
Citation: Imani, M.; Arabnia, H.R.

Hyperparameter Optimization and

Combined Data Sampling Techniques

in Machine Learning for Customer

Churn Prediction: A Comparative

Analysis. Technologies 2023, 11, 167.

https://doi.org/10.3390/

technologies11060167

Academic Editors: Mohammed

Mahmoud and Sikha Bagui

Received: 17 August 2023

Revised: 17 November 2023

Accepted: 21 November 2023

Published: 26 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Review

Hyperparameter Optimization and Combined Data Sampling
Techniques in Machine Learning for Customer Churn
Prediction: A Comparative Analysis
Mehdi Imani 1,* and Hamid Reza Arabnia 2,*

1 Department of Computer and System Sciences, Stockholm University, 10691 Stockholm, Sweden
2 School of Computing, University of Georgia, Athens, GA 30602, USA
* Correspondence: m.imani@gmail.com (M.I.); hra@uga.edu (H.R.A.)

Abstract: This paper explores the application of various machine learning techniques for predicting
customer churn in the telecommunications sector. We utilized a publicly accessible dataset and
implemented several models, including Artificial Neural Networks, Decision Trees, Support Vector
Machines, Random Forests, Logistic Regression, and gradient boosting techniques (XGBoost, Light-
GBM, and CatBoost). To mitigate the challenges posed by imbalanced datasets, we adopted different
data sampling strategies, namely SMOTE, SMOTE combined with Tomek Links, and SMOTE com-
bined with Edited Nearest Neighbors. Moreover, hyperparameter tuning was employed to enhance
model performance. Our evaluation employed standard metrics, such as Precision, Recall, F1-score,
and the Receiver Operating Characteristic Area Under Curve (ROC AUC). In terms of the F1-score
metric, CatBoost demonstrates superior performance compared to other machine learning models,
achieving an outstanding 93% following the application of Optuna hyperparameter optimization. In
the context of the ROC AUC metric, both XGBoost and CatBoost exhibit exceptional performance,
recording remarkable scores of 91%. This achievement for XGBoost is attained after implementing a
combination of SMOTE with Tomek Links, while CatBoost reaches this level of performance after the
application of Optuna hyperparameter optimization.

Keywords: machine learning; churn prediction; imbalanced data; combined data sampling techniques;
hyperparameter optimization

1. Introduction

The implementation of Customer Relationship Management (CRM) is a strategic ap-
proach to managing and enhancing relationships between businesses and their customers.
CRM is a tool employed to gain deeper insights into the requirements and behaviors of
consumers, specifically end users, with the aim of fostering a more robust and meaningful
relationship with them. Through the utilization of CRM, businesses can establish an infras-
tructure that fosters long-term and loyal customers. This concept is relevant across various
industries, such as banking [1–4], insurance companies [5], and telecommunications [6–14],
to name a few.

The telecommunications sector assumes a prominent role as a leading industry in
revenue generation and a crucial driver of socioeconomic advancement in numerous
countries globally. It is estimated that this sector incurs expenditures of approximately
4.7 trillion dollars annually [1,2]. Within the sector, there exists a high degree of competition
among companies, driven by their pursuit of augmenting revenue streams and expanding
the market influence through the acquisition of an expanded customer base. A key objective
of CRM is customer retention, as studies have demonstrated that the cost of acquiring new
customers can be 20 times higher than retaining existing ones [1]. Therefore, maintaining
existing customers in the telecommunications industry is crucial for increasing revenue
and reducing marketing and advertising costs.

Technologies 2023, 11, 167. https://doi.org/10.3390/technologies11060167 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies11060167
https://doi.org/10.3390/technologies11060167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0001-9613-1125
https://orcid.org/0000-0003-3943-0094
https://doi.org/10.3390/technologies11060167
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies11060167?type=check_update&version=1

Technologies 2023, 11, 167 2 of 26

The telecommunications sector is grappling with the substantial issue of customer attri-
tion, commonly referred to as churn. This escalating issue has prompted service providers
to shift their emphasis from acquiring new customers to retaining existing ones, considering
the significant costs associated with customer acquisition. In recent years, service providers
have been progressively emphasizing the establishment of enduring relationships with
their customers. Consequently, these providers uphold CRM databases wherein every
customer-specific interaction is systematically documented [5]. CRM databases serve as
valuable resources for proactively predicting and addressing customer requirements by
leveraging a combination of business processes and machine learning (ML) methodologies
to analyze and understand customer behavior.

The primary goal of ML models is to predict and categorize customers into one
of two groups: churn or non-churn, representing a binary classification problem. As a
result, it is imperative for businesses to develop practical tools to achieve this goal. In
recent years, various ML methods have been proposed for constructing a churn model,
including Decision Trees (DTs) [8–16], Artificial Neural Networks (ANNs) [8,9,15–17],
Random Forests (RFs) [18,19], Logistic Regression (LR) [9,12], Support Vector Machines
(SVMs) [16], and a Rough Set Approach [20], among others.

In the following, an overview is provided of the most frequently utilized techniques
for addressing the issue of churn prediction, including Artificial Neural Networks, Decision
Trees, Support Vector Machines, Random Forests, Logistic Regression, and three advanced
gradient boosting techniques, namely eXtreme Gradient Boosting (XGBoost), Categorical
Boosting (CatBoost) and Light Gradient Boosting Machine (LightGBM).

Ensemble techniques [21], specifically boosting and bagging algorithms, have become
the prevalent choice for addressing classification problems [22,23], particularly in the realm
of churn prediction [24,25], due to their demonstrated high effectiveness. While many
studies have explored the field of churn prediction, our research distinguishes itself by
offering a comprehensive examination of how machine learning techniques, imbalanced
data, and predictive accuracy intersect.

We carefully investigate a wide range of machine learning algorithms, along with
innovative data sampling methods and precise hyperparameter optimization techniques.
The objective is to offer subscription-based companies a comprehensive framework for
effectively tackling the complex task of predicting customer churn. In the current data-
centric business environment, the relevance of this study is not only significant but also
imperative. It equips subscription-based businesses with the tools to retain customers,
optimize revenue, and develop lasting relationships with their customers in the face of
evolving industry dynamics. This study makes several significant contributions, including
the following:

1. Providing a comprehensive definition of binary classification machine learning tech-
niques tailored for imbalanced data.

2. Conducting an extensive review of diverse sampling techniques designed to address
imbalanced data.

3. Offering a detailed account of the training and validation procedures within imbal-
anced domains.

4. Explaining the key evaluation metrics that are well-suited for imbalanced data scenarios.
5. Employing various machine learning models and conducting a thorough assessment,

comparing their performance using commonly employed metrics across three distinct
phases: after applying feature selection, after applying SMOTE, after applying SMOTE
combined with Tomek Links, after applying SMOTE combined with ENN, and after
applying Optuna hyperparameter tuning.

Table 1, below, shows a summary of the important acronyms used throughout this paper.

Technologies 2023, 11, 167 3 of 26

Table 1. Summary of important acronyms.

Acronym Meaning
ANN Artificial Neural Network
AUC Area Under the Curve
BPN Back-Propagation Network

CatBoost Categorical Boosting
CNN Condensed Nearest Neighbor
DT Decision Tree

ENN Edited Nearest Neighbor
LightGBM Light Gradient Boosting Machine

LR Logistic Regression
ML Machine Learning
RF Random Forest

ROC Receiver Operating Characteristic
SMOTE Synthetic Minority Over-Sampling Technique

SVM Support Vector Machine
XGBoost eXtreme Gradient Boosting

The remainder of the paper is organized as follows: Section 2 presents an introduction
to classification machine learning techniques, Section 3 delves into the examination of
sampling methods, Section 4 explains the training and validation process, Section 5 defines
evaluation metrics, simulation results are presented in Section 6, and the paper concludes
in Section 7.

2. Classification of Machine Learning Techniques
2.1. Artificial Neural Network

An Artificial Neural Network (ANN) is a widely employed technique for addressing
complex issues, such as the churn-prediction problem [26]. ANNs are structures composed
of interconnected units that are modeled after the human brain. They can be utilized
with various learning algorithms to enhance the machine learning process and can take
both hardware and software forms. One of the most widely utilized models is the Multi-
Layer Perceptron, which is trained using the Back-Propagation Network (BPN) algorithm.
Research has demonstrated that ANNs possess superior performance compared to Decision
Trees (DTs) [26] and have been shown to exhibit improved performance when compared to
Logistic Regression (LR) and DTs in the context of churn prediction [27].

2.2. Support Vector Machine

The technique of Support Vector Machine (SVM) was first introduced by the authors
in [28]. It is classified as a supervised learning technique that utilizes learning algorithms
to uncover latent patterns within data. A popular method for improving the performance
of SVMs is the utilization of kernel functions [8]. In addressing customer churn problems,
SVM may exhibit superior performance in comparison to Artificial Neural Networks
(ANNs) and Decision Trees (DTs) based on the specific characteristics of the data [16,29].

For this study, we utilized both the Gaussian Radial Basis kernel function (RBF-
SVM) and the Polynomial kernel function (Poly-SVM) for the Support Vector Machine
(SVM) technique. These kernel functions are among the various options available for use
with SVM.

For two samples x and x′, the RBF kernel is defined as follows:

K
(
x. x′

)
= exp

(
−‖x− x′‖2

2δ2

)
(1)

where ‖x− x′‖2 can be the squared Euclidean distance, and δ is a free parameter.

Technologies 2023, 11, 167 4 of 26

For two samples x and x′, the d-degree polynomial kernel is defined as follows:

K
(
x.x′
)
=
(

xTx′ + c
)d

(2)

where c ≥ 0 and d ≥ 1 is the polynomial degree.

2.3. Decision Tree

A Decision Tree is a representation of all potential decision pathways in the form of a
tree structure [30,31]. As Berry and Linoff stated, “a Decision Tree is a structure that can be
used to divide up a large collection of records into successively smaller sets of records by
applying a sequence of simple decision rules” [32]. Though they may not be as efficient in
uncovering complex patterns or detecting intricate relationships within data, DTs may be
used to address the customer churn problem, depending on the characteristics of the data.
In DTs, class labels are indicated by leaves, and the conjunctions between various features
are represented by branches.

2.4. Logistic Regression

Logistic Regression (LR) is a classification method that falls under the category of prob-
abilistic statistics. It can be employed to address the churn-prediction problem by making
predictions based on multiple predictor variables. In order to obtain high accuracy, which
can sometimes be comparable to that of Decision Trees [9], it is often beneficial to apply
pre-processing and transformation techniques to the original data prior to utilizing LR.

2.5. Ensemble Learning

Ensemble learning is one of the widely utilized techniques in machine learning for
combining the outputs of multiple learning models (often referred to as base learners)
into a single classifier [33]. In ensemble learning, it is possible to combine various weak
machine learning models (base learners) to construct a stronger model with more accu-
rate predictions [21,22]. Currently, ensemble learning methods are widely accepted as a
standard choice for enhancing the accuracy of machine learning predictors [22]. Bagging
and boosting are two distinct types of ensemble learning techniques that can be utilized to
improve the accuracy of machine learning predictors [21].

2.5.1. Bagging

As depicted in Figure 1, in the bagging technique, the training data are partitioned into
multiple subset sets, and the model is trained on each subset. The final prediction is then
obtained by combining all individual outputs through majority voting (in classification
problems) or average voting (in regression problems) [21,34–36].

Technologies 2023, 11, x FOR PEER REVIEW 5 of 29

Figure 1. Visualization of the bagging approach.

Random Forest
The concept of Random Forest was first introduced by Ho in 1995 [18] and has been

the subject of ongoing improvements by various researchers. One notable advancement
in this field was made by Leo Breiman in 2001 [19]. Random Forests are an ensemble learn-
ing technique for classification tasks that employs a large number of Decision Trees in the
training model. The output of Random Forests is a class that is selected by the majority of
the trees, as shown in Figure 2. In general, Random Forests exhibit superior performance
compared to Decision Trees. However, the performance can be influenced by the charac-
teristics of the data.

Figure 2. Visualization of the Random Forest classifier.

Random Forests utilize the bagging technique for their training algorithm. In greater
detail, the Random Forests operate as follows: for a training set TS ={(x . y). ⋯ . (x . y)}, bagging is repeated B times, and each iteration selects a random sam-
ple with a replacement from TS and fits trees to the samples:
1. Sample n training examples, X . Y .
2. Train a classification tree (in the case of churn problems) f on the samples X . Y .

After the training phase, Random Forests can predict unseen samples x by taking
the majority vote from all the individual classification trees x .

Figure 1. Visualization of the bagging approach.

Technologies 2023, 11, 167 5 of 26

Random Forest

The concept of Random Forest was first introduced by Ho in 1995 [18] and has been
the subject of ongoing improvements by various researchers. One notable advancement
in this field was made by Leo Breiman in 2001 [19]. Random Forests are an ensemble
learning technique for classification tasks that employs a large number of Decision Trees
in the training model. The output of Random Forests is a class that is selected by the
majority of the trees, as shown in Figure 2. In general, Random Forests exhibit superior
performance compared to Decision Trees. However, the performance can be influenced by
the characteristics of the data.

Technologies 2023, 11, x FOR PEER REVIEW 5 of 29

Figure 1. Visualization of the bagging approach.

Random Forest
The concept of Random Forest was first introduced by Ho in 1995 [18] and has been

the subject of ongoing improvements by various researchers. One notable advancement
in this field was made by Leo Breiman in 2001 [19]. Random Forests are an ensemble learn-
ing technique for classification tasks that employs a large number of Decision Trees in the
training model. The output of Random Forests is a class that is selected by the majority of
the trees, as shown in Figure 2. In general, Random Forests exhibit superior performance
compared to Decision Trees. However, the performance can be influenced by the charac-
teristics of the data.

Figure 2. Visualization of the Random Forest classifier.

Random Forests utilize the bagging technique for their training algorithm. In greater
detail, the Random Forests operate as follows: for a training set TS ={(x . y). ⋯ . (x . y)}, bagging is repeated B times, and each iteration selects a random sam-
ple with a replacement from TS and fits trees to the samples:
1. Sample n training examples, X . Y .
2. Train a classification tree (in the case of churn problems) f on the samples X . Y .

After the training phase, Random Forests can predict unseen samples x by taking
the majority vote from all the individual classification trees x .

Figure 2. Visualization of the Random Forest classifier.

Random Forests utilize the bagging technique for their training algorithm. In greater
detail, the Random Forests operate as follows: for a training set TSn = {(x1.y1). · · · .(xn.yn)},
bagging is repeated B times, and each iteration selects a random sample with a replacement
from TSn and fits trees to the samples:

1. Sample n training examples, Xb.Yb.
2. Train a classification tree (in the case of churn problems) fb on the samples Xb.Yb.

After the training phase, Random Forests can predict unseen samples x′ by taking the
majority vote from all the individual classification trees x′.

f̂ =
1
B

B

∑
b=1

fb
(
x′
)

(3)

2.5.2. Boosting

Boosting is another method for combining multiple base learners to construct a
stronger model with more accurate predictions. The key distinction between bagging
and boosting is that bagging uses a parallel approach to combine weak learners, while
boosting methods utilize a sequential approach to combine weak learners and derive the
final prediction, as shown in Figure 3. Like the bagging technique, boosting improves the
performance of machine learning predictors, and in addition, it reduces the bias of the
model [21].

Technologies 2023, 11, 167 6 of 26

Technologies 2023, 11, x FOR PEER REVIEW 6 of 29

f = 1
B fb(x′)B

b 1

 (3)

2.5.2. Boosting
Boosting is another method for combining multiple base learners to construct a

stronger model with more accurate predictions. The key distinction between bagging and
boosting is that bagging uses a parallel approach to combine weak learners, while boost-
ing methods utilize a sequential approach to combine weak learners and derive the final
prediction, as shown in Figure 3. Like the bagging technique, boosting improves the per-
formance of machine learning predictors, and in addition, it reduces the bias of the model
[21].

Figure 3. Visualization of the boosting approach.

The Famous Trio: XGBoost, LightGBM, and CatBoost
Recently, researchers have presented three effective gradient-based approaches us-

ing Decision Trees: CatBoost, LightGBM, and XGBoost. These new approaches have
demonstrated successful applications in academia, industry, and competitive machine
learning [37]. Utilizing gradient boosting techniques, solutions can be constructed in a
stagewise manner, and the over-fitting problem can be addressed through the optimiza-
tion of loss functions. For example, given a loss function ψ y, f(x) and a custom base-
learner h(x, θ) (e.g., Decision Tree), the direct estimation of parameters can be challenging.
Thus, an iterative model is proposed, which is updated at each iteration with the selection
of a new base-learner function h(x, θt), where the increment is directed by the following: g (x) = E [∂ψ y, f(x)∂f(x) |x] () () (4)

Hence, the hard optimization problem is substituted with the typical least-squares
optimization problem: (p , θ) = arg min , [−g (x) + p h(x , θ)] (5)

Friedman’s gradient boost algorithm is summarized by Algorithm 1.

Figure 3. Visualization of the boosting approach.

The Famous Trio: XGBoost, LightGBM, and CatBoost

Recently, researchers have presented three effective gradient-based approaches us-
ing Decision Trees: CatBoost, LightGBM, and XGBoost. These new approaches have
demonstrated successful applications in academia, industry, and competitive machine
learning [37]. Utilizing gradient boosting techniques, solutions can be constructed in a
stagewise manner, and the over-fitting problem can be addressed through the optimization
of loss functions. For example, given a loss function ψ(y, f(x)) and a custom base-learner
h(x, θ) (e.g., Decision Tree), the direct estimation of parameters can be challenging. Thus,
an iterative model is proposed, which is updated at each iteration with the selection of a
new base-learner function h(x, θt), where the increment is directed by the following:

gt(x) = Ey[
∂ψ(y, f(x))

∂f(x)
|x]

f(x)=
∼
f

t−1
(x)

(4)

Hence, the hard optimization problem is substituted with the typical least-squares
optimization problem:

(pt, θt) = arg minp,θ∑N
i=1[−gt(xi) + ph(xi, θ)]

2 (5)

Friedman’s gradient boost algorithm is summarized by Algorithm 1.

Algorithm 1 Gradient Boost

1: Let f̂0 be a constant
2: For i = 1 to M
a. Compute gi(x) using eq()
b. Train the function h(x, θi)
c. Find pi using eq()
d. Update the function

f̂i = f̂i−1 + pih(x, θi)

3: End

After initiating the algorithm with a single leaf, the learning rate is optimized for
each record and each node [38–40]. The XGBoost method is a highly flexible, versatile,

Technologies 2023, 11, 167 7 of 26

and scalable tool that has been developed to effectively utilize resources and overcome
the limitations of previous gradient boosting methods. The primary distinction between
other gradient boosting methods and XGBoost is that XGBoost utilizes a new regularization
approach for controlling overfitting, making it more robust and efficient when the model is
fine-tuned. To regularize this approach, a new term is added to the loss function as follows:

L(f) = ∑n
i=1 L(ŷi, yi) + ∑M

m=1 Ω(δm) (6)

with
Ω(δ) = α|δ|+ 0.5β||w||2

where w represents the value of each leaf, Ω indicates the regularization function, and |δ|
denotes the number of branches. A new gain function is used by XGBoost, as follows:

Gj = ∑i∈Ij
gi (7)

Hj = ∑i∈Ij
hi

Gain =
1
2

[
G2

L
HL + β

+
G2

R
HR + β

− (GR + GL)
2

HR + HL + β

]
− α

where
gi = ∂ŷi

L(ŷi + yi)

and
hi = ∂2

ŷi
L(ŷi + yi)

The Gain represents the score of the no new child case, H indicates the score of the left
child, and G denotes the score of the right child [41].

To decrease the implementation time, the LightGBM method was developed by a
team from Microsoft in April 2017 [42]. The primary difference is that LightGBM Decision
Trees are constructed in a leaf-wise manner, rather than evaluating all previous leaves for
each new leaf (Figure 4a,b). The attributes are grouped and sorted into bins, known as the
histogram implementation. LightGBM offers several benefits, including a faster training
speed, higher accuracy, and the ability to handle large scale data and support GPU learning.

Technologies 2023, 11, x FOR PEER REVIEW 8 of 29

Figure 4. Comparison of tree growth methods. (a) XGBoost Level-wise tree growth. (b) LightGBM
Leaf-wise tree growth.

The focus of CatBoost is on categorical columns through the use of permutation
methods, target-based statistics, and one_hot_max_size (OHMS). By using a greedy tech-
nique at each new split of the current tree, CatBoost has the capability to address the ex-
ponential growth of feature combinations. The steps described below are employed by
CatBoost for each feature with more categories than the OHMS (an input parameter):
1. To randomly divide the records into subsets,
2. To convert the labels to integer numbers,
3. To transform the categorical features to numerical features, as follows: avgTarget = countInClass + priortotalCount + 1 (8)

where totalCount denotes the number of previous objects, countInClass represents the
number of ones in the target for a specific categorical feature, and the starting parameters
specify prior [43].

3. Handling Imbalanced Data
Imbalanced data are a prevalent problem in data mining. For instance, in binary clas-

sifications, the number of instances in the majority class may be significantly higher than
the number of instances in the minority class. As a result, the ratio of instances in the mi-
nority class to instances in the majority class (imbalanced ratio) may vary from 1:2 to
1:1000. The dataset used in this study is imbalanced, with the distribution of majority class
(non-churned) instances being six times that of the minority class (churned) instances [44].

3.1. The Challenge of Imbalanced Data
While imbalanced datasets can skew overall model performance metrics towards the

majority class, the more nuanced challenge lies in how specific algorithms inherently re-
spond to this imbalance. For example, Support Vector Machines (SVMs) inherently aim to
find a hyperplane that delineates classes by maximizing the margin. However, with im-
balanced datasets, the sheer volume of majority class instances can push this hyperplane
in a way that does not genuinely represent the optimal boundary, especially from the per-
spective of the minority class.

In a similar vein, Decision Tree algorithms, which seek to achieve node purity
through recursive partitioning, can end up favoring the majority class. In imbalanced con-
texts, the tree’s terminal nodes might predominantly represent the majority class, leading
to compromised predictive accuracy for the minority instances.

Addressing these algorithmic biases necessitates approaches beyond mere accuracy
metrics. Techniques, like sampling, which adaptively adjust the class distribution, emerge

Figure 4. Comparison of tree growth methods. (a) XGBoost Level-wise tree growth. (b) LightGBM
Leaf-wise tree growth.

The focus of CatBoost is on categorical columns through the use of permutation meth-
ods, target-based statistics, and one_hot_max_size (OHMS). By using a greedy technique at
each new split of the current tree, CatBoost has the capability to address the exponential

Technologies 2023, 11, 167 8 of 26

growth of feature combinations. The steps described below are employed by CatBoost for
each feature with more categories than the OHMS (an input parameter):

1. To randomly divide the records into subsets,
2. To convert the labels to integer numbers,
3. To transform the categorical features to numerical features, as follows:

avgTarget =
countInClass + prior

totalCount + 1
(8)

where totalCount denotes the number of previous objects, countInClass represents the
number of ones in the target for a specific categorical feature, and the starting parameters
specify prior [43].

3. Handling Imbalanced Data

Imbalanced data are a prevalent problem in data mining. For instance, in binary
classifications, the number of instances in the majority class may be significantly higher
than the number of instances in the minority class. As a result, the ratio of instances in the
minority class to instances in the majority class (imbalanced ratio) may vary from 1:2 to
1:1000. The dataset used in this study is imbalanced, with the distribution of majority class
(non-churned) instances being six times that of the minority class (churned) instances [44].

3.1. The Challenge of Imbalanced Data

While imbalanced datasets can skew overall model performance metrics towards
the majority class, the more nuanced challenge lies in how specific algorithms inherently
respond to this imbalance. For example, Support Vector Machines (SVMs) inherently aim
to find a hyperplane that delineates classes by maximizing the margin. However, with
imbalanced datasets, the sheer volume of majority class instances can push this hyperplane
in a way that does not genuinely represent the optimal boundary, especially from the
perspective of the minority class.

In a similar vein, Decision Tree algorithms, which seek to achieve node purity through
recursive partitioning, can end up favoring the majority class. In imbalanced contexts,
the tree’s terminal nodes might predominantly represent the majority class, leading to
compromised predictive accuracy for the minority instances.

Addressing these algorithmic biases necessitates approaches beyond mere accuracy
metrics. Techniques, like sampling, which adaptively adjust the class distribution, emerge
as pivotal to mitigate such biases, ensuring that algorithms do not just superficially perform
well but genuinely understand and predict minority class instances.

3.2. Sampling Techniques

This characteristic of the imbalanced data leads to the construction of a biased classifier
that has high accuracy for the majority class (non-churned) but low accuracy for the
minority class (churned). Several sampling methods have been proposed to address this
issue. Sampling techniques are applied to imbalanced data to alter the class distribution
and create balanced data. Generally, sampling techniques are divided into two categories:
undersampling, where instances from the majority class are removed, and oversampling,
where instances from the minority class are artificially increased [45]. These methods aim
to adjust the class distribution to enable the classifier to make better-informed decisions.

3.2.1. Synthetic Minority Over-Sampling Technique (SMOTE)

The Synthetic Minority Over-Sampling Technique (SMOTE) [46] is an oversampling
technique that aims to balance the data by replicating instances of the minority class and
is widely utilized to address this issue. Unlike simplistic methods that merely replicate
minority instances, SMOTE innovatively crafts synthetic samples through an interpolation
process between existing minority instances. This nuanced augmentation not only enhances
the representation of the minority class but also fosters a more diverse and expansive

Technologies 2023, 11, 167 9 of 26

decision boundary. Such an enriched decision space proves particularly beneficial for
algorithms, like Support Vector Machines (SVMs), which are inherently sensitive to the
distribution of instances in their modeling process.

3.2.2. Tomek Links

Tomek Links are an undersampling method and an extension to the Condensed
Nearest Neighbor (CNN) method, proposed by Ivan Tomek (in his 1976 paper titled
“Two modifications of CNN”) [47]. The Tomek links method identifies pairs of examples
(each from a different class) that have the minimum Euclidean distance from each other.
By removing such instances, especially from the majority class, decision boundaries can
become clearer and less prone to overlap. This enhanced delineation of decision spaces
proves notably advantageous for classifiers, such as Decision Trees and k-Nearest Neighbors
(k-NNs), which rely heavily on a clear distinction between classes for optimal performance.

3.2.3. Edited Nearest Neighbors (ENNs)

Edited Nearest Neighbors (ENN) are another undersampling method proposed by
Wilson (in his 1972 paper titled “Asymptotic Properties of Nearest Neighbor Rules Using
Edited Data”) [48]. This method computes the three nearest neighbors for each instance
in the dataset. If the instance belongs to the majority class and is misclassified by its three
nearest neighbors, then it is removed from the dataset. Alternatively, if the instance belongs
to the minority class and is misclassified by its three nearest neighbors, then the three
majority-class instances are removed. This method often results in smoother decision
boundaries, particularly benefiting algorithms sensitive to noisy data.

3.3. Combined Data Sampling Techniques

While individual sampling techniques can offer improvements, combining methods
often yields superior results. This is because a combination captures the benefits of both
oversampling and undersampling, refining decision boundaries and enhancing classifier
robustness. In this study, to address imbalanced data, we use two of the most popular
combinations of sampling techniques, such as the combination of SMOTE and Tomek Links
and the combination of SMOTE and ENN.

4. Training and Validation Process

For evaluating our classifiers, we employ the k-fold cross-validation technique. How-
ever, there is a limitation when using this technique with imbalanced data. The issue is that,
with this technique, the data are split into k-folds with a uniform probability distribution,
and in imbalanced data, some folds may have no or few examples from the minority class.
To address this issue, we can use a stratified sampling technique when performing train-test
split or k-fold cross-validation. Using stratification ensures that each split of the data has
an equal number of instances from the minority class.

We utilize an out-of-sample testing approach to evaluate the performance of the
models. This approach demonstrates the performance of the models on unseen data that
were not used to train the models.

When working with imbalanced data, it is essential to up-sample or down-sample
only after splitting the data into train and test sets (and validate if desired). If the dataset is
up-sampled prior to splitting it into test and train, it is likely that the model experiences data
leakage. This way, we may wrongly assume that our machine learning model is performing
well. After building a machine learning model, it is recommended to test the metric on the
not-up-sampled train dataset. When the metric is tested on the not-up-sampled dataset,
the model’s performance can be more realistically estimated compared to when it is tested
on the up-sampled dataset.

Technologies 2023, 11, 167 10 of 26

5. Evaluation Metrics

We employ two types of metrics to evaluate our models. (1) Threshold metrics: these
metrics are designed to minimize the error rate and assist in calculating the exact number
of predicted values that do not match the actual values. (2) Ranking metrics: these metrics
are designed to evaluate the effectiveness of classifiers in separating classes. These metrics
require classifiers to predict a probability or a score of class membership. By applying
different thresholds, we can test the effectiveness of classifiers, and those classifiers that
maintain a good score across a range of thresholds will have better class separation and, as
a result, will have a higher rank.

5.1. Threshold Metrics

Normally, we use the standard accuracy metric (Equation (6)) for measuring the
performance of ML models. However, for imbalanced data, classification ML models may
achieve high accuracy, as this metric only considers the majority class. In an imbalanced
dataset, instances of the minority class (churned) are rare, and thus, True Positives (TPs) do
not have a significant impact on the standard accuracy metric. This metric, therefore, cannot
accurately represent the performance of the models. For example, if the model correctly
predicts all data points in the majority class (non-churned), it will result in high True
Negatives (TNs) and a high standard of accuracy without accurately predicting anything
about the minority class (churned). In the case of imbalanced data, this metric is not
sufficient as a benchmark criterion measure [49]. Therefore, other metrics, such as recall,
precision, and F1-score, are commonly used to evaluate the performance of ML models in
minority classes and can be extracted from the confusion matrix, as shown in Table 2.

Table 2. The confusion matrix for evaluating methods.

Predicted Class

Churners Non-Churners

Actual Class
Churners TP FN

Non-churners FP TN

The confusion matrix helps us to understand the performance of ML models by show-
ing which class is being predicted correctly and which one is being predicted incorrectly.

In Table 2, TP and FP stand for True Positive and False Positive, and FN and TN stand
for False Negative and True Negative, respectively. Precision, Recall, and Accuracy can be
calculated using the following formulas:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Accuracy =
Correct Predictions

Total Predictions
=

TP + TN
TP + FP + TN + FN

(11)

But Precision and Recall are not sufficient for evaluating the accuracy of the mentioned
methods, since they do not provide enough information and can be misleading. Therefore,
we usually use the F1-score metric as a single metric to evaluate the accuracy of our models.
The F1-score is a combination of Precision and Recall metrics and balances both precision
and recall and provides a single metric that represents the overall performance of the model.
The F1-score is defined as follows:

F1− score =
2× Precision× Recall

Precision + Recall
(12)

Technologies 2023, 11, 167 11 of 26

The more the value of the F1-score is closer to 1, the better combination of Precision
and Recall is achieved by the model [50].

5.2. Ranking Metrics

In the field of churn prediction, the Receiver Operating Characteristic (ROC) Curve
is widely recognized as a prominent ranking metric for evaluating the performance of
classifiers. This metric enables the assessment of a classifier’s ability to differentiate between
classes by providing a visual representation of the True Positive rate and False Positive rate
of predicted values, as calculated under various threshold values.

The True Positive rate (recall or sensitivity) is calculated as follows:

TruePositiveRate =
TP

TP + FN
(13)

And the False Positive rate is calculated as follows:

FalsePositiveRate =
FP

FP + TN
(14)

Each point on the plot represents a prediction made by the model, with the curve
being formed by connecting all points. A line running diagonally from the bottom left to
the top right on the plot represents a model with no skill, and any point located below this
line represents a model that performs worse than one with no skill. Conversely, a point in
the top left corner of the plot symbolizes a perfect model.

The Area Under the ROC curve can be calculated and utilized as a single score to
evaluate the performance of models. A classifier with no skill has a score of 0.5, and a
perfect classifier has a score of 1.0, as shown in Figure 5. However, it should be noted that
the ROC curve can be effective for classification problems with a low imbalanced ratio
and can be optimistic for classification problems with a high imbalanced ratio. In such
cases, the Precision–Recall curve is a more appropriate metric because it focuses on the
performance of the classifier on the minority class, as depicted in Figure 6.

Technologies 2023, 11, x FOR PEER REVIEW 12 of 29

Figure 5. The ROC curve.

Figure 6. The Precision–Recall curve.

The ROC curve is a widely used method for evaluating the performance of machine
learning models. The ROC curve plots the True Positive rate against the False Positive rate
at various threshold settings, with each point on the curve representing a predicted value
by the model.

A horizontal line on the plot signifies a model with no skill, while points below the
diagonal line indicate a model that performs worse than random chance. Conversely, a
point located in the top left quadrant of the plot represents a model with perfect perfor-
mance.

Figure 5. The ROC curve.

Technologies 2023, 11, 167 12 of 26

Technologies 2023, 11, x FOR PEER REVIEW 12 of 29

Figure 5. The ROC curve.

Figure 6. The Precision–Recall curve.

The ROC curve is a widely used method for evaluating the performance of machine
learning models. The ROC curve plots the True Positive rate against the False Positive rate
at various threshold settings, with each point on the curve representing a predicted value
by the model.

A horizontal line on the plot signifies a model with no skill, while points below the
diagonal line indicate a model that performs worse than random chance. Conversely, a
point located in the top left quadrant of the plot represents a model with perfect perfor-
mance.

Figure 6. The Precision–Recall curve.

The ROC curve is a widely used method for evaluating the performance of machine
learning models. The ROC curve plots the True Positive rate against the False Positive rate
at various threshold settings, with each point on the curve representing a predicted value
by the model.

A horizontal line on the plot signifies a model with no skill, while points below the di-
agonal line indicate a model that performs worse than random chance. Conversely, a point
located in the top left quadrant of the plot represents a model with perfect performance.

In datasets with a balanced distribution of positive and negative examples, the hori-
zontal line on the ROC plot is typically set at 0.5. However, when the dataset is imbalanced,
such as with an imbalanced ratio of 1:10, the horizontal line is adjusted to 0.1 to reflect the
imbalanced nature of the data.

In addition to the ROC curve, the Area Under the ROC curve (AUC) is also a commonly
used metric for evaluating the performance of machine learning models. The AUC provides
a single score for comparing the performance of different models. In cases where the
dataset has a high imbalanced ratio, the Precision–Recall AUC (PR AUC) may be more
informative as it specifically focuses on the performance of the minority class. However, if
the imbalanced ratio of the dataset is not excessively high, such as the dataset utilized in
this study, the use of PR AUC may not be necessary for the evaluation.

In this paper, we employ a comprehensive set of metrics to evaluate the performance
of machine learning models, including Recall, Precision, F1-score, and Receiver Operating
Characteristic (ROC) AUC. These metrics provide a comprehensive evaluation of the
model’s performance, including its ability to accurately identify positive examples, balance
False Positives and False Negatives, and handle imbalanced datasets.

Among these four metrics, we primarily focused on the F1-score and ROC AUC
metrics for the following reasons:

v F1-score: Given the imbalance in our dataset, the F1-score is particularly useful as
it does not inflate the performance of the model due to the high number of True
Negatives, which is a common issue with accuracy in such datasets.

v ROC AUC: Unlike the standard accuracy metric, ROC AUC places a particular empha-
sis on the performance of the minority class, and the accurate prediction of minority
class instances is central to its calculation. This is particularly useful in situations
where the dataset is imbalanced, as it ensures that the model’s performance is evalu-
ated fairly. This metric is less sensitive to class imbalance and provides insight into

Technologies 2023, 11, 167 13 of 26

the model’s ability to distinguish between classes, making it a robust measure for
comparing the performance of different models.

5.3. ROC AUC Benchmark

It is clear that an ROC Area Under the Curve (AUC) of 100% represents the optimal
performance that a machine learning model can achieve, as it indicates that all instances of
the positive class (e.g., churns in the case of customer retention) are ranked higher in risk
than all instances of the negative class (e.g., non-churns). However, it is highly unlikely
that any model will achieve this level of performance in real-world problems.

As such, when comparing the performance of different machine learning models
using ROC AUC, it is necessary to have a benchmark to determine whether the model’s
performance is acceptable. The ROC AUC ranges from 50% to 100%, with 50% being
equivalent to random guessing and 100% representing perfect performance. As can be
seen in Table 3, the worst possible AUC is 50%, which is similar to the result of a coin
flip for prediction. If the percentages are less than 50%, it indicates an issue with the
model. Consider the worst-case scenario of obtaining a zero percent accuracy. While this
might seem problematic, it actually means that the model ranked all non-churn customers
as higher risk than churn customers. Surprisingly, this result could be considered good
because it implies your model can perfectly predict customer retention. However, most
likely, there was an error in your model setup causing it to predict in the opposite direction.

Table 3. ROC AUC benchmark for predicting churn.

ROC AUC Threshold Description
ROC AUC < 50% Something is wrong *

50% ≤ ROC AUC < 60% Similar to flipping a coin
60% ≤ ROC AUC < 70% Weak prediction
70% ≤ ROC AUC < 80% Good Prediction
80% ≤ ROC AUC < 90% Very Good Prediction

ROC AUC ≥ 90% Excellent Prediction
* Check the data and the AUC calculation.

In Table 3, the categorization of the ROC AUC metric follows empirical norms and
established methodologies within machine learning to yield a discernible evaluation of
model efficacy. This discretization strategy is intended to furnish a pragmatic benchmark
for evaluating churn-prediction models, facilitating a straightforward appraisal for both
researchers and practitioners.

6. Simulation
6.1. Simulation Setup

The primary objective of this study is to evaluate and compare the performance
of several popular classification techniques in solving the problem of customer churn
prediction. The classifiers under examination include Decision Tree, Logistic Regression,
Random Forest, Support Vector Machine, XGBoost, LightGBM, and CatBoost. To achieve
this goal, simulations were conducted using the Python programming language and various
libraries, such as Pandas, NumPy, and Scikit-learn.

A real-world dataset was used for this study, which was obtained from Kaggle and is
outlined in Table 4 [44]. The training dataset consists of 20 attributes and 4250 instances,
while the testing dataset has 20 attributes and 750 instances. The training dataset features a
churn rate of 14.1% and an active subscriber rate of 85.9%. The performance of the models
was evaluated using a variety of metrics, including the Precision, Recall, F1-score, and
ROC AUC as defined previously. After undergoing pre-processing steps, such as handling
categorical variables, feature selection, and removing outliers, these metrics were evaluated
using both the training and testing datasets. Additionally, the SMOTE technique was used
to handle imbalanced data, and the effect on the performance of the models was examined.

Technologies 2023, 11, 167 14 of 26

Table 4. The names and types of different variables in the churn dataset.

Variable Name Type
state, (the US state of customers) string
account_length (number of active months) numerical
area_code, (area code of customers) string
international_plan, (whether customers have international plans) yes/no
voice_mail_plan, (whether customers have voice mail plans) yes/no
number_vmail_messages, (number of voice-mail messages) numerical
total_day_minutes, (total minutes of day calls) numerical
total_day_calls, (total number of day calls) numerical
total_day_charge, (total charge of day calls) numerical
total_eve_minutes, (total minutes of evening calls) numerical
total_eve_calls, (total number of evening calls) numerical
total_eve_charge, (total charge of evening calls) numerical
total_night_minutes, (total minutes of night calls) numerical
total_night_calls, (total number of night calls) numerical
total_night_charge, (total charge of night calls) numerical
total_intl_minutes, (total minutes of international calls) numerical
total_intl_calls, (total number of international calls) numerical
total_intl_charge, (total charge of international calls) numerical
number_customer_service_calls, (number of calls to customer service) numerical
churn, (customer churn—the target variable) yes/no

6.2. Simulation Results

In this study, we evaluate the performance of several machine learning models (Deci-
sion Tree, Logistic Regression, Artificial Neural Network, Support Vector Machine, Random
Forest, XGBoost, LightGBM, and CatBoost) based on unseen data using a range of metrics,
including the Precision, Recall, F1-score, Receiver Operating Characteristic (ROC) Area
Under the Curve (AUC), and Precision–Recall (PR) AUC. The evaluation is carried out on
the testing dataset to assess the generalization ability of the models and to determine their
performance based on unseen data.

6.2.1. After Pre-Processing and Feature Selection

After undergoing several pre-processing steps, such as handling categorical features
and feature selection, the aforementioned models were applied to the data, and their
performance was evaluated. The results of this evaluation are presented in Table 5, with
the highest values highlighted in bold and marked with an asterisk.

Table 5. Evaluation metrics for the different models after pre-processing and feature selection.

Models Precision% Recall% F1-score% ROC AUC%
DT 91 72 77 72

ANN 85 76 80 77
LR 61 70 62 70

SVM 81 57 59 57
RF 96 75 81 75

CatBoost 90 90 90 90
LightGBM 94 91 92* 91*
XGBoost 96 87 91 87

As depicted in Table 5, the boosting models demonstrate superior performance, par-
ticularly in relation to F1-score and ROC AUC metrics. Notably, LightGBM surpasses

Technologies 2023, 11, 167 15 of 26

the performance of other methods, achieving an impressive F1-score of 92% and an ROC
AUC of 91%. Figure 7 shows the diagram of the ROC curve for the different models after
pre-processing and feature selection.

Technologies 2023, 11, x FOR PEER REVIEW 16 of 29

Figure 7. ROC curve after pre-processing and feature selection.

6.2.2. Applying SMOTE
To address the issue of class imbalance in the training data, where the number of

instances of class-0 is 3652 and the number of instances of class-1 is 598, we have applied
the SMOTE technique to the training dataset. This technique was used to create synthetic
instances of the minority class in order to achieve a balanced training dataset. As a result
of the application of SMOTE, the number of instances for both class-0 and class-1 is now
equal to 2125.

As Table 6 shows, LightGBM and XGBoost outperform other ML techniques in all
evaluation metrics. Notably, LightGBM and XGBoost surpass the performance of other
methods, with both achieving an impressive ROC AUC of 90%, and XGBoost outperforms
the other methods, achieving an impressive F1-score of 92%. Figure 8 shows the diagram
of the ROC curve for the different models after applying SMOTE.

Table 6. Evaluation metrics for the different models after applying SMOTE.

Models Precision% Recall% F1-score% ROC AUC%
DT 69 72 70 72

ANN 70 73 71 83
LR 61 71 61 70

SVM 65 73 68 73
RF 83 76 79 76

CatBoost 79 88 83 88
LightGBM 87 90 88 90*
XGBoost 95 90 92* 90*

Figure 7. ROC curve after pre-processing and feature selection.

6.2.2. Applying SMOTE

To address the issue of class imbalance in the training data, where the number of
instances of class-0 is 3652 and the number of instances of class-1 is 598, we have applied
the SMOTE technique to the training dataset. This technique was used to create synthetic
instances of the minority class in order to achieve a balanced training dataset. As a result
of the application of SMOTE, the number of instances for both class-0 and class-1 is now
equal to 2125.

As Table 6 shows, LightGBM and XGBoost outperform other ML techniques in all
evaluation metrics. Notably, LightGBM and XGBoost surpass the performance of other
methods, with both achieving an impressive ROC AUC of 90%, and XGBoost outperforms
the other methods, achieving an impressive F1-score of 92%. Figure 8 shows the diagram
of the ROC curve for the different models after applying SMOTE.

6.2.3. Applying SMOTE with Tomek Links

As previously discussed in Section IV, the Tomek Links method is an undersampling
technique that is used to identify pairs of examples, where each example belongs to a
different class that has the minimum Euclidean distance to each other. Additionally,
as noted in the section, it is beneficial to utilize a combination of both oversampling
and undersampling techniques to achieve optimal results. The results of the evaluation
metrics for the various models after applying the SMOTE technique in conjunction with
Tomek Links are presented in Table 7. Notably, LightGBM outperforms the other methods,
achieving an impressive ROC AUC of 91%, and XGBoost surpasses the other methods,
achieving an impressive F1-score of 91%. As indicated in Table 7, XGBoost demonstrates
a marginal performance improvement, with a modest 2% enhancement in the ROC AUC
compared to the pre-processing and feature selection stage (initial state), as shown in
Table 6. Figure 9 shows the diagram of the ROC curve for the different models after
applying SMOTE with Tomek Links.

Technologies 2023, 11, 167 16 of 26

Table 6. Evaluation metrics for the different models after applying SMOTE.

Models Precision% Recall% F1-score% ROC AUC%
DT 69 72 70 72

ANN 70 73 71 83
LR 61 71 61 70

SVM 65 73 68 73
RF 83 76 79 76

CatBoost 79 88 83 88
LightGBM 87 90 88 90*
XGBoost 95 90 92* 90*

Technologies 2023, 11, x FOR PEER REVIEW 17 of 29

Figure 8. ROC curve after applying SMOTE.

6.2.3. Applying SMOTE with Tomek Links
As previously discussed in Section IV, the Tomek Links method is an undersampling

technique that is used to identify pairs of examples, where each example belongs to a
different class that has the minimum Euclidean distance to each other. Additionally, as
noted in the section, it is beneficial to utilize a combination of both oversampling and un-
dersampling techniques to achieve optimal results. The results of the evaluation metrics
for the various models after applying the SMOTE technique in conjunction with Tomek
Links are presented in Table 7. Notably, LightGBM outperforms the other methods,
achieving an impressive ROC AUC of 91%, and XGBoost surpasses the other methods,
achieving an impressive F1-score of 91%. As indicated in Table 7, XGBoost demonstrates
a marginal performance improvement, with a modest 2% enhancement in the ROC AUC
compared to the pre-processing and feature selection stage (initial state), as shown in Ta-
ble 6. Figure 9 shows the diagram of the ROC curve for the different models after applying
SMOTE with Tomek Links.

Table 7. Evaluation metrics for the different models after applying SMOTE with Tomek Links.

Models Precision% Recall% F1-score% ROC AUC%
DT 74 74 74 74

ANN 69 75 71 75
LR 61 70 61 69

SVM 65 73 67 73
RF 85 78 81 78

CatBoost 80 88 83 88
LightGBM 89 91 90 91*
XGBoost 94 89 91* 89

Figure 8. ROC curve after applying SMOTE.

Table 7. Evaluation metrics for the different models after applying SMOTE with Tomek Links.

Models Precision% Recall% F1-score% ROC AUC%
DT 74 74 74 74

ANN 69 75 71 75
LR 61 70 61 69

SVM 65 73 67 73
RF 85 78 81 78

CatBoost 80 88 83 88
LightGBM 89 91 90 91*
XGBoost 94 89 91* 89

6.2.4. Applying SMOTE with ENN

As previously discussed in Section 3 the ENN method is employed to compute the
three nearest neighbors for each instance within the dataset. In instances where the sample
belongs to the majority class and is misclassified by its three nearest neighbors, the instance
is removed from the dataset. Conversely, if the instance belongs to the minority class
and is misclassified by its three nearest neighbors, the three majority class instances are
removed. Furthermore, as previously stated, it has been shown to be beneficial to utilize a
combination of undersampling and oversampling techniques in order to achieve optimal
results. Table 8 illustrates the evaluation metrics for the various models following the
application of the SMOTE technique in conjunction with the ENN method. The results

Technologies 2023, 11, 167 17 of 26

indicate that XGBoost outperforms the other machine learning techniques, achieving an
F1-score of 88% and an ROC AUC of 89%. As indicated in Table 8, XGBoost exhibits
a performance decline, experiencing a 3% reduction in F1-score compared to the pre-
processing and feature selection stage (initial state), as shown in Table 6. Figure 10 shows
the diagram of the ROC curve for the different models after applying SMOTE with ENN.

Technologies 2023, 11, x FOR PEER REVIEW 18 of 29

Figure 9. ROC curve after applying SMOTE with Tomek Links.

6.2.4. Applying SMOTE with ENN
As previously discussed in Section 3 the ENN method is employed to compute the

three nearest neighbors for each instance within the dataset. In instances where the sample
belongs to the majority class and is misclassified by its three nearest neighbors, the in-
stance is removed from the dataset. Conversely, if the instance belongs to the minority
class and is misclassified by its three nearest neighbors, the three majority class instances
are removed. Furthermore, as previously stated, it has been shown to be beneficial to uti-
lize a combination of undersampling and oversampling techniques in order to achieve
optimal results. Table 8 illustrates the evaluation metrics for the various models following
the application of the SMOTE technique in conjunction with the ENN method. The results
indicate that XGBoost outperforms the other machine learning techniques, achieving an
F1-score of 88% and an ROC AUC of 89%. As indicated in Table 8, XGBoost exhibits a
performance decline, experiencing a 3% reduction in F1-score compared to the pre-pro-
cessing and feature selection stage (initial state), as shown in Table 6. Figure 10 shows the
diagram of the ROC curve for the different models after applying SMOTE with ENN.

Table 8. Evaluation metrics for the different models after applying SMOTE with ENN.

Models Precision% Recall% F1-score% ROC AUC%
DT 60 70 50 70

ANN 61 70 60 70
LR 52 50 50 50

SVM 60 70 58 70
RF 67 76 69 76

CatBoost 70 83 72 83
LightGBM 80 89 84 87
XGBoost 88 89 88* 89*

Figure 9. ROC curve after applying SMOTE with Tomek Links.

Table 8. Evaluation metrics for the different models after applying SMOTE with ENN.

Models Precision% Recall% F1-Score% ROC AUC%
DT 60 70 50 70

ANN 61 70 60 70
LR 52 50 50 50

SVM 60 70 58 70
RF 67 76 69 76

CatBoost 70 83 72 83
LightGBM 80 89 84 87
XGBoost 88 89 88* 89*

Technologies 2023, 11, x FOR PEER REVIEW 19 of 29

Figure 10. ROC curve after applying SMOTE with ENN.

6.2.5. The Impact of Sampling Techniques
F1-score

Table 9 and Figure 11 show the impact of three distinct sampling techniques (SMOTE,
SMOTE with Tomek Links, and SMOTE with ENN) on the F1-score metric of various ma-
chine learning models. These comparisons offer insights into the effectiveness of each
technique in handling imbalanced datasets.

Table 9. F1-score of different ML models after applying different sampling techniques.

 DT ANN LR SVM RF CatBoost XGBoost LightGBM
Initial 77* 80* 62* 59 81* 90* 92* 91

SMOTE 70 71 61 68 * 79 83 88 92*
SMOTE-TOMEK 74 71 61 67 81* 83 90 91

SMOTE-ENN 50 60 50 58 69 72 84 88

Figure 10. ROC curve after applying SMOTE with ENN.

Technologies 2023, 11, 167 18 of 26

6.2.5. The Impact of Sampling Techniques
F1-Score

Table 9 and Figure 11 show the impact of three distinct sampling techniques (SMOTE,
SMOTE with Tomek Links, and SMOTE with ENN) on the F1-score metric of various
machine learning models. These comparisons offer insights into the effectiveness of each
technique in handling imbalanced datasets.

1. Impact of SMOTE Sampling Technique:

• Most models saw a decrease in the F1-score after applying SMOTE compared to
the pre-processing and feature selection stage (initial state).

• CatBoost and LightGBM experienced a reduction in F1-scores, but XGBoost
showed slight improvements.

• Support Vector Machine (SVM) exhibits an enhanced F1-score.

2. Impact of SMOTE with Tomek Links Sampling Technique:

• SMOTE with Tomek Links demonstrates further enhancements in F1-scores for
several models compared to SMOTE alone.

• Support Vector Machine (SVM) showed improvements.
• CatBoost experienced a reduction in F1-scores compared to the pre-processing

and feature selection stage (initial state).
• LightGBM showed a slight reduction in F1-scores by 2%.
• XGBoost remained consistent with an F1-score of 91.

3. Impact of SMOTE with ENN Sampling Technique:

• SMOTE with ENN leads to varied impacts on F1-scores across models.
• Some models, like the Decision Tree (DT), Logistic Regression (LR), and CatBoost,

experience significant drops in F1-scores compared to the pre-processing and
feature selection stage (initial state).

• LightGBM maintains relatively high F1-scores, with LightGBM achieving 84%.
• XGBoost remains strong with an F1-score of 88% despite the decline.
• SMOTE with ENN may not consistently enhance performance and should be

chosen carefully based on the specific model and dataset characteristics.

Table 9. F1-score of different ML models after applying different sampling techniques.

DT ANN LR SVM RF CatBoost XGBoost LightGBM
Initial 77* 80* 62* 59 81* 90* 92* 91

SMOTE 70 71 61 68 * 79 83 88 92*
SMOTE-
TOMEK 74 71 61 67 81* 83 90 91

SMOTE-
ENN 50 60 50 58 69 72 84 88

In summary, the impact of different sampling techniques on F1-scores varied across
models. SMOTE generally led to reduced F1-scores, with CatBoost and LightGBM experi-
encing declines and XGBoost showing slight improvements. SMOTE with Tomek Links
enhanced F1-scores for several models, particularly benefiting SVM, but CatBoost and
LightGBM saw reductions. SMOTE with ENN had mixed effects on F1-scores, signifi-
cantly decreasing scores for some models but maintaining higher scores for LightGBM
and XGBoost. Among the sampling techniques, SMOTE-ENN yields the least favorable
results for all machine learning models when contrasted with methods, such as SMOTE and
SMOTE-TOMEK. Choosing the appropriate sampling technique should consider specific
model and dataset characteristics.

Technologies 2023, 11, 167 19 of 26
Technologies 2023, 11, x FOR PEER REVIEW 20 of 29

Figure 11. The impact of sampling techniques on the F1-score of different ML models.

1. Impact of SMOTE Sampling Technique:
• Most models saw a decrease in the F1-score after applying SMOTE compared to

the pre-processing and feature selection stage (initial state).
• CatBoost and LightGBM experienced a reduction in F1-scores, but XGBoost

showed slight improvements.
• Support Vector Machine (SVM) exhibits an enhanced F1-score.

2. Impact of SMOTE with Tomek Links Sampling Technique:
• SMOTE with Tomek Links demonstrates further enhancements in F1-scores for

several models compared to SMOTE alone.
• Support Vector Machine (SVM) showed improvements.
• CatBoost experienced a reduction in F1-scores compared to the pre-processing

and feature selection stage (initial state).
• LightGBM showed a slight reduction in F1-scores by 2%.
• XGBoost remained consistent with an F1-score of 91.

3. Impact of SMOTE with ENN Sampling Technique:
• SMOTE with ENN leads to varied impacts on F1-scores across models.
• Some models, like the Decision Tree (DT), Logistic Regression (LR), and Cat-

Boost, experience significant drops in F1-scores compared to the pre-processing
and feature selection stage (initial state).

• LightGBM maintains relatively high F1-scores, with LightGBM achieving 84%.
• XGBoost remains strong with an F1-score of 88% despite the decline.
• SMOTE with ENN may not consistently enhance performance and should be

chosen carefully based on the specific model and dataset characteristics.
In summary, the impact of different sampling techniques on F1-scores varied across

models. SMOTE generally led to reduced F1-scores, with CatBoost and LightGBM expe-
riencing declines and XGBoost showing slight improvements. SMOTE with Tomek Links
enhanced F1-scores for several models, particularly benefiting SVM, but CatBoost and
LightGBM saw reductions. SMOTE with ENN had mixed effects on F1-scores, signifi-
cantly decreasing scores for some models but maintaining higher scores for LightGBM
and XGBoost. Among the sampling techniques, SMOTE-ENN yields the least favorable
results for all machine learning models when contrasted with methods, such as SMOTE

0
10
20
30
40
50
60
70
80
90

100

DT ANN LR SVM RF CatBoost LightGBM XGBoost

F1-score

After pre-processing and feature selection

After applying SMOTE

After applying SMOTE with Tomek Links

After applying SMOTE with ENN

Figure 11. The impact of sampling techniques on the F1-score of different ML models.

ROC AUC

Table 10 and Figure 12 show the impact of three distinct sampling techniques (SMOTE,
SMOTE with Tomek Links, and SMOTE with ENN) on the ROC AUC metric of various
machine learning models. These comparisons offer insights into the effectiveness of each
technique in handling imbalanced datasets.

1. Impact of SMOTE Sampling Technique:

• After applying SMOTE, there are noticeable improvements in ROC AUC metrics
for some models.

• ANN, SVM, RF, and XGBoost experience ROC AUC enhancements, but CatBoost
and LightGBM showed a slight reduction compared to the pre-processing and
feature selection stage (initial state).

• Models, like ANN and SVM, see substantial improvements, with ROC AUC
scores reaching 83% and 73%, respectively.

2. Impact of SMOTE with Tomek Links Sampling Technique:

• SMOTE combined with Tomek Links maintains or enhances ROC AUC metrics
for most models.

• DT, SVM, and RF observe improved ROC AUC metrics.
• LightGBM and CatBoost maintain high ROC AUC scores of 91% and 88%, respectively.
• This technique’s combination of class balancing (SMOTE) and the removal of

borderline instances (Tomek Links) continues to prove effective.

3. Impact of SMOTE with ENN Sampling Technique:

• SMOTE with ENN produces mixed results for ROC AUC metrics.
• While some models, like RF and XGBoost, and SVM showed improvements in

ROC AUC metrics, others experienced drops.
• Logistic Regression (LR) encounters a significant reduction in the ROC AUC.
• LightGBM maintains a respectable ROC AUC metric of 87%.
• Researchers should exercise caution when applying SMOTE with ENN, as its

impact varies across models.

Technologies 2023, 11, 167 20 of 26

Table 10. ROC AUC of different ML models after applying different sampling techniques.

DT ANN LR SVM RF CatBoost XGBoost LightGBM
Initial 72 77 70* 57 75 90* 91* 87

SMOTE 72 83* 70* 73* 76 88 90 90*
SMOTE-
TOMEK 74* 75 69 73* 78* 88 91* 89

SMOTE-
ENN 70 70 50 70 76 83 87 89

Technologies 2023, 11, x FOR PEER REVIEW 21 of 29

and SMOTE-TOMEK. Choosing the appropriate sampling technique should consider spe-
cific model and dataset characteristics.

ROC AUC
Table 10 and Figure 12 show the impact of three distinct sampling techniques

(SMOTE, SMOTE with Tomek Links, and SMOTE with ENN) on the ROC AUC metric of
various machine learning models. These comparisons offer insights into the effectiveness
of each technique in handling imbalanced datasets.

Table 10. ROC AUC of different ML models after applying different sampling techniques.

 DT ANN LR SVM RF CatBoost XGBoost LightGBM
Initial 72 77 70* 57 75 90* 91* 87

SMOTE 72 83* 70* 73* 76 88 90 90*
SMOTE-TOMEK 74* 75 69 73* 78* 88 91* 89

SMOTE-ENN 70 70 50 70 76 83 87 89

Figure 12. The impact of sampling techniques on ROC AUC of different ML models.

1. Impact of SMOTE Sampling Technique:
• After applying SMOTE, there are noticeable improvements in ROC AUC metrics

for some models.
• ANN, SVM, RF, and XGBoost experience ROC AUC enhancements, but Cat-

Boost and LightGBM showed a slight reduction compared to the pre-processing
and feature selection stage (initial state).

• Models, like ANN and SVM, see substantial improvements, with ROC AUC
scores reaching 83% and 73%, respectively.

2. Impact of SMOTE with Tomek Links Sampling Technique:
• SMOTE combined with Tomek Links maintains or enhances ROC AUC metrics

for most models.
• DT, SVM, and RF observe improved ROC AUC metrics.

0
10
20
30
40
50
60
70
80
90

100

DT ANN LR SVM RF CatBoost LightGBM XGBoost

ROC AUC%

After pre-processing and feature selection

After applying SMOTE

After applying SMOTE with Tomek Links

After applying SMOTE with ENN

Figure 12. The impact of sampling techniques on ROC AUC of different ML models.

In summary, the impact of different sampling techniques on ROC AUC metrics varied
among models. SMOTE led to improvements for ANN, SVM, RF, and XGBoost but slight
reductions for CatBoost and LightGBM. Notably, ANN and SVM achieved substantial ROC
AUC scores of 83% and 73%, respectively. SMOTE with Tomek Links generally maintained
or improved ROC AUC metrics, benefiting models, like DT, SVM, RF, LightGBM, and
CatBoost, with the latter two maintaining high scores. SMOTE with ENN produced
mixed results, improving the ROC AUC for some models, such as RF, XGBoost, and SVM,
while causing a significant reduction in Logistic Regression. LightGBM maintained a
respectable ROC AUC of 87%. Similar to the F1-score metric, SMOTE-ENN demonstrates
lower performance in terms of the ROC AUC for all machine learning models compared
to techniques, such as SMOTE and SMOTE-TOMEK. Researchers should select the most
appropriate sampling technique based on their dataset and model to achieve optimal ROC
AUC results.

Sampling Techniques vs. Boosting Techniques

Several factors contribute to the relatively modest impact of sampling techniques on
the performance of boosting algorithms:

• Iterative Nature: Boosting methods iteratively train a sequence of weak models,
typically Decision Trees. Each subsequent model focuses on the errors made by the
previous ones. Boosting is adaptive in the sense that it can adjust to the errors and
potentially correct them in subsequent iterations.

Technologies 2023, 11, 167 21 of 26

• Adaptive Nature: While oversampling introduces more instances of the minority class,
boosting models, given their adaptive nature, can sometimes already compensate for
the imbalance to some degree. As a result, oversampling might not always result in
significant performance improvements.

• Weighted Loss Function: Many boosting algorithms, like XGBoost, offer a weighted
loss function where instances from different classes can be assigned different weights.
This built-in mechanism can help in addressing class imbalance, reducing the need for
external sampling methods.

In summary, while data sampling can rectify the decision boundary in models like
SVM that are sensitive to class distributions, boosting techniques, due to their adaptive
and iterative nature, might already have mechanisms to handle an imbalance to a certain
extent. However, the actual impact of sampling can vary based on the dataset, the degree
of imbalance, the specific boosting algorithm used, and its hyperparameters.

6.2.6. Applying Optuna Hyperparameter Optimizer

Hyperparameter optimization is pivotal in machine learning for enhancing the perfor-
mance of models. While models come with default hyperparameters, fine-tuning them to
a specific dataset can substantially boost their efficacy. One prominent tool in this space
is Optuna. Takuya Akiba et al. (2019) [51] introduced Optuna, an open-source Python
library for hyperparameter optimization. Optuna aims to balance the pruning and sam-
pling algorithms through the execution of various techniques, such as the Tree-Structured
Parzen Estimator (TPE) [52,53] for independent parameter sampling, Covariance Matrix
Adaptation (CMA) [54], and Gaussian Processes (GPs) [53] for relational parameter sam-
pling. The library also utilizes a variant of the Asynchronous Successive Halving (ASHA)
algorithm [55] to prune search spaces.

TPE is a Bayesian optimization technique. Unlike grid or random search, which treats
hyperparameters as isolated, TPE considers the relationship between hyperparameters and
the objective function. The advantage of TPE over other methods lies in its efficiency. By
constructing a probabilistic model of the objective function, it can suggest hyperparameters
that are more likely to yield better results, hence reducing the number of trials [52,53].

Both CMA and GP are methodologies used in Optuna for relational parameter sam-
pling. CMA captures the interdependencies between parameters, optimizing the sampling
process, while GP uses the kernel trick to project data into higher dimensions, capturing
complex relationships in the hyperparameter space [53,54].

The goal of ASHA is efficiency. It is an early stopping strategy to prune trials that do
not show promise, which allows for a more efficient hyperparameter search. By identi-
fying and halting unpromising trials early, computational resources are channeled more
effectively [55].

In this study, we applied the Optuna library to the popular machine learning models,
CatBoost, XGBoost, and LightGBM. The results, as presented in Table 11, indicate that
CatBoost outperforms XGBoost and LightGBM when utilizing Optuna for hyperparameter
optimization, achieving an impressive F1-score of 93% and an ROC AUC of 91%. The
improved F1-score and ROC AUC results observed after employing Optuna hyperparame-
ter tuning for CatBoost likely result from the enhanced hyperparameter settings. Optuna
fine-tunes these settings more effectively for your specific data, reducing overfitting and
enhancing the models’ generalization to new data. This ultimately leads to improved
overall model performance, as hyperparameters play a significant role in how effectively
these algorithms operate with the dataset. Figure 13 shows the diagram of the ROC curve
for the different models after applying Optunal hyperparameter tuning.

Table 12 includes all the parameters that were used in the XGBoost, LightGBM, and
CatBoost models after applying Optuna hyperparameter tuning. The table provides a clear
and concise summary of the parameter values that were selected for the models.

Technologies 2023, 11, 167 22 of 26

Table 11. Evaluation metrics for various models after applying Optuna hyperparameter optimization.

Models Precision% Recall% F1-Score% ROC AUC%
CatBoost 89 91 90 91*

CatBoost-Optuna 95 91 93* 91*
LightGBM 92 90 91 90

LightGBM-Optuna 93 89 90 89
XGBoost 93 88 90 88

XGBoost-Optuna 94 88 91 88

Technologies 2023, 11, x FOR PEER REVIEW 24 of 29

Figure 13. ROC curve after Optuna hyperparameter tuning.

Table 12 includes all the parameters that were used in the XGBoost, LightGBM, and
CatBoost models after applying Optuna hyperparameter tuning. The table provides a
clear and concise summary of the parameter values that were selected for the models.

Table 12. Optuna hyperparameter optimization parameters.

Parameter Description Value
XGBoost Tuning Parameters

verbosity Verbosity of printing messages 0
objective Objective function binary:logistic
tree_method Tree construction method exact
booster Type of booster dart
lambda L2 regularization weight 0.010281489790562261
alpha L1 regularization weight 0.0008440304772889829
subsample Sampling ratio for training data 0.8298281841818362
colsample_bytree Sampling according to each tree 0.9985902928710126
max_depth Maximum depth of the tree 7
min_child_weight Minimum child weight 2
eta Learning rate 0.12406825365082062

gamma
Minimum loss reduction required
to make a further partition on a
leaf node of the tree

0.0004490383815764321

grow_policy
Controls the way new nodes are
added to the tree

depthwise

LightGBM Tuning Parameters
objective Objective function binary
metric Metric for binary classification binary_logloss
verbosity Verbosity of printing messages −1

Figure 13. ROC curve after Optuna hyperparameter tuning.

Table 12. Optuna hyperparameter optimization parameters.

Parameter Description Value
XGBoost Tuning Parameters

verbosity Verbosity of printing messages 0
objective Objective function binary:logistic
tree_method Tree construction method exact
booster Type of booster dart
lambda L2 regularization weight 0.010281489790562261
alpha L1 regularization weight 0.0008440304772889829
subsample Sampling ratio for training data 0.8298281841818362
colsample_bytree Sampling according to each tree 0.9985902928710126
max_depth Maximum depth of the tree 7
min_child_weight Minimum child weight 2
eta Learning rate 0.12406825365082062

gamma Minimum loss reduction required to make a
further partition on a leaf node of the tree 0.0004490383815764321

grow_policy Controls the way new nodes are added to the tree depthwise

Technologies 2023, 11, 167 23 of 26

Table 12. Cont.

Parameter Description Value
LightGBM Tuning Parameters

objective Objective function binary
metric Metric for binary classification binary_logloss
verbosity Verbosity of printing messages −1
boosting_type Type of booster dart
num_leaves Maximum number of leaves in one tree 1169
max_depth Maximum depth of the tree 10
lambda_l1 L1 regularization weight 2.689492421801289 × 10−7

lambda_l2 L2 regularization weight 7.2387875465462 × 10−8

feature_fraction LightGBM will randomly select part of features on
each iteration 0.870805980078817

bagging_fraction LightGBM will randomly select part of data
without resampling 0.6280893693081118

bagging_freq Frequency for bagging 7
min_child_samples Minimum amount of data in one leaf 8

CatBoost Tuning Parameters
Objective Objective function Logloss
colsample_bylevel Subsampling rate per level for each tree 0.07760972009427407
depth Depth of the tree 12
boosting_type Type of booster Ordered
bootstrap_type Sampling method for bagging Bayesian
bagging_temperature Controls the similarity of samples in each bag 0.0

7. Conclusions

In this study, we employed various machine learning (ML) models, including Artificial
Neural Networks, Decision Trees, Support Vector Machines, Random Forests, Logistic
Regression, and three modern gradient boosting techniques, namely XGBoost, LightGBM,
and CatBoost, to predict customer churn in the telecommunications industry using a real-
world imbalanced dataset. We evaluated the impact of different sampling techniques, such
as SMOTE, SMOTE with Tomek Links, and SMOTE with ENN, to handle the imbalanced
data. We then assessed the performance of the ML models using various metrics, including
the Precision, Recall, F1-score, and Receiver Operating Characteristic Area Under the Curve
(ROC AUC). Finally, we utilized the Optuna hyperparameter optimization technique
on CatBoost, LightGBM, and XGBoost to determine the effect of optimization on the
performance of the models. We compared the results of all the steps and presented them in
tabular form.

The simulation results demonstrate the performance of different models based on
unseen data. LightGBM and XGBoost consistently exhibit superior performance across
various evaluation metrics, including the Precision, Recall, F1-score, and ROC AUC. The
performance of these models is further improved when applying techniques, such as
SMOTE with Tomek Links or SMOTE with ENN, to handle imbalanced data. Additionally,
the use of Optuna hyperparameter optimization for CatBoost, XGBoost, and LightGBM
models shows further improvements in performance.

In summary, the key findings of the study are as follows:

v Impact of SMOTE: After applying SMOTE, both LightGBM and XGBoost achieved
impressive ROC AUC scores of 90%. Additionally, XGBoost outperformed other
methods with an impressive F1-score of 92%. SMOTE effectively balanced class
distribution, leading to enhanced recall and ROC AUC for most models.

v SMOTE with Tomek Links: After applying SMOTE with Tomek Links, LightGBM
excelled among the methods with an impressive ROC AUC of 91%. XGBoost also
outperformed other methods with an impressive F1-score of 91%. LightGBM demon-
strates a slight performance boost, with a modest 2% improvement in the F1-score
and a 1% increase in ROC AUC compared to when using SMOTE alone. Conversely,

Technologies 2023, 11, 167 24 of 26

XGBoost showed a slight performance decline, experiencing a corresponding 1%
reduction in the F1-score and ROC AUC compared to exclusive SMOTE utilization.

v SMOTE with ENN: After applying SMOTE with ENN, XGBoost surpassed other
ML techniques, achieving an F1-score of 88% and an ROC AUC of 89%. However,
XGBoost exhibited a performance decline, with a 4% reduction in the F1-score and a
1% decrease in ROC AUC compared to exclusive SMOTE utilization.

The best results for the F1-score and ROC AUC across different ML models after
applying various sampling techniques are summarized in Table 13.

Table 13. The best result of the F1-score and ROC AUC for different ML models.

Metrics/
Methods F1-Score ROC AUC

DT Initial = 77% SMOTE-TOMEK = 74%
ANN Initial = 80% SMOTE = 83%
LR Initial = 62% Initial and SMOTE = 70%
SVM SMOTE = 68% SMOTE and SMOTE-TOMEK = 73%
RF Initial and SMOTE-TOMEK = 81% SMOTE-TOMEK = 78%
CatBoost Initial = 90% Initial = 90%
XGBoost Initial = 92% Initial and SMOTE-TOMEK = 91%
LightGBM SMOTE = 92% SMOTE = 90%

v Impact of Optuna Hyperparameter Tuning: After applying Optuna Hyperparameter
Tuning, Cat-Boost outperformed XGBoost and LightGBM when Optuna was utilized
for hyperparameter optimization, achieving an impressive F1-score of 93% and an
ROC AUC of 91%. The enhanced F1-score and ROC AUC results observed after
applying Optuna hyperparameter tuning to CatBoost, XGBoost, and LightGBM are
likely attributable to improved hyperparameter configurations. Optuna fine-tuned
these settings more effectively for the specific dataset, reducing overfitting and en-
hancing the models’ capacity to generalize to new data. This ultimately resulted in
improved overall model performance, as hyperparameters significantly influence the
performance of these algorithms with your dataset.

In future work, several avenues can be explored. Firstly, other machine learning
techniques, such as deep learning models, like Long Short-Term Memory (LSTM) or
Transformer-based models, can be evaluated for churn prediction. These models have
shown promise in various domains and may provide further insights into churn behavior.
Secondly, we suggest exploring the use of the AdaSyn technique to handle imbalanced
data and compare the results. Lastly, we recommend applying the above techniques to a
highly imbalanced dataset to evaluate their performance in such conditions. Furthermore,
employing the learning curve method to determine whether the models are overfitting
could also be a valuable avenue of research.

Author Contributions: Writing and original draft preparation, subsequent revisions, coding, analysis,
and interpretation of the results, M.I.; supervision, review, and editing, H.R.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study makes use of a publicly accessible dataset sourced from
Kaggle [44].

Conflicts of Interest: The authors declare no conflict of interest.

Technologies 2023, 11, 167 25 of 26

References
1. Cost of Customer Acquisition versus Customer Retention; The Chartered Institute of Marketing: Cookham, UK, 2010.
2. Eichinger, F.; Nauck, D.D.; Klawonn, F. Sequence mining for customer behaviour predictions in telecommunications. In

Proceedings of the Workshop on Practical Data Mining at ECML/PKDD, Berlin, Germany, 18–22 September 2006; pp. 3–10.
3. Prasad, U.D.; Madhavi, S. Prediction of churn behaviour of bank customers using data mining tools. Indian J. Market. 2011, 42,

25–30.
4. Keramati, A.; Ghaneei, H.; Mirmohammadi, S.M. Developing a prediction model for customer churn from electronic banking

services using data mining. Financ. Innov. 2016, 2, 10. [CrossRef]
5. Scriney, M.; Dongyun, N.; Mark, R. Predicting customer churn for insurance data. In International Conference on Big Data Analytics

and Knowledge Discovery; Springer: Cham, Switzerland, 2020.
6. De Caigny, A.; Coussement, K.; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on

logistic regression and decision trees. Eur. J. Oper. Res. 2018, 269, 760–772. [CrossRef]
7. Kim, K.; Jun, C.-H.; Lee, J. Improved churn prediction in telecommunication industry by analyzing a large network. Expert Syst.

Appl. 2014, 41, 6575–6584. [CrossRef]
8. Ahmad, A.K.; Jafar, A.; Aljoumaa, K. Customer churn prediction in telecom using machine learning in big data platform. J. Big

Data 2019, 6, 28. [CrossRef]
9. Jadhav, R.J.; Pawar, U.T. Churn prediction in telecommunication using data mining technology. IJACSA Edit. 2011, 2, 17–19.
10. Radosavljevik, D.; van der Putten, P.; Larsen, K.K. The impact of experimental setup in prepaid churn prediction for mobile

telecommunications: What to predict, for whom and does the customer experience matter? Trans. Mach. Learn. Data Min. 2010, 3,
80–99.

11. Richter, Y.; Yom-Tov, E.; Slonim, N. Predicting customer churn in mobile networks through analysis of social groups. In
Proceedings of the 2010 SIAM International Conference on Data Mining, Columbus, OH, USA, 29 April–1 May 2010; Volume
2010, pp. 732–741.

12. Amin, A.; Shah, B.; Khattak, A.M.; Moreira, F.J.L.; Ali, G.; Rocha, A.; Anwar, S. Cross-company customer churn prediction in
telecommunication: A comparison of data transformation methods. Int. J. Inf. Manag. 2018, 46, 304–319. [CrossRef]

13. Tsiptsis, K.; Chorianopoulos, A. Data Mining Techniques in CRM: Inside Customer Segmentation; John Wiley & Sons: Hoboken, NJ,
USA, 2011.

14. Joudaki, M.; Imani, M.; Esmaeili, M.; Mahmoodi, M.; Mazhari, N. Presenting a New Approach for Predicting and Preventing
Active/Deliberate Customer Churn in Tel-ecommunication Industry. In Proceedings of the International Conference on Security
and Management (SAM), Las Vegas, NV, USA, 18–21 July 2011; The Steering Committee of the World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp): Athens, GA, USA, 2011.

15. Amin, A.; Al-Obeidat, F.; Shah, B.; Adnan, A.; Loo, J.; Anwar, S. Customer churn prediction in telecommunication industry using
data certainty. J. Bus. Res. 2019, 94, 290–301. [CrossRef]

16. Shaaban, E.; Helmy, Y.; Khedr, A.; Nasr, M. A proposed churn prediction model. J. Eng. Res. Appl. 2012, 2, 693–697.
17. Khan, Y.; Shafiq, S.; Naeem, A.; Ahmed, S.; Safwan, N.; Hussain, S. Customers Churn Prediction using Artificial Neural Networks

(ANN) in Telecom Industry. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [CrossRef]
18. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–16 August 1995; Volume 1.
19. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
20. Amin, A.; Shehzad, S.; Khan, C.; Ali, I.; Anwar, S. Churn Prediction in Telecommunication Industry Using Rough Set Approach.

In New Trends in Computational Collective Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; pp. 83–95.
21. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques; Elsevier Science & Technology: San

Francisco, CA, USA, 2016.
22. Alok, K.; Mayank, J. Ensemble Learning for AI Developers; BApress: Berkeley, CA, USA, 2020.
23. van Wezel, M.; Potharst, R. Improved customer choice predictions using ensemble methods. Eur. J. Oper. Res. 2007, 181, 436–452.

[CrossRef]
24. Ullah, I.; Raza, B.; Malik, A.K.; Imran, M.; Islam, S.U.; Kim, S.W. A Churn Prediction Model Using Random Forest: Analysis of

Machine Learning Techniques for Churn Prediction and Factor Identification in Telecom Sector. IEEE Access 2019, 7, 60134–60149.
[CrossRef]

25. Lalwani, P.; Mishra, M.K.; Chadha, J.S.; Sethi, P. Customer churn prediction system: A machine learning approach. Computing
2021, 104, 271–294. [CrossRef]

26. Tarekegn, A.; Ricceri, F.; Costa, G.; Ferracin, E.; Giacobini, M. Predictive Modeling for Frailty Conditions in Elderly People:
Machine Learning Approaches. Psychopharmacol. 2020, 8, e16678. [CrossRef] [PubMed]

27. Ahmed, M.; Afzal, H.; Siddiqi, I.; Amjad, M.F.; Khurshid, K. Exploring nested ensemble learners using overproduction and
choose approach for churn prediction in telecom industry. Neural Comput. Appl. 2018, 32, 3237–3251. [CrossRef]

28. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth An-
nual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; ACM: New York, NY, USA, 1992;
pp. 144–152.

https://doi.org/10.1186/s40854-016-0029-6
https://doi.org/10.1016/j.ejor.2018.02.009
https://doi.org/10.1016/j.eswa.2014.05.014
https://doi.org/10.1186/s40537-019-0191-6
https://doi.org/10.1016/j.ijinfomgt.2018.08.015
https://doi.org/10.1016/j.jbusres.2018.03.003
https://doi.org/10.14569/ijacsa.2019.0100918
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ejor.2006.05.029
https://doi.org/10.1109/ACCESS.2019.2914999
https://doi.org/10.1007/s00607-021-00908-y
https://doi.org/10.2196/16678
https://www.ncbi.nlm.nih.gov/pubmed/32442149
https://doi.org/10.1007/s00521-018-3678-8

Technologies 2023, 11, 167 26 of 26

29. Hur, Y.; Lim, S. Customer churning prediction using support vector machines in online auto insurance service. In Advances in
Neural Networks, Proceedings of the ISNN 2005, Chongqing, China, 30 May–1 June 2005; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 928–933.

30. Lee, S.J.; Siau, K. A review of data mining techniques. Ind. Manag. Data Syst. 2001, 101, 41–46. [CrossRef]
31. Mazhari, N.; Imani, M.; Joudaki, M.; Ghelichpour, A. An overview of classification and its algorithms. In Proceedings of the 3rd

Data Mining Conference (IDMC’09), Tehran, Iran, 15–16 December 2009.
32. Linoff, G.S.; Berry, M.J. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management; John Wiley & Sons:

Hoboken, NJ, USA, 2011.
33. Zhou, Z.-H. Ensemble Methods—Foundations and Algorithms; CRC press: Boca Raton, FL, USA, 2012.
34. Karlberg, J.; Axen, M. Binary Classification for Predicting Customer Churn; Umeå University: Umeå, Sweden, 2020.
35. Windridge, D.; Nagarajan, R. Quantum Bootstrap Aggregation. In Proceedings of the International Symposium on Quantum

Interaction, San Francisco, CA, USA, 20–22 July 2016; Springer: Berlin/Heidelberg, Germany, 2017.
36. Wang, J.C.; Hastie, T. Boosted Varying-Coefficient Regression Models for Product Demand Prediction. J. Comput. Graph. Stat.

2014, 23, 361–382. [CrossRef]
37. Al Daoud, E. Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines. World Acad. Sci. Eng.

Technol. 2013, 77, 59–62.
38. Al Daoud, E.; Turabieh, H. New empirical nonparametric kernels for support vector machine classification. Appl. Soft Comput.

2013, 13, 1759–1765. [CrossRef]
39. Al Daoud, E. An Efficient Algorithm for Finding a Fuzzy Rough Set Reduct Using an Improved Harmony Search. Int. J. Mod.

Educ. Comput. Sci. (IJMECS) 2015, 7, 16–23. [CrossRef]
40. Zhang, Y.; Haghani, A. A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 2015, 58,

308–324. [CrossRef]
41. Dorogush, A.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. In Proceedings of the

Thirty-first Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1–7.
42. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; Volume 30.
43. Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; Hutter, F. Fast Bayesian optimization of machine learning hyperparameters on

large datasets. In Proceedings of the Machine Learning Research PMLR, Sydney, NSW, Australia, 6–11 August 2017; Volume 54,
pp. 528–536.

44. Christy, R. Customer Churn Prediction 2020, Version 1. 2020. Available online: https://www.kaggle.com/code/rinichristy/
customer-churn-prediction-2020 (accessed on 20 January 2022).

45. Kubat, M.; Matwin, S. Addressing the curse of imbalanced training sets: One-sided selection. In Proceedings of the 14th
International Conference on Machine Learning, Nashville, TN, USA, 8–12 July 1997; Volume 97, p. 179.

46. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

47. Tomek, I. Two Modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 769–772. [CrossRef]
48. Wilson, D.L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Trans. Syst. Man Cybern. 1972, 2, 408–421.

[CrossRef]
49. Tyagi, S.; Mittal, S. Sampling Approaches for Imbalanced Data Classification Problem in Machine Learning. In Proceedings

of the ICRIC 2019: Recent Innovations in Computing, Jammu, India, 8–9 March 2019; Springer International Publishing:
Berlin/Heidelberg, Germany, 2020; pp. 209–221.

50. Fawcett, T. An Introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [CrossRef]
51. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA,
4–8 August 2019.

52. Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 17–19
June 2013.

53. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2011; Volume 24.

54. Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaptation in Evolution Strategies. Evol. Comput. 2001, 9, 159–195.
[CrossRef]

55. Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Ben-Tzur, J.; Hardt, M.; Recht, B.; Talwalkar, A. A system for massively parallel
hyperparameter tuning. Proc. Mach. Learn. Syst. 2020, 2, 230–246.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1108/02635570110365989
https://doi.org/10.1080/10618600.2013.778777
https://doi.org/10.1016/j.asoc.2013.01.010
https://doi.org/10.5815/ijmecs.2015.02.03
https://doi.org/10.1016/j.trc.2015.02.019
https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020
https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/tsmc.1976.4309452
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1162/106365601750190398

	Introduction
	Classification of Machine Learning Techniques
	Artificial Neural Network
	Support Vector Machine
	Decision Tree
	Logistic Regression
	Ensemble Learning
	Bagging
	Boosting

	Handling Imbalanced Data
	The Challenge of Imbalanced Data
	Sampling Techniques
	Synthetic Minority Over-Sampling Technique (SMOTE)
	Tomek Links
	Edited Nearest Neighbors (ENNs)

	Combined Data Sampling Techniques

	Training and Validation Process
	Evaluation Metrics
	Threshold Metrics
	Ranking Metrics
	ROC AUC Benchmark

	Simulation
	Simulation Setup
	Simulation Results
	After Pre-Processing and Feature Selection
	Applying SMOTE
	Applying SMOTE with Tomek Links
	Applying SMOTE with ENN
	The Impact of Sampling Techniques
	Applying Optuna Hyperparameter Optimizer

	Conclusions
	References

