, and inject
new packets to cause different actions. Denial-of-service attacks can be very damaging to
the CAN protocol. CAN’s method of priority-based arbitration permits a node to establish
a “dominant” position indefinitely on the bus and force every other CAN node to retreat, in
addition to direct packet flooding assaults [172]. While most controllers incorporate logic
to prevent unintentionally disrupting the network in this manner, adversarial-controlled
hardware would not be required to take such safety measures.

Because CAN packets lack source identity fields and authenticator fields, any com-
ponent can transmit a packet to another without being able to tell it apart. Because the
elements themselves do not offer defences, any vulnerable element can be used to control
all of the bus’s other components [172].

5.1.8. Local Interconnect Network Protocol (LIN) Attack

The LIN bus is a serial communications technology inexpensively designed to work
with the CAN bus. The LIN bus, such as doors and seats, is frequently used for vehicle
body control. High-speed cars are in great danger of security breaches due to the LIN bus
attack, even if it is not as serious as the CAN bus assault. Authors in [173] focused on the
LIN bus, a cheap data bus created to connect the growing number of auxiliary devices and
sensors that are not needed for safety. Given the need to make cars safer, the sensors will
most likely impact the vehicle’s decision to adopt automatic safety changes. This analysis
shows that, in line with the LIN bus’s cost-effective design objectives, it costs less and is
less protected than existing vehicular data buses. Certain compromised LIN systems may
cause the driver to become extremely irritated or affect the vehicle’s capacity to help the
driver (e.g., radar sensors). Even though the LIN bus and CAN bus are quite similar, the
LIN bus has a lower entry barrier for low-level LIN communications interruption. The
LIN bus can be used as a low-cost solution for low-impact systems in a secure vehicle bus
infrastructure if properly integrated.

The LIN bus consists of master-slave nodes and is broadcast. The specified identifi-
cation is only responded to by one agent node once the controller node initiates a header
with the identifier (ID). Implementing a collision detection system is unnecessary because
the master starts all communication. To attack the LIN bus, a flawed error-handling system
is employed. The regular sender node in the LIN error-handling system halts the packet
transport when the collision is discovered. It allows malicious nodes to send a fake message
instead of a genuine one [174].

5.1.9. Attacks against FlexRay

Although FlexRay is known for its innovative automotive communications technolo-
gies, CAN and LIN buses are still used. All requirements for data communication, including
low prices and high data rates, high levels of stability, and adaptability, are met. FlexRay
is a time-triggered protocol [171]. It uses TDMA (time-division multiple access) to accom-
plish real-time redundant communication and prevent bus congestion. Like the CAN bus,
confidentiality and authentication measures are lacking on the FlexRay bus. As a result,
the attacker’s read and spoof operations are simple.

5.1.10. Voice Controllable Systems (VCS) Attack

According to [175], controllable voice systems have matured and developed more
quickly due to AV developments. Until completely automated driving automobiles are
available, intelligent speech interfaces will remain the preferred means of human-vehicle
contact. According to recent research, intelligent systems of this type are susceptible to
covert voice commands that are hard for people to interpret or go unnoticed. In particular,
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an adversary can take control of autonomous vehicles using covert oral orders. For instance,
hostile voice commands cloaked in the sound of online shared videos can covertly control
the vehicle when viewed in a car. Authors in [175] examined the possible harm covert
voice commands could do to the VCS of autonomous vehicles before discussing workable
defense tactics. They ultimately suggested a general defense method based on pop noise
that may withstand varied attacks.

The working of VCS can be seen in Figure 8. It consists of 3 phases: voice capture,
speech recognition, and command execution. Attacks using hidden voice commands
employ various methods. Still, they all aim to combine acoustic signals to cause a VCS
to silently carry out malicious speech commands while ensuring the user cannot hear or
recognize them. The three primary stages of a traditional VCS are voice capture, command
execution, and speech recognition. Speech recognition pre-processes the unprocessed
digital speech signals and recognizes commands using machine learning techniques. Voice
capture records a human voice using a microphone and converts it to digital speech signals
(e.g., the neural network). Depending on the target stages, the current audio adversarial
situations and commands that are not audible are two types of attacks (attacking the voice
capture stage) (and attacking the speech recognition stage).

The authors of [174] presented the Dolphin Attack in 2019, which takes advantage of
the hardware characteristics of the audio circuitry to introduce covert speech commands
that are invisible to humans. A UHF carrier, commonly called an ultrasonic carrier, is used
in Dolphin Attack to modulate the ordinary speech signal, which is frequently in the low-
frequency region. By doing this, the voice commands are guaranteed to be undetectable.
As a result, amplitude modulation is used to take advantage of the MEMS microphones’
nonlinear ability to down-convert high-frequency signals to lower-frequency signals. Thus,
the nonlinear microphone can recover the desired voice control signal with a correctly
prepared input signal. Although it works on most major voice recognition systems, Dolphin
Attack must be close to the target devices; for example, it can be launched up to 5 feet
away from an Amazon Echo. This is so that the higher frequencies may be played while
the speaker’s non-linearity can also generate lower audio frequencies. As a result, Dolphin
Attack must be used at low power, which limits the attack’s range. Authors in [176],
developed LipRead, an inaudible assault system, to increase the scope of a successful breach.
The authors employ several speakers to address the paradox of inaudibility and extended
range. A single speaker can only "leak" a small portion of low-frequency information. By
addressing the min-max optimization problem, the aggregate data leakage could be kept
below the curve of human auditory response. The maximum attack distance is increased to
8m using this methodology.

The researchers also suggest viable defense measures against such attacks by locating
non-linearity traces, a characteristic frequently preserved in signals with disguised voice
commands [177]. Despite its effectiveness and inventiveness, both Dolphin Attacks demand
that the attack devices transmit ultrasonic signals; therefore, the foe must carry an especially
made device. The intended victim may still see the transmitter that emits unique signals
as the inaudible voice command attack range is still limited. This constraint hampers the
viability of concealed voice command attacks.

5.1.11. Immobilizer Attack

The vulnerability of a vehicle immobilizer (key) predominantly employed by original
equipment and car manufacturers was described by [178]. They first extracted encryption
keys and methods from the immobilizer. Next, a remote control signal from a VW Group
car was sent using the found key, and the signal was intercepted to grant unauthorized
access to the vehicle. With four to eight rolling codes and a quick calculation time, this
attack can replicate the remote control key and extract the encryption key. This study’s
findings impacted Millions of vehicles worldwide, today regarded as a crucial element
of physical vehicle security. The typical anti-theft device is known as an electronic auto
immobilizer. Electronic security prevents the automobile engine from starting to the key
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fob, also referred to as a transponder or a physical security token. In recent years, it has been
shown that several regularly used transponders in the automotive immobilizer industry
are vulnerable. The strengths and limitations of several strategies are shown in Table 13.

Figure 8. Voice Controllable system.

In Table 13, targets have been discussed with their vulnerabilities and security schemes.
Starting the system by passive keyless entry is the first target that can be performed
passively and in fake proximity, but the LF RFID Tag scheme can eradicate it. The attack that
the aforesaid vulnerability can cause is the Replay attack [179]. Among these, Hitag2 and
Megamos are broken due to flaws in the cipher designs, such as the absence of a PRG and
the cipher’s internal states being too brief with the private key. The Hitag2 cryptographic
method has flaws, and three crypt-analytic techniques are suggested to recover the private
keying information. The first attack is successful in reading the identification of the
transponder and recovering the keystream by taking advantage of the cipher’s malleability
and the absence of a high-quality PRG. The second, more general attack can defeat the
general-purpose encryption designed by LFSRs. Despite being used to surpass the security
token’s read protection mechanism, the private keying materials can be retrieved quickly
and effectively. Utilizing the crucial discovery that there is interdependence between
several authentication sessions with the car’s immobilizer, the final assault attempt is made.
These dependencies can be utilized to obtain the materials for private keying similarly to
the second method, albeit much more slowly (of the order of minutes).

Table 13. Target and their Vulnerabilities.

Target Vulnerability in Target Security Scheme Consequences

Starting system by
passive key-less entry

Passive, fake proximity LF RFID Tag Relay attack

Hitag2 Lack of pseudorandom
number generators

48bit linear feedback
shift registers and
non-linear filter

Key recovery attack

Security Protocol Stack Key storage Advanced Encryption
Standard

Fault injection attack

Megamos Invertabilty, Lack of
pseudo-random number
generators

PIN code and a 96-bit
secret key

Key recovery attack

Digital Signature System secret key is too short Challenge response
protocol

Relay attack

Starting the system with the Digital Signature System is the last target that can be
performed when the secret key is too short, but the challenge-response protocol can eradi-
cate it. The attack that can be caused by the vulnerability above is the Relay attack [180].
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The first attack uses two brand-new observations in addition to the previously known
vulnerabilities to access the materials for private keying: (1) The successor cipher state may
be invertible, and (2) The multi-factor authentication procedure’s latter stages reveal some
plaintext. The private keying materials are only extracted in the second attack, which takes
place in a half-hour, using the default PIN code, which is well known. In addition, the
retrieval time of secret keys is reduced from days to hours to minutes to seconds by using a
time-memory trade-off (TMTO) in both assaults. An open protocol stack was advised for
the car immobilizer system’s security. It manages the authentication process and employs
pre-configured AES encryption. Each of the three duplicates of the secret key is used for
key fob authentication, Boosting the availability and reliability of the immobilizer system.
All three secret keys are utilized one at a time for key fob authentication, increasing the
reliability and availability of the immobilizer system. However, the attacker can test the
remaining secret key component while changing some data at the first secret key’s physical
address through fault injections.

However, fault injections allow the attacker to experiment with the remaining secret
key while altering some data at the first secret key’s physical address. By regularly executing
fault injection and making educated guesses, the adversary can acquire the whole secret
key by diligently searching using the other two private keys [178].

5.1.12. Key-Less Entry Systems Attack

While the vehicle immobilizer system concentrates more on starting the motor, attacks
on keyless entry systems primarily aim to break inside the car. The entrance method
guarantees the safety of the contents inside the car [181]. Thanks to technical development,
there are presently three car keys: Options include conventional physical keys, remote
active key-less entry, and remote passive key-less entry and start (PKES). The only functions
of the original physical keys were to unlock a door and start an engine manually. The key
must be inserted into the lock hole because there is no electrical connection between it
and the car. The remote active keyless entry system is housed in a key fob. Interactions
between the key fob user and the entry system are referred to as “active”. Figure 9 shows
the attacks against the keyless entry system. Details of the attacks are provided in the
ensuing paragraphs.

Figure 9. Attacks Against Key-less Entry System.
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5.1.13. Jamming Attacks

When the user closes the door, there is a potential that the adversary will jam the
signal because the wireless connection between the key and the car occurs throughout the
opening or shutting procedure. The attacker can create an interference signal to jam the
locking signal when the user pushes the “close” button. Unaware that the door is still
unlocked, the user exits to allow the intruder to enter. The news has covered this technique.
The jamming technique technically qualifies as deliberate electromagnetic interference.
Authors in [182] carry out a detailed robustness study against interference through a series
of experiments about systems with keyless entry. According to their experiment setting,
the key fob is 2 m away from the car, and continuous-wave interference with the range
from 420 up to 460 MHz is generated to test the robustness of the original signals. Results
show that the two keyless systems in their experiment are sensitive to interference with a
bandwidth of 5 and 4 MHz, respectively. The interference can be generated at a distance of
100 m, which provides convenience for attackers. Furthermore, the jamming attack requires
no cryptographic or chip analysis, making it easy and cheap to launch.

A series of experiments involving devices with key-less entry [178], conducted a thor-
ough robustness assessment against interference. The key fob is 2 m distant from the vehicle
in their experiment setting, and continuous-wave interference with a frequency range of
420 to 460 MHz is generated to assess the resilience of the original signals. According to
the results of their experiment, the two keyless systems are susceptible to interference with
a bandwidth of 5 and 4 MHz, respectively. Interference can be produced at a distance of
100 m, which is convenient for attackers. Additionally, the jamming assault is simple and
inexpensive to launch because it does not need any chip or cryptographic analysis.

5.1.14. Replay Attack

Replay attacks usually involve a burglar recording and listening in on the signal
exchange between a common key transponder and a corresponding receiver on the car.
The attacker can unlock the door using the captured signal for an unattended car. However,
most contemporary car models are resistant to this kind of assault since the rolling code for
the key fob has been implemented. As explained, the rolling code keeps track of a total
number, and the encrypted code changes each time the button is pressed, preventing an
attacker from quickly deciphering the code and replaying it [169]. However, replay attacks
could be paired with other kinds of blows.

For example, the burglar might jam the system, record the proper “close” code, and
then repeat it after the break-in; at this point, the car would be securely locked. Additionally,
until she hears the desired signal, the attacker can keep listening in, jamming, and capturing
the legal transmissions. For instance, the owner might opt to leave if she feels impatient
after repeatedly attempting to unlock the door. The attacker can unlock the car by writing
down the most recent valid “open” code.

5.1.15. Relay Attack

In communication networks, relay attacks are common and have drawn much atten-
tion. A relay assault can overcome the communication system’s distance restriction by
placing equipment between the signal transmitter and receiver and relaying the signals.
About our subject, the remote PKES system enables the car owner to unlock the car without
looking for a key, which is practical yet vulnerable to relay attacks. In a PKES system, re-
member that the door will passively open when the key is close to the vehicle, for example,
within 2 m. Additionally, the vehicle’s engine starts when the receiver detects the key is
inside, enabling the driver to depress the accelerator and accelerate.

However, the protocol only uses communication signals and does not rely on the key.
When an attacker places one antenna close to the car door and another antenna close to the
car owner, the PKES system is susceptible to a relay assault. The antennae can transmit
signals because of this. The challenge-response protocol can still be carried out even if
there is not a close enough physical distance between the key and the door to finish it,
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thanks to signals from the key sent by the antennae to the receiver in the car. According
to their research, the attack can be practically effective even if the key-side antenna is up
to 3000 km away from the key. It is only effective within 8 m of the key (in the best case).
The authors offer a typical scenario in which, for example, the car owner leaves the parked
car in the parking lot, frequently hiding it from view and leaving it unattended. While the
first attacker tries to move the car-side antenna close to the door, the second attacker, who
possesses the key-side antenna, can follow the owner [150]. In this way, the key fob, which
is with the owner but apart from the automobile, can establish relayed communication
with the parked car. It is possible that the key and the car can interact as if they were
nearby. Since a relay attack does not need the interpretation or modification of signals,
cryptographic authentication is useless in these circumstances.

Replay attacks, which gather measurement signals and then replay them to the system,
can have severe effects since they modify messages [183]. They have only been used with
linear time-invariant (LTI) systems. Dynamic watermarking techniques have begun to ad-
dress the problem of identifying these attacks, which inject a private excitation into control
inputs to safeguard subsequent measurement signals. LTI models may be sufficient for
some applications, but other CPS, like autonomous vehicles, require more intricate models.
A linear time-varying (LTV) adaptation of prior dynamic watermarking approaches was
developed by [184] by including a matrix normalization component to consider temporal
changes in the system. Real-world system considerations are included with the offer of
implementable tests. The proposed strategy is then shown to be capable of detecting
generalized replay assaults both in theory and in simulation using an LTV vehicle model.
Replay attack detection in autonomous vehicles is a challenge addressed in [183].

Due to the significant presence of nonlinearities, conventional approaches based on
linear dynamics approximations would not be successful. As a result, the proposed solution
is based on a bank of QPV (quadratic parameter variable) observers specifically designed
to resist replay attempts that target a single sensor channel. This feature permits the
development of a decision algorithm whose effectiveness is assessed using simulation
results. It has been shown that, with some slight approximations, the dynamics of the
vehicle tracking error may be reshaped into a quadratic parameter varying (QPV) form,
allowing QPV observers to be used to enforce the estimate error’s convergence to zero
in the attack-less scenario. On the other hand, one of the observers will demonstrate the
necessary quality that only one of the components of its observed estimation error will be
altered by the replay assault when the system is attacked. This feature has led to developing
a mechanism for identifying the presence and localization of replay assaults. Results from
simulations have validated the algorithm’s effectiveness.

5.1.16. Cryptographic Analysis Attack

The attacks mentioned earlier only concentrate on communication at the physical layer
and ignore signal analysis. A new attack uses cryptographic analysis to target higher-level
coding and encryption methods. The remote keyless program’s earlier iterative process
lacked an authentication scheme. There is no use of encryption, and the code has been
updated. Authentication is made possible through rolling code techniques that are useful
in thwarting even the most elementary replay assault. It has been proven that attacks using
side channels and cryptographic analysis can compromise cryptographic algorithms.

In addition to the fundamental defect in the cryptographic protocol, intruders may
examine printed circuit boards in entry systems to steal the information in the firmware.
A thorough examination of the widely used remote control systems for the VW Group is
conducted, and the adversary can clone a targeted remote control and then gain access
to the vehicle by analyzing the cryptography used in the schemes and listening in on the
victim’s signals [185]. The majority of remote control systems use a single master key,
which creates a vulnerability that is exploited by the attack. The intruder could determine
the codes’ structures, the intricacies of the cryptographic techniques, or even the encryption
key if she acquires the PCBs and thoroughly reads the firmware. The attacker can then
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use the widely-used master key to intercept and decrypt the victim’s signal to retrieve the
counter. The authors also advise going after Hitag2. A correlation attack can quickly locate
the secret key.

5.2. Attacks Management
5.2.1. Defence Approaches for Sensors

This section details various proposed countermeasures for sensor attacks, with a
detailed discussion of defense strategies shared below.

• GPS: To prevent GPS-targeted attacks, a variety of defenses have been deployed. For
instance, the false signals differ visually from those transmitted by satellites. Attacks
that consider the signal’s power, the time between broadcasts, and the signal clock in-
formation could be detected using this method [168]. Ref. [186] utilized the receiver’s
correlation function distortions to evaluate the GPS signal’s accuracy. Investigate the
direction of arrival (DoA), which uses an antenna array to thwart attacks because the
DoA of GPS signals would disclose a different carry phase than spoofing signals. Other
methods use GPS broadcasts to embed cryptographic algorithms for assault defense.
Encrypt GPS L1 P(Y) code to see if a spoofing attempt is being made. Authors in
[187] recommended adopting methods like navigation message authentication (NMA),
which integrates a signature into the satellite broadcast, to ensure the signals are au-
thentic. Instead, research from other areas could be combined to attain protection, as
with the distance-bounding protocol. They use computer vision or cryptography tools
to measure and verify the distance between entities by comparing nearby buildings
and road signs.

• LiDAR: Changing the way LiDAR transmits and receives light is one possible tech-
nique. If the adversary intends to carry out the attack effectively, they must coordinate
the false laser with the LiDAR laser. Defensive strategies for LiDAR have been shown
in Figure 10. The LiDAR laser can prevent an assailant by repeatedly firing laser pulses
in one direction, say three times. As LiDAR can only receive lasers from a fixed angle
while rotating, limiting the impact of attacks by reducing the receiving angle is possi-
ble; however, doing so also lowers LiDAR’s sensitivity. Another defense is to shorten
the LiDAR receiving time, shortening the LiDAR probe’s range. LiDAR determines
the reception period it receives incoming lasers to ensure assurance. It is possible to
invalidate lasers reflected off of additional objects while also making it difficult for
attackers to begin attacks by, in particular, reducing the reception time. While using
LiDAR, randomness can also be introduced. LiDAR is designed to rotate randomly
and create lasers in any direction to ward off threats since it spins the transceiver
to scan the area. Making the laser from a LiDAR is less predictable than producing
random signals or signals with random pulse intervals, another effective defense
against a hacker [154]. Last but not least, redundant or multi-sensory LiDARs allow
autonomous vehicles to modify LiDAR results(s). As a result, the attacks grow more
costly and sophisticated, and clients pay more to install new devices. Furthermore,
there will not be any overlap when the attack is launched.

• Camera: Due to the camera’s vulnerability brought on by its optical characteristics, it
is challenging to design a completely secure camera. Redundancy, for some threats,
photochromic lenses and removable near-infrared cut filters may be sufficient [4],
despite any potential weaknesses or new problems they may create.

• Ultrasonic sensors: The first technique allows for the authentication of physical
signals by utilizing the idea of changing waveform properties. The second method
uses two or more sensors to identify attackers, regain the ability to recognize obstacles
and identify attacks [188].
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Figure 10. Defense Approaches of Attacks Against Sensors.

5.2.2. Defence Approaches for In-Vehicle Systems

The simplest method to thwart the jamming attack is to demand that the car owner
double-check that the door is locked before driving away. Light or sound may be employed
to verify that an automobile is correctly locked. However, the defense is only effective
against assaults that use jamming alone. The remote confirmation method is useless if
the intruder can replay the “unlock” signal; the door might lock properly. Therefore, the
most basic form of defense is to lock the doors before exiting the vehicle. The quickest way
to stop a relay assault is to shield the key when unused. The antenna on the side of the
key cannot receive or transmit the signal from the key fob if the key is enclosed in a box.
The passive remote keyless system’s most attractive feature is disabled because using this
method of entry requires the user to take their key out, which is inconvenient for them [175].
A comparable preventive measure that stops the key from sending and receiving signals is
removing the battery from the key. Additionally, the functionality of PKES is impacted by
this strategy.

Distance bounding can be used to defend against the Relay attack. A distance-
bounding approach uses quick message exchanges to confirm the distance between the
participants. The door will not automatically open until the claim is confirmed the sep-
aration between the key fob and the vehicle. Numerous keyless entry systems and car
immobilizer attacks make an effort to compromise the cryptographic protocols. Enhanc-
ing the authentication process is one option. Therefore, emerging remote keyless entry
(RKE) processes should employ a more protected key distribution and cryptographic
algorithm scheme.

5.2.3. Defence Approaches for In-Vehicle Protocols

Encrypting data during transmission is one of the key methods for enhancing the safety
of bus communications. Asymmetric and asymmetric encryption-based communication
systems for automobiles should be used with cryptographic approaches to ensure excellent
performance and adequate security [158]. Stop code tampering and data sniffing by using
methods like encryption and obfuscation. Proper and economic protection from reverse
engineering is obfuscation. To successfully encrypt the data link between both the external
memory and the ECU’s internal memory, additionally, on-the-fly decryption is used. Finally,
encrypting and authenticating data with AES-128 combined with keyed hash MAC could
decrease the bus load. To enhance bandwidth efficiency and decrease authentication delay,
it is suggested that a vote-based approach be used in conjunction with time-triggered
authentication. This technique reduces the probability of a per-packet counterfeit by
using a unanimous vote among a group of nodes to evaluate the message’s merit and
validity. Instead of performing it separately for each node, use the lightweight broadcast
authentication protocol, which shares the shared secret for authentication between two sets
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of nodes. There is a very small percentage of compromised nodes. Thus, it makes sense to
presume that [165].

Automotive Open System Architecture is a consideration for MAC. Attackers cannot
send unauthorized CAN signals because they lack the authentication key. The MAC assault,
however, is utilized. The error frame transmission can also be used to halt unauthorized
CAN messages. The fundamental notion is that if a node discovers any unauthorized
messages, it should immediately send an error frame to replace them. and prevent the
receiving node from receiving them. Gateway is a well-liked and trustworthy type of
defense, the system’s motor bus entrance. A backbone-based architecture has now replaced
the central gateway-based architecture of the in-vehicle system. The gateway handles
error protection, message verification, and protocol conversion in addition to carrying
the message from numerous ECUs [167]. It acts as the vehicle’s communication interface.
Since the gateway also includes a firewall mechanism, gaining access to the bus via attack
surfaces on moving vehicles is more difficult. For instance, The OBD-II connector cannot
be used to inject the attack message into the in-vehicle bus straightforwardly. Data transfer
between low-speed and high-speed buses can be managed by the gateway.

5.3. Traditional Security Devices

The research on how human drivers might react to cyberattacks on autonomous
vehicles carried out in a driving simulator sheds light on the difficulties and dangers that
may arise from using these vehicles. The participant’s ability to continue driving and
regain control of the car while being attacked by cybercriminals was evaluated throughout
the experiment. In addition, the participants’ situational awareness during a cyberattack
was assessed to demonstrate the seriousness of this kind of risk to autonomous vehicles.
Similarly, the findings of prior studies on cyberattacks against autonomous vehicles were
validated by this research. The participant’s reactions to potential cyberattacks on the
vehicle and the infrastructure were evaluated, and specific cyberattacks that could occur on
currently available vehicle technology were identified. In a nutshell, the study produced
knowledge that will be helpful regarding the construction of cybersecurity systems for
autonomous vehicles [189].

In the context of the 5G IoV, many proposed security solutions will be the most effective
remedies against the assaults that could be launched. Some strategies are successful, while
others are not. Even though the suggested approaches have a high success rate, the effort
required to implement them can be a significant obstacle to their widespread application.
Despite this, the ecosystem for 5G IoV still requires these security solutions because of their
reliability in protecting against cyberattacks [190,191].

Operations research on autonomous driving and decision support systems gains
significant knowledge from this research [192]. Increasing the highly automated car market
raises three significant issues. Weather, traffic, cybersecurity concerns, and the ADS’ human
aspect all contribute to these issues. Second, the study emphasizes the human factor when
automated and human-driven cars interact. MV and ADS drivers’ skills and preferences
affect transportation network efficiency. The ADS needs cognition to handle driving modes
and interact with all relevant parties. Finally, this research acknowledges ADS technology’s
revolutionary nature and role in addressing ethical issues. This research emphasizes the
significance of fast regulatory policy decisions by key authorities to manage autonomous
vehicle certification, insurance, and liability issues, which are complex by technology,
regulation, law, and society [193].

This research increases in-vehicle communication cyber security in several ways.
Second, it provides an in-car communication network infrastructure for all elements and
interfaces [194]. Second, the study categorizes in-vehicle communication protocols by
features and applications. Lastly, the study evaluates port-centric and machine learning-
based in-vehicle communication security solutions [195]. This article explains modern
automotive instrument cluster (IC) features and connections. The IC’s role in the bus
system and ADAS data display make it important to modern automobiles. This page
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discusses IC assaults in cars, including manipulating the speedometer and fuel gauge.
A risk assessment that considers security, cost, and operational interruption evaluates
the potential impact and complexity of such IC attacks [35]. The research provides a
framework for modeling autonomous vehicle behavior at industry standards. Yet, the
research suggests approaches to enhance and realistically improve future platforms. The
paper suggests two ways to improve image-based visual servo, including making it more
robust. Reinforcement learning, which uses trial and error to determine the best car
behavior, might also be used on miniature autonomous vehicle models. The paper also
discusses 5G wireless communication and LiDAR’s potential for modeling self-driving cars
on a modest scale [196].

5.4. Threat Modeling Approaches

The authors modeled the hostile environment by using SPICE to observe how the
transmission line and the parasitic capacitance of the FETs in the transceiver affected the
signal. Their goal was to determine whether or not these factors affected the signal. After
performing a detailed schematic analysis, the CAN transceivers were modeled with the help
of realistic channel and n-channel MOSFETs [197]. The two most important contributions
this study makes are an adaptation of the TMT that makes it applicable to automotive
threat modeling and a demonstration of the actual application of the approach to the
identification of security threats in the control unit of a vehicle. Both of these are presented
here [198]. Electronic Control Units (ECUs), sensors, and inter-vehicle communications
were the primary areas of concentration for the authors of the article as they offered an
in-depth analysis of these components in relation to autonomous vehicles. They categorized
ECUs according to the significance of their roles and provided an overview of the numerous
sensor technologies utilized in autonomous vehicles. The authors also discussed the many
channels through which self-driving vehicles can communicate with one another, such as
the Internet stack and the VANET stack [199].

Attacks on and defenses against autonomous cars are organized by time period to show
technology evolution. An overview of 15 research papers from 2008 to 1029 on autonomous
vehicle assaults and reactions is available. A full examination of autonomous vehicle attacks
shows that future attacks will target vehicle-to-everything (V2X) communication technology
rather than other vehicle components. Autonomous vehicle security research involves
using artificial intelligence and big data to protect them [17]. The paper’s authors made
four significant contributions. First, they identified potential cyber risks by categorizing
current cyber security risks and vulnerabilities in the environment of CAVs based on types
of communication networks and attack objects. Unlike past similar efforts, this one treats
cyber risk as just another threat in CAVs’ natural habitat. Finally, they determined that most
research in CAVs is still at the theoretical level and recommended bridging the gap between
theory and practice by synthesizing existing cyber security and safety standards in the CAV
environment [200]. The results of this research primarily fall into two categories. First, it
performs an in-depth analysis of cyber-attacks against CAVs and AVs; then it models the
most severe threats to reveal them. Second, it recreates the most serious cyber attacks to
demonstrate the impact they might have on various organizations [201].

This report analyzes current research on Intelligent Automation (IA) in autonomous
cars, which uses RPA and AI to enable digital transformation. AI, ML, and IoT-based
autonomous automobile methods are the core topics. The extensive literature evaluation
makes this paper valuable. The article discusses autonomous vehicle safety regulations,
choices, and challenges [202].

5.5. Authentication Schemes

The security and integrity of the vehicle’s control systems and the safety of the passen-
gers and other road users depend on authentication techniques in autonomous vehicles.
Authentication procedures ensure that only approved systems and software are operating
on the vehicle to avoid unauthorized access or modifications jeopardizing the car’s safety.
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Autonomous vehicles are susceptible to cyberattacks, including man-in-the-middle, denial-
of-service, and spoofing [203]. By confirming the vehicle’s identity and the veracity of
messages, authentication techniques can assist in defending against these kinds of assaults.
By limiting access to the vehicle’s control systems or personal data to only those permitted,
biometric-based authentication schemes can be utilized to protect passengers’ privacy. By
enabling vehicles to confirm the identification of other vehicles and trust the information
they receive, such as traffic and weather conditions, can increase road safety. To enable
secure communication between vehicles and between vehicles and infrastructure, such as
traffic lights, toll booths, and parking garages, authentication systems are crucial [97]. De-
tails of various authentication techniques employed in autonomous vehicles are provided
in the subsections.

5.5.1. Public Key Infrastructure (PKI) Based Schemes

These schemes use digital certificates and public key infrastructure (PKI) to authenti-
cate cars and messages. To guarantee anonymity, [35] presented a technique for anonymous
authentication that used anonymous public keys rather than just one. By doing this, the re-
cipient is kept in the dark regarding the keys’ owner. The increased revocation of malicious
nodes causes the list to grow. The complexity of setting up and maintaining a PKI system,
which may be expensive and time-consuming, is one of the key issues. PKI systems could
also be subject to attacks that take advantage of flaws in key management or encryption
techniques. Another drawback is the PKI-based schemes’ inability to scale when more
connected devices and systems are added to the autonomous vehicle environment. As a
result, there will be more keys and certificates to handle, which could cause performance
problems and key management challenges.

5.5.2. Hardware-Based Authentication

These techniques verify the car using particular hardware components like the ECU
(Electronic Control Unit) or GPS [204]. To address these faults and formally demonstrate
the novelty features of our innovative hardware-based approach, Ref. [205] explored ap-
proaches that had flaws that are challenging, if not impossible, to correct within the confines
of their particular methodologies. Given how expensive it may be to design, produce, and
distribute hardware devices, one of the key issues is the expense of establishing and main-
taining hardware-based authentication. Hardware-based authentication is also susceptible
to physical assaults like theft or tampering with the authentication device, which might
give a hacker access to the car’s systems without authorization. As replacing or upgrading
the hardware components may be challenging, hardware-based authentication systems
may not be adaptable enough to the rapidly changing autonomous vehicle ecosystem. This
might cause issues when new features or capabilities are added.

5.5.3. BiometricBased Authentication

These systems use biometric data, like fingerprints or facial recognition, to identify
the driver and occupants of the car. Authors in [206] suggested a user biometric-based and
password-based two-factor authentication protocol that can work in scenarios with little
or no VANET infrastructure. As mentioned earlier, the security elements of the protocol
were also examined as part of a loose security study. Biometric-based authentication is
susceptible to spoofing attacks, such as impersonating a user using a fake fingerprint
or a picture of their face, which might give an attacker access to the car’s systems with-
out their consent. The privacy issues raised by the usage of biometric data are another
drawback. These data are considered sensitive personal information, can be used to track,
monitor, or identify specific people, and may be challenging to keep secure against hacks
or unauthorized access.



Technologies 2023, 11, 117 41 of 63

5.5.4. Secure Boot

By confirming the integrity of the boot process, this approach ensures the authenticity
of the firmware and software used by the vehicle’s control systems. Autonomous vehicles
use the secure boot as an authentication technique to ensure that only approved software is
operating on the vehicle’s computer systems. Authors in [207] achieved this by checking
the software’s integrity during the boot process before the operating system is loaded. This
aids in preventing the installation of harmful software or firmware on the car, which can
endanger its functionality or safety. A secure bootloader is used in the procedure, and it
uses techniques like cryptographic hashing and digital signature verification to check the
software’s validity before allowing it to function. In addition to offering a high level of
protection against cyberattacks, this can ensure that only software approved by the vehicle
manufacturer or other trustworthy parties can run on the vehicle’s systems.

Implementing and maintaining secure boot authentication can be challenging since it
requires high technical know-how and regular system monitoring to ensure everything
runs well. Furthermore, physical assaults, such as tampering with the vehicle’s firmware
or software, could allow attackers to go around the authentication process and circumvent
secure boot authentication.

5.5.5. Remote Attestation

This method enables a distant third party to check the accuracy of the vehicle’s
control systems and find any unapproved alterations. A remote attestation system that
proposes [208] is used to check the validity and integrity of an autonomous vehicle. Remote
attestation ensures that the vehicle’s hardware and software are working as they should
and that it is not infected with malware or other dangerous software.

Critical Analysis: In the Remote attestation scheme, there is a concern of privacy
invasion by providing a third party with access to the vehicle’s system status, as it may
reveal sensitive information about the vehicle or the user.

5.6. Over-The-Air (OTA) Updates

This solution enables wireless updates to the vehicle’s control systems that are secure
and authenticated. Similar to how smartphones and other connected devices receive
updates, autonomous vehicles can download and install software remotely with OTA
updates [209]. Bug fixes, security patches, and new features or capabilities can all be
included in these upgrades. OTA updates are crucial for autonomous vehicles because
they enable ongoing system maintenance and enhancement without requiring the car to be
physically taken in for servicing. Additionally, in the event of a security vulnerability or
other problem, OTA updates can be utilized to distribute and deploy necessary updates
rapidly. Article [210] created a framework that successfully distinguishes between harmful
and benign software executables. Windows and Linux operating system executables
were collected to create two datasets for testing and training. They supported transfer
learning by utilizing the created CNN models to identify dangerous executables created
for autonomous vehicles.

The security of the OTA update process is one of the primary issues since it necessitates
a safe and impenetrable way of confirming the validity and integrity of the update. It
is crucial to have a strong authentication system in place since an attacker could tamper
with the update and harm the user or the car. For OTA updates to function correctly, a
dependable and consistent Internet connection may not be accessible in all locations or at
all times.

5.7. Zero-Trust Architecture

A zero-trust architecture for AVs can provide a secure and scalable solution for the
security of connected vehicles, and it can help promote the widespread adoption and
deployment of these technologies. To reduce the hazards associated with conventional
centralized systems, a decentralized and secure communication infrastructure for automo-
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biles has been proposed in ref. [211]. The zero-trust architecture is founded on the ideas
of safe data transfer and secure device management, and it is made to give car owners
and passengers more security and privacy. A cryptographic protocol system enables safe
communication between vehicles and between vehicles and other systems, such as secure
pairing and authentication. To guarantee the validity and integrity of the software running
on automobiles, they also advocate the usage of secure software updates.

Next-generation cars can benefit from zero-trust architecture’s security and scalability,
and it has the potential to become a pillar of connected vehicle security. In addition to
helping to encourage the widespread acceptance and deployment of these technologies,
the proposed design can be crucial in reducing the dangers related to autonomous vehicles
and the Internet of Things [212,213].

5.7.1. Decentralized Communication

Communication between vehicles and between vehicles and external systems is de-
centralized and secured using cryptographic protocols, such as secure pairing and authen-
tication. Decentralized communication also offers increased privacy and security. In a
centralized communication system, all communication passes through a central authority,
which creates a single point of failure and a potential target for attackers. In a P2P network,
communication is distributed across multiple nodes, making it more difficult for attackers
to disrupt the network or intercept communication. This can help to protect sensitive
information and ensure the privacy of AV occupants.

5.7.2. Secure Device Management

Vehicles are equipped with secure software updates and device management protocols
to ensure the integrity and authenticity of the software running on vehicles. To address
these challenges, secure device management in AVs should be based on a defense-in-depth
approach incorporating multiple security layers. This includes physical security measures
such as tamper-proofing and anti-tamper mechanisms and software security measures such
as code signing and secure boot. Secure communication protocols such as Transport Layer
Security (TLS) should also protect communication channels between devices, as shown in
Figure 11.

Figure 11. Zero-Trust Architecture in AVs.
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5.8. Data Privacy

Personal data are collected, processed, and stored securely and privacy-preserving by
data protection regulations. The system is continuously monitored for security vulnerabili-
ties, and security patches are applied as needed to address any issues discovered [214]. It
is also designed to detect and respond to real-time security threats like cyber-attacks and
data breaches.

6. Forensics Approaches

This section provides a brief overview of the forensics approaches, tools used, stan-
dards involved, and challenges associated with conducting digital forensics in the context
of autonomous vehicles. Digital Forensics is a rapidly developing field as a brand-new area
of study. Information and communication technology (ICT) cyber security is receiving more
and more attention. An information security breach necessitates using digital forensics to
gather the digital evidence and determine who was responsible, what was performed mali-
ciously, how to assess the danger that may result, and many other things. Digital forensics
has been experiencing even greater challenges than the initial digital breach investigations,
particularly in cases involving attacks on smart cities [215,216].

Digital forensics for autonomous vehicles involves the investigation of digital evi-
dence related to a particular incident, such as a collision, malfunction, or cyber-attack,
in an autonomous vehicle (AV) environment. AVs rely on various digital systems and
components, including sensors, processors, and communication networks, which can be
valuable data sources in a forensic investigation [217]. Investigators need to be aware of
this environment’s unique challenges and limitations when conducting digital forensics in
an AV environment. The data may be distributed across multiple systems and components
and may be encrypted or otherwise protected, requiring specialized tools and techniques
to access and analyze it. Additionally, because AVs are designed to operate autonomously,
it can be difficult to determine which specific systems or components were involved in a
particular incident. This requires careful analysis and correlation of data from different
sources, such as sensor data, system logs, and communication records [218]. Forensic
investigators may need to access the vehicle’s onboard computer systems and data storage
devices to retrieve and analyze the relevant data in an autonomous vehicle incident. This
can involve working with the vehicle manufacturer or other relevant parties to obtain
the necessary access and tools to perform the analysis. Understanding the causes of CAV
accidents and mishaps is essential to designing robust and safe CAVs. As a result, it is
crucial to gather logs from various CAV artifacts and store them securely. According to
theory, forensics can be performed in one of two methods. The post-marten method of
looking into digital crimes is known as the reactive technique. Finding, keeping, gathering,
studying, and producing a final report are vital steps in this process [219]. When conducting
an investigation, an investigator may ask questions about the incident. Investigators will
likely ask questions about the incident, such as when it occurred, who was involved, what
happened, and what the impact was. The systems involved in the incident, how they are
connected, and their function. Who had access to the systems and data involved in the
incident, and what level of access they had? The logging and monitoring systems were in
place during the incident and effectively captured relevant data. This will help them to
identify potential sources of evidence and determine the scope of the incident [220].

This study has demonstrated that extracting, preserving, and displaying vehicular
evidence data using conventional techniques and methodologies by the ACPO criteria
is possible. Still, the investigator needs to be careful and diligent. The problem, as the
research explains it, is that the data are changed when vehicles are removed from the
incident scene, leading to an erroneous result compared to the one that would have been
obtained from the point of an event. Additionally, in some circumstances, it is only possible
to identify some interested parties when the evidence is extracted. An investigator’s
ability to perform a typical inquiry needs to be improved by the absence of witnesses,
making things more challenging for first responders. In the smart city framework, this
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research endeavor has looked into the current vulnerabilities of smart autonomous vehicles.
Although data on networks and clouds can be trusted, a difficulty with vehicle digital data
is how easily data and evidence files can be altered. The data integrity exposed to adverse
and unfavorable circumstances is another issue with car ECMs’ construction technique.
Therefore, it is important to include safeguards against intentional and unintentional
network data manipulation while designing these systems. The research suggests archiving,
hashing, and encrypting this network data to prevent tampering and comparing it to trusted
external sources [221].

6.1. Forensic Tools

Digital forensics in cloud computing involves the investigation of digital evidence
related to a particular incident, such as a cyber-attack, data breach, or another security
incident, in a cloud computing environment. In cloud computing, data and services are
stored and accessed remotely, making investigations more complex and challenging. Data
collection methods include using tools (like those used to track file activity), artifacts
(such as virtual machine images), & logs (e.g., audit logs). Keeping the data secure is the
responsibility of the storage activity, while the management activity conducts a forensics
investigation and information extraction for reconstructing the incident’s timeline [218].
Table 14 shows a complete summary of forensic tools. FROST is intended to provide a
reliable and efficient storage solution for IaaS platforms. Its scalability, fault tolerance, and
object storage model make it well-suited for cloud computing environments where data
storage needs can be complex and constantly evolving [187]. Using Map Reduce in a cloud
forensic analysis context can be particularly useful when dealing with large volumes of
data, such as log files or network traffic data. The analysis can be performed much more
quickly by processing data in parallel across multiple nodes [222].

Table 14. Tools Used for Forensics of Autonomous Vehicles.

Sr No Tool /Model Platform Comments

1 FROST [223] Open Stack Cloud
Platform (IaaS)

•Gathered at the host operating system
•Negating the need for cloud provider involvement in
data collecting
•No mechanism for Preserving the data

2 Cloud Forensic
Readiness Evidence
Analysis System
(CFREAS) [224]

Map Reduce paradigm
–Cloud-based

•Reduces the amount of time needed to analyze
extensive evidence.
•Handles the risk of the cloud being used to store the
chain of custody and the absence of a single, centralized
legal authority

3 Vehicle Data
Recorders [220]

•Embedded Systems
•Standalone devices
•Cloud-based platform
•Telemetries System

•Record various vehicle parameters such as speed,
acceleration, steering, and sensor data, which can be used
to recreate the events leading up to an incident.
•Issues: Compromised Data
•Integrity/Accessibility, Data Loss

4 Black Boxes [221] •Magnetic Tape
•Solid-state memory devices

•Specialized recorders that can capture data from the
vehicle’s sensors, control systems, and other components.

5 Vehicle Telemetry
Systems [225]

•Embedded Systems
•Standalone devices
•Cloud-based platform
•Telemeters System

•Collect and transmit data in real-time from various
vehicle sensors, allowing investigators to track the
vehicle’s movements leading up to an incident.

6 Imaging
Technologies [222]

Cameras •Autonomous vehicles often use cameras and other
imaging technologies to gather information about
their surroundings.
•Forensic tools can be used to analyze this data and
recreate a visual representation of the events leading up to
an incident.

7 Simulation and
Reconstruction
Software [3]

•These Tools allow investigators to simulate the
movements and behavior of an autonomous vehicle
leading up to an incident, helping to determine the cause.

As autonomous vehicles produce a significant amount of data, it is critical to have
reliable forensic technologies that can assist in accident investigations and pinpoint the
origin of any mishaps. Typical forensic tools for autonomous vehicles include:
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6.2. Forensics Standards for Autonomous Vehicles

Autonomous, connected vehicles operate without human interaction, relying on
onboard sensor computations. However, CAV decision-making could go wrong for various
reasons, resulting in undesirable events. The connected autonomous driving compliance
safety rules are now only possible with a solid forensic investigative framework or standard.
NIST has been working to develop the framework for interoperability standards for CAVs
and other intelligent transportation systems. ISO/IEC 27037 is the sole forensics standard
for processing digital data. The standard outlines procedures for identifying, gathering,
acquiring, and storing any digital evidence that could be crucial to a legal proceeding [3].

There currently needs to be widely accepted standards for autonomous vehicle foren-
sics. However, several organizations and initiatives are working to develop guidelines and
best practices for investigating incidents involving autonomous vehicles. The NIST has de-
veloped a research program to provide standards and best practices for automated vehicles’
reliable and secure operation. The program addresses privacy, security, safety, and ethical
considerations in designing and using autonomous systems. In addition, The National
Highway Traffic Safety Administration (NHTSA) is a U.S. government agency responsible
for regulating and enforcing safety standards for automobiles and other motor vehicles.
It includes the testing and deploying of autonomous vehicles with recommendations for
data recording and retention in the event of a crash. The guidelines also emphasize the
importance of cooperation between the vehicle manufacturer and relevant authorities in
the event of an incident. The SAE has also published standards for autonomous vehicles,
including data logging and retention recommendations. The standards are intended to
ensure the reliable and consistent operation of autonomous cars and to give investigators
a framework for analyzing accidents involving these vehicles. As the use of autonomous
vehicles continues to grow, additional standards and guidelines will likely be developed
to address specific issues related to autonomous vehicle forensics. However, at this time,
there are yet to be widely accepted standards for this field. The digital forensics factors are
the two components of a framework created for managing DFR [226].

Digital Forensics Investigation Readiness Procedures (DFIRP) is a set of measures an
organization can implement to ensure they are prepared to respond effectively to potential
cyber security incidents. These procedures are given a uniform approach, which ISO/IEC
27043:2015 eventually adopted. Three phases comprise their methodology, which can be
used to implement DFR in businesses: planning, implementation, and assessment [227].
There are six components in the proposed forensic-by-design paradigm for a cyber-physical
system (CPS), including best practices and guiding principles for managing risks, forensics
preparation, incident handling, legal requirements, specifications for CPCS, both hardware
and software & industry-specific specifications [228].

6.3. Forensics Challenges in Autonomous Vehicles

Communications between vehicles, infrastructure, networks, and pedestrians are part
of the dynamic ecosystem that makes up an autonomous vehicle (V2V, V2I, V2N, and
V2P). It is a more challenging setting than other IoT systems because it includes mobile
restrictions, a huge network scale, non-uniform node distribution, and dynamic topological
structures [229]. CAVs are complex systems that hold much digital data, including sensitive
personal data, which presents various challenges. Data are transferred through buses for
internal communication stored in physical memory, and external network connection is
saved in the cloud. Many components for communication and storage result in a need for
more norms and frameworks for CAV forensics, and the complicated requirements and
design of CAVs prevent the use of traditional digital forensic techniques. It is important
to note that autonomous vehicle forensics is a rapidly evolving field, and technical and
legal challenges may be associated with accessing and analyzing the data generated by
these vehicles. However, as autonomous vehicles become increasingly widespread, the
importance of autonomous vehicle forensics is likely to grow, and it will become increas-
ingly important to develop standard practices and techniques for investigating incidents
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involving these vehicles [216]. It is challenging to obtain evidence because of the variety of
data sources, complexity, and quantity. A few technical challenges are listed below.

• How can we identify which information should be kept onboard the car and which
should be stored on the cloud?

• What software program or architecture is suitable for collecting a large volume of
online and offline data simultaneously without endangering its integrity?

• Which software and programs are suitable for collecting the data live or offline without
compromising its integrity?

• What location does the internal data storage have? RAM, USB drive, EPROM, or
flash memory.

• On-the-fly data collecting and analysis by CAVs may utilize a variety of processing
protocols. How are these kinds of data handled?

Vehicle forensics must meet certain data quality requirements to be admitted into legal
proceedings. The following are some legal concerns about CAV forensics:

• Critical evidence is invalidated if the evidence is not sealed before the files are opened.
• To comprehend their surroundings and operate effectively, CAVs must scan their

surroundings; nevertheless, mapping private property may be viewed as an intrusion.
Clear criteria must be established for what data CAVs can collect and maintain to
protect privacy.

• For gathering digital evidence and a solid understanding of the software, hardware,
and networks, specialists need to have solid expertise and specialized abilities. There-
fore, technicians need extensive training in technical capabilities and legal procedures
before being involved in CAV forensics.

7. Simulators

This section overviews the simulators used in developing and testing autonomous
vehicles. Simulators play a crucial role in evaluating autonomous vehicle systems, pro-
viding a safe and controlled environment to test various scenarios and algorithms. The
development and testing of autonomous cars rely heavily on simulators. They offer a
secure and controlled environment for testing the vehicle’s sensors, perception, planning,
and control systems without real-world testing. This enables engineers to test and optimize
the vehicle’s behavior in various situations, including challenging or hazardous ones that
would be difficult or impossible to test in the real world [200]. Developers can evaluate
a vehicle’s performance in simulations under various environmental factors, including
weather, lighting, and traffic density, which might be challenging or impossible to recreate
in actual testing. Simulators can also test a vehicle’s performance in hypothetical locations
that may or may not ever be constructed in the actual world. Simulators are crucial for
testing the robustness and safety of autonomous vehicles. Before the car is tested on public
roads, developers can find and address possible problems by evaluating the vehicle’s
behavior in various scenarios. Before the vehicle is used in the real world, this guarantees
that it is secure and dependable.

7.1. CARLA

Intel Labs created the open-source CARLA (Car Learning to Act) simulator for research
on autonomous vehicles. It offers a highly detailed and realistic urban environment for
testing and developing autonomous vehicles and other agents like pedestrians and bicycles.
The simulator has a lot of features, including:

• A sizable, intricate urban area including streets, buildings, traffic lights, and other
elements typical of cities.

• Realistic lighting and weather conditions, including varying day lengths, seasons, and
weather phenomena like snow, rain, and fog [230].

• Support for various sensors, including LiDAR, radar, and cameras, which may be set
up to imitate various sensor kinds and noise levels.
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• A scenario system that is flexible and adaptable, enabling developers to generate and
test a variety of situations, including various traffic densities, driving behaviors, and
weather conditions.

• A Python API that makes it simple for developers to build custom agents and behav-
iors and control and interact with the simulation [231].

• Support for the Open DRIVE format enables simulation developers to import actual
road networks.

• Support for the Unreal Engine enables physics-based interactions between agents and
realistic graphics.

7.2. Apollo

Baidu created the open-source Apollo platform for autonomous vehicles. It has various
resources and technologies, including a simulator, for the research and development of
autonomous vehicles. The following elements are part of the Apollo platform

• The Apollo Simulator is a physics-based, highly realistic simulator that may be used
to test and create autonomous vehicle systems. It supports several sensors, including
LiDAR, radar, and cameras, and contains a variety of realistic landscapes [232].

• Perception is a module collection that analyzes sensor data and identifies environmen-
tal items such as lane markers, traffic lights, and other cars.

• Planning is a collection of modules for creating plans for the vehicle’s motion, such as
trajectory and path planning.

• Control, A group of modules that carry out instructions and manage the vehicle’s
motion, including low-level steering, throttle, and braking controllers [123].

• HD Map is a high-definition map that can give the car precise information about its
surroundings, such as the road’s geometry, lane markings, and traffic lights.

• Cybersecurity is a collection of modules to protect autonomous vehicle systems
against cyberattacks.

• Cloud-based services is a group of cloud-based services that can be used to remotely
access the car and store and exchange data [36].

7.3. AirSim

Microsoft created the AirSim simulator, which focuses on drones and other aerial
vehicles but can also be applied to ground vehicles. The Unreal Engine, the foundation of
this open-source simulator, enables realistic graphics and physics-based interactions [233].
It offers a variety of characteristics that help design and test autonomous systems, such as:

• Realistic settings is an AirSim that offers a range of settings, such as urban, rural,
and natural settings, which can be utilized to assess the effectiveness of autonomous
systems in various contexts [233].

• AirSim supports cameras, LiDAR, and GPS sensors, which can be set up to simulate
various sensor kinds and noise levels.

• Interactions that are based on physics: AirSim models the physics of flight, including
wind, turbulence, and other elements that may have an impact on how well aerial
vehicles perform.

• AirSim enables programmers to design and test various scenarios, including weather,
illumination, and traffic density conditions [234].

• AirSim offers a Python API that makes it simple for developers to build, manage, and
interact with the simulation [235].

• AirSim allows testing of fleet-based or swarm-based systems by simulating many
vehicles simultaneously.

7.4. Gazebo

A 3D physics-based environment is provided by the open-source robot simulator
Gazebo for testing and developing robotic systems. The Open Source Robotics Foundation
(OSRF) created it, and the Gazebo community currently looks after its upkeep [236]. It
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may be used to model various robotic systems, including manipulator arms, aircraft, and
ground vehicles. The following are some of the main aspects of Gazebo:

• Gazebo models 3D physics-based simulations such as robotic system dynamics, in-
cluding the impact of gravity, friction, and collisions.

• It features a range of settings, including urban, rural, and natural ones, which can be
used to assess how well robotic systems function in various contexts [236].

• It features support for cameras, LiDAR, and GPS sensors, which may be customized
to imitate a variety of sensor kinds and noise levels.

• With Gazebo, developers can design and test a variety of situations, such as those
with varying weather, lighting, and traffic volumes.

• It has C++, Python, and MATLAB APIs that make it simple for developers to build,
manage, and interact with the simulation [237].

• Simulating numerous robots at once is supported by Gazebo, which makes it possible
to test swarm- or fleet-based systems.

• Gazebo offers a plugin architecture that enables programmers to design unique plugins
to provide new features or alter the simulation’s behavior.

7.5. SUMO

An open-source traffic simulation tool that may be used to model and simulate traffic
in urban settings is called SUMO (Simulation of Urban Mobility). The SUMO commu-
nity maintains it after being created by the German Aerospace Center (DLR). SUMO can
simulate various traffic situations involving automobiles, buses, bicycles, and pedestrians.
Public transportation systems like trains and buses can also be modeled using it. SUMO
has several important components, including

• SUMO replicates individual vehicle movement on the road network while considering
traffic lights, signs, and other traffic regulations.

• It contains a range of settings, such as urban, suburban, and rural settings, which can
be utilized to test the effectiveness of traffic systems in various contexts [238].

• Simulating a wide range of traffic scenarios with support for diverse vehicle kinds,
traffic densities, and traffic patterns is possible with SUMO.

• It offers C++, Python, and Java APIs that make it simple for developers to build,
manage, and interact with the simulation [239].

• It is capable of simulating a variety of forms of transportation, including trains, buses,
bicycles, and pedestrians, in addition to automobiles and buses.

• SUMO has a plugin architecture that enables programmers to build unique plugins to
include new features or alter the simulation’s behavior.

Critical Analysis: Simulators can only partially replicate the complexity and variabil-
ity of the real world. Simulators may not be able to fully replicate the behavior of other
road users or the exact conditions of the road surface. Also, simulators cannot replicate the
unexpected events in the real world.

8. International Standards and Guidelines

This section will provide an overview of the international standards, guidelines, and
best practices available for autonomous vehicles (AVs). AVs present unique challenges and
risks, and it is essential to have international standards in place to ensure their safe and
reliable operation. To ensure the safe and dependable operation of the vehicle, security
requirements for autonomous vehicles are created to guard against potential cyber risks,
such as hacking and malware. The onboard systems and communications of the vehicle
and the data produced by its sensors and cameras are all protected by these standards [200].

Following ISO 21448, called SOTIF (Safety of the Intended Functionality), autonomous
vehicles must meet certain functional safety requirements. It contains requirements for
risk assessment and management, as well as the handling of sensor data and the manage-
ment of vehicle systems citeschnellbach2019development. It covers the full lifespan of the
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vehicle, from design and development to testing and operation. Guidelines for the cyber-
security of autonomous vehicles are provided by ISO/SAE 21434, commonly known as
Cybersecurity Engineering for Road Vehicles. It contains requirements for risk assessment
and management, as well as the handling of sensor data and the management of vehicle
systems [240]. It covers the full lifespan of the vehicle, from design and development to
testing and operation.

Best Practices for Automated Vehicle Cybersecurity from NHTSA: The National High-
way Traffic Safety Administration (NHTSA) has released rules for the cybersecurity of
autonomous vehicles in this document. Risk assessment, threat modeling, and incident
response are only a few areas it addresses [241]. This standard, SAE J3061, offers recom-
mendations for the cybersecurity of autonomous cars. It contains requirements for risk
assessment and management, the handling of sensor data, and the management of vehicle
systems [242]. It covers the whole vehicle life cycle, from design and development to testing
and operation.

Guidelines for creating and using control systems for automated vehicles are outlined
in PAS 1880:2020. The publication offers comprehensive instructions on how to carry
out autonomous vehicle testing, including on- and off-road testing and testing using
simulations, as shown in Figure 12.

Figure 12. International Standards and Guidelines.

8.1. Guidelines for Improving AVs Security

The possible repercussions of security failures or breaches make protecting autonomous
vehicles (AVs) crucial. Many sensitive data are gathered, processed, and transmitted by
the sophisticated systems built into AVs, including personal data, navigational data, and
real-time traffic data [243]. Here are some general pointers for enhancing the security of
autonomous vehicles:

• Protect the software and hardware components by ensuring that every piece of hard-
ware and software has been properly tested for vulnerabilities and developed with
security in mind.

• Encrypt all data: To avoid unauthorized access or theft, any data sent through the
vehicle or kept there should be encrypted.

• Watch over and restrict access: Establish rigorous access restrictions and keep a
close eye on all communications going to and coming from the vehicle. Update
software frequently: Update the software frequently to repair flaws and enhance
security features.

• Implement cybersecurity measures: To identify and stop cyberattacks, employ cyber-
security measures such as firewalls and intrusion detection systems [244].

• Conduct penetration testing: To find and fix system vulnerabilities, conduct penetra-
tion testing regularly.

• Plan for response and recovery: Create a thorough response strategy that addresses
reporting events and restoring systems during a security breach.
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• Users should be informed about the value of security and the best practices for
operating the vehicle safely and securely.

8.2. Guidelines for End Users

End users can reduce the danger of accidents or mishaps by following guidelines that
assure autonomous vehicles’ safe and secure use. Here are some recommendations for
autonomous car users:

• Before using the vehicle, familiarize yourself with the operating instructions and safety
precautions by reading the manual.

• Recognize the vehicle’s limitations: Autonomous vehicles are not fault-proof and are
still susceptible to errors. Be conscious of the vehicle’s capabilities and limitations at
all times.

• Know when to take control: In some circumstances, autonomous vehicles may ask
you to take the wheel. Knowing when and how to drive safely while doing so is
crucial [245].

• Always buckles up: Even if you are not driving, buckle up when you ride in an
autonomous car.

• Update the vehicle’s software frequently to guarantee that you have access to the most
recent security and safety features.

• Avoid attempting to modify or meddle with the vehicle’s systems because doing so
could harm the vehicle’s performance and safety [244].

• Inform the manufacturer or your local authorities immediately if you experience any
problems or issues with the car.

• Prepare for crises by becoming familiar with your vehicle’s emergency protocols and
being ready to act if necessary [246].

9. Research Challenges, Open Issues, and Future Directions

This section outlines the future directions of autonomous vehicles (AVs) and the
challenges that must be addressed to achieve widespread adoption.

9.1. Challenges

• Privacy and Security Issues: Autonomous vehicles (AVs) raise several privacy and se-
curity concerns that must be addressed to ensure this technology’s safe and responsible
development and deployment. These issues include data privacy, cybersecurity, unau-
thorized access, liability, and social implications. To mitigate these risks, policymakers,
industry leaders, and privacy advocates must work together to develop regulations,
standards, and best practices that prioritize protecting privacy and security while
promoting the development of this innovative technology [200].

• Data Quality: Data quality is a critical issue in autonomous vehicles (AVs) because
the performance and safety of these vehicles depend on the accuracy and reliability
of the data they collect and use. AVs generate vast amounts of data from sensors,
cameras, and other sources, which must be accurate and consistent to ensure proper
functioning. Poor data quality can result in errors in navigation, perception, and
decision-making, leading to accidents or other safety issues. Manufacturers must
implement robust data management processes, including data cleaning, validation,
and verification to ensure data quality in AVs. They must also ensure that their sensors
and systems are properly calibrated and regularly maintained to prevent data drift
and degradation. Furthermore, it is crucial that the data used to train AVs is diverse
and representative of different scenarios to avoid bias and ensure that the vehicles can
operate safely in various environments. Ultimately, ensuring high-quality data in AVs
is essential for these vehicles’ safe and reliable operation and building trust in this
emerging technology.

• Lack of Interpretability: One of the significant challenges with autonomous vehicles
(AVs) is the lack of interpretability or explainability of their decision-making processes.
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AVs rely on complex artificial intelligence (AI) algorithms to perceive the environment,
make decisions, and execute actions. However, these algorithms often operate as
black boxes, meaning it is difficult or impossible to understand how they arrive at
their decisions. This lack of interpretability raises significant safety, ethical, and legal
concerns. For example, it may be difficult to determine why the AV made a particular
decision in an accident, making it challenging to assign liability [200]. Additionally,
the lack of interpretability can result in biases, errors, or unexpected behaviors that are
difficult to diagnose or correct. To address this issue, researchers are exploring various
techniques for improving the interpretability of AI algorithms, such as developing
explainable AI models or integrating visualization tools to make the decision-making
process more transparent. These efforts will be crucial in building trust in AVs and
ensuring their safe and responsible deployment.

• Real-Time Decisions: It is a critical challenge for autonomous vehicles (AVs) as they
must be able to process and respond to complex and dynamic environments quickly
and accurately. AVs rely on a wide range of sensors, cameras, and other inputs to
perceive the environment, and they must analyze this information in real time to
make decisions and take action. This requires sophisticated algorithms and computing
systems that can process vast amounts of data quickly and accurately. However, even
with advanced technology, there are still challenges in real-time decision-making for
AVs. For example, unexpected scenarios or events, such as a pedestrian suddenly
crossing the road, can pose challenges for AVs that may have yet to encounter similar
situations before [8]. Additionally, real-time decision-making in AVs must consider
a wide range of factors, such as safety, efficiency, and passenger comfort, which
can be difficult to balance in real-time. To address these challenges, researchers
are developing advanced AI algorithms and machine-learning techniques that can
improve real-time decision-making in AVs. Additionally, there is a need for ongoing
testing and validation to ensure that AVs can operate safely and efficiently in dynamic
environments. Ultimately, developing effective real-time decision-making capabilities
in AVs is essential for their safe and reliable operation and for realizing the full
potential of this technology.

• Generation of Class Labels in Real-Time: The generation of class labels in real-time is
an important challenge for autonomous vehicles (AVs) because it is necessary for them
to accurately identify and classify objects in the environment to make appropriate deci-
sions. Class labels identify objects or entities, such as pedestrians, cars, or traffic signs,
based on their characteristics and attributes. AVs rely on many sensors, including
cameras and LiDAR, to detect and classify objects in real-time. However, this process
can be challenging because of the complexity and variability of the environment. For
example, objects may be partially occluded or have similar appearances, making
it difficult to distinguish between them. To address this challenge, researchers are
developing advanced computer vision and machine-learning algorithms to improve
object detection, classification accuracy, and speed in real-time [247]. These algorithms
use deep learning techniques to learn from large amounts of labeled data and can
adapt to new scenarios and environments. Additionally, researchers are exploring
using sensor fusion techniques, such as combining data from multiple sensors, to
improve the reliability and robustness of object detection and classification. Ultimately,
generating accurate class labels in real-time is essential for AVs’ safe and effective
operation, and ongoing research is needed to continue improving this capability.

• Handling Big Data: Autonomous vehicles (AVs) generate vast amounts of data from
sensors, cameras, and other sources, which presents significant challenges for handling
big data. AVs must be able to process, store, and transmit this data in real-time to
enable perception, decision-making, and action execution. This requires sophisticated
computing systems and data management processes that can handle large volumes
of data efficiently and reliably. Additionally, AVs must be able to analyze this data to
detect patterns, learn from experience, and adapt to new environments [248].
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• Enabled Network Intelligence: The challenge of enabling network intelligence in
autonomous vehicles (AVs) is establishing robust communication networks to support
the complex data flows required for AV operation. AVs generate and transmit vast
amounts of data, including sensor data, traffic information, and mapping data, which
must be processed and analyzed in real-time. This requires advanced communication
networks that can handle high volumes of data, provide low-latency communication,
and ensure reliable connectivity even in challenging environments.

• ECO-friendly technologies: Adopting eco-friendly technologies in autonomous vehi-
cles (AVs) is an important challenge because it is necessary to reduce the environmental
impact of AVs while improving their safety and performance. AVs have the potential
to reduce carbon emissions and improve energy efficiency, but they also require signif-
icant amounts of energy to operate and generate emissions during production and
disposal [5].

• Context and situation awareness: Context and situation awareness are critical chal-
lenges for autonomous vehicles (AVs) as they require AVs to perceive their surround-
ings, interpret the context of the environment, and make decisions based on that
context. This challenge can be addressed using sensor fusion algorithms that com-
bine data from multiple sensors to provide a complete picture of the environment.
Machine-learning techniques can then be applied to this data to interpret it in real
time and enable AVs to make decisions based on this understanding. Additionally,
advancements in computer vision and natural language processing technologies can
help AVs better understand and interpret their environment, allowing for improved
context and situation awareness [10].

9.2. Future Directions

Autonomous vehicles have seen significant advancements in recent years, and there
are several future directions that the technology is likely to take. Here are some of the
most significant:

• Public Adoption: Investigate strategies to increase public trust and acceptance of
autonomous vehicles through public awareness campaigns, educational programs,
and transparent communication about the benefits and safety measures. Conduct pilot
programs and field studies to understand user preferences, concerns, and expectations
and incorporate this feedback into the design and development of autonomous vehicle
systems. Collaborate with policymakers and regulatory bodies to establish guidelines
and regulations that ensure the safe and responsible deployment of autonomous
vehicles while addressing public concerns.

• Driverless City Planning: Develop frameworks for integrating autonomous vehicles
into urban infrastructure, including dedicated lanes, parking facilities, and charging
stations. Conduct urban simulations and case studies to optimize the placement of au-
tonomous vehicle infrastructure, considering factors such as traffic flow, accessibility,
and environmental impact. Collaborate with urban planners and transportation agen-
cies to create comprehensive plans for driverless city planning, considering factors like
pedestrian safety, last-mile connectivity, and multi-modal transportation integration.

• Traffic Management: Develop intelligent traffic management systems that can effec-
tively integrate autonomous vehicles with conventional vehicles, improving traffic
flow, reducing congestion, and enhancing overall transportation efficiency. Investigate
cooperative vehicle-to-vehicle and vehicle-to-infrastructure communication systems
for real-time traffic coordination, enabling efficient lane merging, traffic signal opti-
mization, and dynamic routing. Implement smart traffic management infrastructure,
such as sensors and adaptive traffic control systems, to support autonomous vehicles’
safe and efficient operation.

• Environmental Impact: Research to quantify the environmental impact of autonomous
vehicles, considering factors such as energy consumption, emissions, and materials
used in manufacturing. Explore the potential of autonomous vehicle technologies,
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such as vehicle-to-grid integration and energy-efficient driving algorithms, to min-
imize environmental impact and promote sustainability. Collaborate with energy
providers and policymakers to develop incentives and infrastructure for electric and
alternative fuel-powered autonomous vehicles, reducing reliance on fossil fuels.

• Public Health and Safety: Study the impact of autonomous vehicles on public health
and safety, focusing on areas such as reduced traffic accidents, improved emergency
response times, and enhanced accessibility for individuals with mobility challenges.
Develop comprehensive safety protocols, including fail-safe mechanisms, advanced
driver assistance systems, and real-time monitoring of autonomous vehicle operations.
Collaborate with public health agencies and emergency services to establish guidelines
for emergency management in autonomous vehicle scenarios, ensuring effective
coordination and response during incidents.

• Social and Economic Implications: Investigate the socio-economic effects of the
widespread adoption of autonomous vehicles, including job displacement, changes
in transportation-related industries, and economic disparities. Study the potential
for autonomous vehicles to enhance mobility access for underserved communities,
providing solutions for transportation deserts and improving equity in urban and
rural areas. Collaborate with policymakers and urban planners to address social
implications and develop inclusive policies that ensure fair access to autonomous
transportation for all segments of society.

• International Standards and Collaboration: Work toward international harmoniza-
tion of standards and regulations for autonomous vehicles, facilitating interoperability,
safety, and cross-border operations. Foster collaboration between researchers, industry
stakeholders, and regulatory bodies to share best practices, exchange knowledge,
and address global challenges related to autonomous vehicle development and de-
ployment. Establish partnerships and collaborations on a global scale to facilitate
data sharing, technology transfer, and joint research initiatives for autonomous vehi-
cle systems.

10. Conclusions

One of the key benefits of AVs is their potential to reduce accidents and save lives
significantly. With advanced sensors, machine-learning algorithms, and sophisticated
control systems, AVs can detect and respond to potential hazards faster and more accurately
than human drivers. This has the potential to greatly reduce the number of accidents on
our roads and save countless lives. In addition to safety benefits, AVs offer increased
efficiency and reduced traffic congestion. By communicating with each other and the
surrounding infrastructure, AVs can optimize their routes and speed, reducing travel time
and improving overall traffic flow. This has the potential to reduce the economic and
environmental costs associated with congestion greatly. However, despite their many
benefits, AVs pose significant challenges that must be addressed before becoming a reality.
One of the most significant challenges is the need for robust standards to ensure the
safety and reliability of AVs. This includes developing clear guidelines for AV testing
and deployment and establishing regulations for the data and communication networks
necessary to support AVs. In conclusion, autonomous vehicles represent a significant
advancement in transportation technology that has the potential to bring about many
benefits to society. However, their widespread adoption also poses significant challenges
that must be addressed before AVs become a reality. These challenges include the need
for robust standards, cybersecurity, threat modeling approaches, and the public health
implications of AVs. Additionally, the paper highlights the importance of developing
artificial intelligence techniques and forensics for AVs to ensure their safety and reliability.
Overall, this survey provides a comprehensive review of the current state of AV technology
and explores the challenges and opportunities associated with their public adoption. By
examining these various aspects of AVs and their impact on society, this paper aims to
inform future research and development in this field, with the ultimate goal of realizing
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the potential benefits of AVs while minimizing their risks and negative impacts. AVs can
transform how we travel and interact with the world. We can ensure they do so safely and
responsibly with careful consideration and continued researches.
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