
Citation: Asiedu Asante, B.K.;

Imamura, H. Towards Robust

Obstacle Avoidance for the Visually

Impaired Person Using Stereo

Cameras. Technologies 2023, 11, 168.

https://doi.org/10.3390/

technologies11060168

Academic Editor: Jeffrey W. Jutai

Received: 29 September 2023

Revised: 18 November 2023

Accepted: 21 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Towards Robust Obstacle Avoidance for the Visually Impaired
Person Using Stereo Cameras
Bismark Kweku Asiedu Asante * and Hiroki Imamura *

Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan
* Correspondence: e18d5201@soka-u.jp (B.K.A.A.); imamura@soka-u.jp (H.I.)

Abstract: We propose a novel obstacle avoidance strategy implemented in a wearable assistive device,
which serves as an electronic travel aid (ETA), designed to enhance the safety of visually impaired
persons (VIPs) during navigation to their desired destinations. This method is grounded in the
assumption that objects in close proximity and within a short distance from VIPs pose potential
obstacles and hazards. Furthermore, objects that are farther away appear smaller in the camera’s
field of view. To adapt this method for accurate obstacle selection, we employ an adaptable grid
generated based on the apparent size of objects. These objects are detected using a custom lightweight
YOLOv5 model. The grid helps select and prioritize the most immediate and dangerous obstacle
within the user’s proximity. We also incorporate an audio feedback mechanism with an innovative
neural perception system to alert the user. Experimental results demonstrate that our proposed
system can detect obstacles within a range of 20 m and effectively prioritize obstacles within 2 m of
the user. The system achieves an accuracy rate of 95% for both obstacle detection and prioritization
of critical obstacles. Moreover, the ETA device provides real-time alerts, with a response time of just
5 s, preventing collisions with nearby objects.

Keywords: wearable assistive devices; obstacle avoidance; object detection

1. Introduction

Globally, there are many people with various sight problems, around 2.2 billion with
eye problems, and the problem can be addressed in almost half of these cases according
to the World Health Organization (WHO) [1]. Over the next thirty years, it is anticipated
that the number of people experiencing moderate to severe visual impairment will increase
to over 550 million, a significant rise from the approximately 200 million individuals in
2020 [2]. Vision loss is the most severe sensory disability and renders a patient nearly
immobile, with the fear of bumping into obstacles and becoming lost [3]. The risks associ-
ated with blindness go beyond inconvenience and can lead to falls and injuries. Therefore,
caring for the blind requires considerable guidance and support [4,5]. Navigating through
unfamiliar environments can be daunting and potentially hazardous without human visual
sensory organs or appropriate assistance [6]. Visually impaired persons (VIPs) need to
infer properties such as physical characteristics, location, distance, and shapes of objects ob-
structing their paths using other sensory organs such as touch to be able to avoid colliding
with such objects. Electronic travel aids (ETAs) have emerged as promising solutions to en-
hance the mobility and independence of blind individuals by providing real-time obstacle
detection and guidance [7]. This paper proposes a robust approach to the development and
evaluation of an obstacle avoidance strategy specifically designed for visually impaired
persons (VIPs).

To ensure safe and effective navigation in their surroundings, assistive systems de-
signed for VIPs depend significantly on a vital feature: obstacle avoidance, a feature
commonly integrated into ETAs [8,9]. Obstacle avoidance refers to the ability of a system
or an individual to detect, recognize, and navigate around obstacles in order to avoid
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collisions or disruptions in movement. It is also relevant in the context of autonomous
systems and robotics as well [10]. Obstacle avoidance involves perceiving the presence
and location of obstacles in the surrounding environment and making decisions or taking
actions to steer clear of them. This can be achieved through various sensing modalities,
such as vision (cameras) [11], sonar [12,13], or radar [14], which enable the system to
detect the presence of obstacles and estimate their distances and positions. Several obstacle
avoidance techniques have been proposed based on sensory modalities being used [8,9].
One of the commonest methods for obstacle avoidance has been adding extra sensors to
the traditional and conventional white cane [15–17]. Even though there have been several
advancements in the research for obstacle avoidance for VIPs, there is a huge gap between
the research and implementations in the daily life of VIPs due to several factors such as
cost, feasibility, and low performance inhibiting real-time usage of these devices.

Existing obstacle avoidance strategies mostly focus on detecting the obstacle and the
distance to the obstacle with less focus on other aspects such as the accuracy of detecting
the most imminent obstacles for the user as well as the orientation and the size of the
objects. The lack of this extra information may lead to less accurate and informative
obstacle avoidance instruction being transmitted to the visually impaired. Furthermore,
this makes the adaptability and use of existing obstacle avoidance approaches difficult to
comprehend for the visually impaired.

The primary objective of this research is to propose a robust, effective, and efficient
obstacle avoidance strategy that addresses the unique needs and challenges faced by
blind individuals. Our approach is based on the understanding that VIPs require timely
and accurate information about obstacles in their surroundings to navigate safely and
confidently. To achieve this, we have focused on two crucial aspects: prioritizing locations
and detecting objects in close proximity to the user. We consider a distance and a region to be
the safe space for the visually impaired person to move around. An object found within the
region is a possible hazard or impediment to the mobility of the visually impaired person.
The illustration in Figure 1 demonstrates the viewpoints for detection and localization of
the obstacles in front of the user.

Figure 1. An illustration showing how the dynamic grid is used in the selection of the obstacle and
also informing the users of the location of the obstacles. The shaded obstacle covering regions with
the grid helps determine which part of the pathway is covered with obstacles and the safe region for
the user to traverse.

In this paper, we detail the design and implementation of the wearable ETA system
that integrates our proposed obstacle avoidance strategy. The system utilizes an advanced
sensing camera; a stereo camera, ZED2, to capture images of the environment; and real-
time processing capabilities to detect and analyze the environment with a custom system
based on the YOLOv5 framework by Glen et al. [18]. By prioritizing the locations of close
obstacles, we aim to identify and distinguish between areas that are dangerous and safe for
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navigation. Areas that are considered are entrances, intersections, and potential hazards
and obstacles in the path of the VIPs. Simultaneously, the system focuses on detecting
objects in close proximity to the user, providing immediate feedback and guidance to avoid
collisions or potential dangers.

To evaluate the performance and effectiveness of our system, we conducted compre-
hensive experiments and tests using cluttered scenes in both indoor environments. These
experiments simulated real-world scenarios, allowing us to assess the system’s reliability,
accuracy, and user experience. Our evaluation criteria included response time, obstacle
detection rate, and false positive rate in classifying high-risk obstacles from the detected
and tracked obstacles.

The main contributions of this paper are summarized as follows:

� We propose a novel and efficient obstacle avoidance strategy to detect objects with a
focus on objects in close proximity using an adaptable grid method that focuses on
extra details such as size, shapes, and location as represented in Figure 1.

� We provide an audio feedback mechanism to support the obstacle avoidance strategy
in real time for visually impaired people to act on.

� We developed a wearable assistive device that is convenient for users.

Overall, this research aims to solve the obstacle avoidance tasks for the blind by
proposing an adaptable grid for obstacle selection with an innovative strategy and demon-
strating its effectiveness through rigorous evaluation. By leveraging technology and human-
centered design principles, we strive to empower visually impaired individuals through
safe assistive technologies that improve their overall quality of life.

In the subsequent sections of this paper, we will discuss a review of literature on the ob-
stacle detection in Section 2, and we will present in detail the methodology, implementation,
and evaluation of our obstacle avoidance strategy in Section 3. We will discuss the technical
aspects of our ETA system, the experimental setup, the collected data, and the analysis of
the results in Section 4. Additionally, we will compare our approach with existing solutions
in the literature and highlight the key contributions of our work in Section 5. In Section 6,
we will draw conclusions on the research work.

2. Related Works

With the emergence of electronically built navigation systems for the visually impaired
in the 1960s [19], several assistive devices have emerged, with different technologies and
sensory devices being used to assist the VIPs with various tasks. Most of these technologies
and the sensory devices have been categorized in different pieces of the literature based on
their functionality and mode of operation [20–23]. Traditional white canes with extended
sensors [24,25], cameras [26], and ultrasonic sensors [27] are the most common assistive
devices. The required functionalities of assistive devices are object/obstacle detection,
navigation, hybrids (obstacle detection and navigation), and performing activities of daily
lives (ADLs) [21]. In this section, we introduce relevant studies on assistive devices for the
visually impaired.

Assistive devices are often classified based on the sensory devices used to detect
objects in the environment. Vision-based or non-vision-based is one type of classification
referring to whether the system uses a camera or not to sense the environment [21]. Most
common systems opt for a vision-based system, with object detection attaining very high
accuracy and depth-sensing cameras becoming more popular with known orientation or
pose of cameras.

Vision-based forms of navigation can be divided into three primary classifications:
vision replacement, vision enhancement, and vision substitution [20]. Vision replacement
systems directly supply the required information to the visual cortex of the brain, either
through direct means or via the optic nerve. Vision enhancement and vision substitution
systems share a similar approach in terms of detecting the surrounding environment; how-
ever, they differ in how they present the environmental information. Vision enhancement
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systems convey the information visually, while vision substitution systems typically rely
on tactile or auditory perception or a combination of both.

Within the vision substitution category, the identification of obstacle-free pathways has
been further subdivided into three types: electronic travel aids (ETAs), e.g., [28,29], electronic
orientation aids (EOAs), e.g., [30,31], and position locator devices (PLDs) by Zafar et al. [21].
ETAs primarily employ camera and sonar sensors to assist with navigation. EOAs utilize
RFID systems, and PLDs rely on GPS technology for navigation purposes. In this research,
our wearable assistive device falls into the category of ETAs.

This approach mainly considers the obstacle in a 2D image with image analysis, image
segmentation, or object detection methods with the distance of the object from the camera
determined through estimated depth maps [32]. Though this is effective for determining
the position of the obstacles, the strategy for avoiding the object lacks more details such as
the size of the object, the actual position, and how to avoid it. In our proposed adaptable
grid system, we determine the apparent size of the object with the 3D bounding box and
relate it to the pathway of the user to determine how the user should avoid the obstacle
in real-time.

With the advancement of computer vision and deep learning techniques, different
cameras are being employed in assistive systems for the blind. The most common ones are
monoculars, RGB-Ds, and stereo cameras. The range of applications focuses on diverse
tasks that the visually impaired find difficult to undertake. For instance, bank note detection
systems were presented by several authors [33–35]. For running, the Mechatronic system
was proposed by Mancini et al. The system, which uses image processing to extract
lines/lanes for runners to follow, uses a haptic device to communicate with the VIP users.
The system’s accuracy is dependent on the illumination conditions, and the battery life is
short. Using monocular cameras poses a challenge in estimating global object scale, and
using single image-making RGB-D cameras and stereo cameras is more preferred when
localizing obstacle detection [36].

Rodriguez et al. [37] present an obstacle detection system that uses a simplistic ground
plane estimation algorithm to detect obstacles and provide audio warnings to the user. The
system is hands-free and ears-free, making it easy for users to hold a white cane and rely on
auditory feedback. There are some limitations and challenges to implementing the system
in real-world settings, such as holes, moving objects, and descending stairs. We also note
that the work focuses on the ground plane estimate. The system proposes a cumulative
polar grid to locate obstacles but only focus on obstacles on the ground. The selection of
critical obstacles that the user needs to avoid is not indicated. Similarly, Saputara et al. [11]
proposes an obstacle avoidance system for visually impaired individuals using Kinect’s
depth camera and an auto-adaptive thresholding method to detect and calculate the dis-
tance of obstacles. The system gives sound and voice feedback to the user through an
earphone to respond to the existence of obstacles. The experimental result shows that
the system is efficient and accurate for obstacle avoidance. The system was tested on
10 blindfolded persons, and all of them could avoid the obstacle without colliding with it.
The study suggests that further development is needed to improve the algorithm and the
accuracy of the system in detecting and calculating the distance of the obstacles.

Stereo vision assistive devices are vision-based systems that employ a stereo camera
(two or more image sensors to simulate human binocular vision with the ability to perceive
depth). Schwarze et al. [38] presented a wearable assistive system for the visually impaired
person that perceives the environment with a stereo camera and communicates obstacles
and other objects to the user. The obstacles are detected by segmentations of regions
that depict objects within low-resolution disparity data. They combine perception on an
increased level of scene understanding with binaural acoustic feedback. Despite this, the
selection of obstacles has no clear criteria specified, leading to high localization errors for
users turning their heads toward the audio cues to increase the accuracy of localization. The
turning of heads could also lead to confusing feedback and obstacles that are not actually
in the path of the user.
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Selection of high-risk obstacles is critical to guiding and informing the VIP to avoid
the obstacle, but most research focuses on selecting obstacles with no distinct criteria, often
reducing the accuracy of the localization or leading to difficulty in adapting to guiding
instructions from the devices. Developing simple obstacle avoidance instruction is often
desired and leads to faster response time.

3. Proposed Obstacle Avoidance Strategy (Adaptable Grid for Obstacle Selection)

In this section, we present the proposed obstacle avoidance strategy, which is based
on an adaptable grid approach to select potential high-risk obstacles in the path of the VIP.
We explain the implementation and how the grid contributes to the selection of obstacles
from the detected objects in an image.

3.1. Problem Formulation

Obstacle avoidance is a critical aspect of mobility for individuals with visual impair-
ments. Navigating through environments filled with potential hazards and obstacles poses
significant challenges for the visually impaired. Achieving effective obstacle avoidance is a
complex task, requiring algorithms that consider various features, including physical char-
acteristics, location, height, distance, and pathway blockage in the information provided to
users. While several obstacle recognition and avoidance algorithms have been proposed,
many fall short in considering these features in the provided information.

3.2. Formulation of the Obstacle Avoidance Strategy

Our approach is grounded in two key assumptions: the importance of prioritizing
locations and the proximity of obstacles to VIPs. We recognize that not all areas within the
environment carry the same level of significance for navigation. Therefore, to formulate
our strategy, we assume that having the camera strapped to the chest while walking in
the direction of the camera’s field of view is the most reliable position for capturing any
obstacles, whether static or dynamic, in front of the VIP. We also assume that the path
taken by VIPs will pass through the central point of the image captured by the strapped
camera. Consequently, any object in this proximity is likely to pose a collision risk to VIPs.
Moreover, objects closer to the user are considered more hazardous. These assumptions
and descriptions are detailed in Figure 2.

Figure 2. An illustration of our proposed obstacle avoidance strategy. (a) shows the aerial represen-
tation of using the central point of the image as a reference to determine the location of the object.
The dotted lines show the spatial regions of the grids. (b) illustrates the front view of the grid to
determine the position of the object in the path of the VIP.
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Our proposed solution involves implementing a grid system adapted to the apparent
size of the object in an image. The closer the obstacles are, the bigger they appear, so the grid
changes in size to match the size of the real objects in front of the user. The grids are then
checked for overlapping regions to select possible obstacles from the recognized objects
in the scene. Objects detected by the custom lightweight YOLOv5 model are assessed to
determine whether they are potentially in the user’s path. The grid is generated based
on the distance between the object and the camera, covering the central part of the screen,
which corresponds to the user’s pathway. We assume a linear relationship between distance
and grid size, where objects closer to the camera have a larger grid, and objects farther
away have a smaller grid.

Our method relies on object detection to recognize objects that might pose obstacles.
Consequently, we made a deliberate choice to select the optimal object detection method,
YOLOv5, as it provides efficient trade-offs between speed and accuracy that allow us
to effectively harness the computational power available in the microcontroller for our
wearable assistive device. There are several studies that offered modifications to the
seminal YOLOv5 architecture to adapt it for tasks on smaller devices for fast, accurate
detection [39–41]. We present one such adaptation in Figure 3. The model consists of a
backbone based on the Bottleneck Cross Stage Partial Network [42]. The neck is adapted
from the PAN network of Wang et al. used in YOLOv4 [43].

Figure 3. An illustration of the YOLOv5 architecture implemented. It comprises the CSP bottleneck
network for the backbone and the path Aggregation net PAN for the neck. The model was trained
with YOLOv5s configurations.

In order to train a customized YOLOv5 model, we utilized Google’s Open Images
Dataset (OID), which contains approximately 9 million images [44]. We selected classes
that present objects that could potentially obstruct the path of the user. This dataset
encompasses a diverse array of obstacle types, including people, beds, couches, traffic
signs, tables, chairs, trees, and more. For each object category, we collected 2000 images for
training and an additional 500 for validation, all to be used in the training of the YOLOv5s
model architecture.

The training parameters were configured as follows: 100 epochs, with a batch size
of 16. We opted for the Adam optimizer. Additionally, we set the input image size to
720 pixels. Subsequently, the YOLOv5 model underwent a training process on the training
dataset and was fine-tuned iteratively while its performance on the validation dataset was
closely monitored. The objective of this iterative process was to strike a balance between
accuracy and speed in the model’s performance.

Initially, the YOLOv5 object detection model is employed to identify all objects in each
captured frame. The detected objects are localized in the image using a 2D bounding box
represented by bound_box = {xc, yc, w, h}, where (xc, yc) is the center of the box in the 2D
plane. To convert the 2D to the 3D bounding box, we determine the four coordinates from
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the points in the 2D plane of the image, and we convert these points to the 3D plane with
the depths at those points.

xmin = xc −
1
2
(wbox)× w (1)

ymin = yc −
1
2
(hbox)× h (2)

xmax = xc +
1
2
(wbox)× w (3)

ymax = yc +
1
2
(hbox)× h (4)

The four coordinates from Equations (1)–(4) are (xmin, ymin), (xmin, ymax), (xmax, ymin),
and (xmax, ymax), respectively. These coordinates represent the front face as well as the 2D
bounding box coordinates of the detected objects. The top two coordinates are projected
on the z-direction to obtain the top face of the 3D bounding box. Similarly, the bottom
two coordinates are projected to obtain the bottom face of the 3D bounding box. From the
three (3) faces, we generate the rest of the six faces of the 3D bounding box.

Subsequently, an adaptable grid is created for each object to assess its proximity and
potential candidacy as an obstacle. Selection criteria are based on the two aforementioned
assumptions: whether the object’s distance is within the range of two (2) meters and
whether the object occupies the central region of the screen, which is likely the user’s path.

To effectively guide the user around the obstacle, we use the world and camera
coordinate system to determine how the user should steer away from the obstacle by using
the transformation and rotation between the camera and the detected obstacle. As depicted
in Figure 4, the camera coordinate, which represents the camera, and the world coordinate
system, which is used by the object, are shown to relate by transformation; therefore, we
can use the transformation and rotation to determine the precise location after selecting the
obstacle using the adaptable grid.

Figure 4. An illustration of the system that demonstrates that relates the camera to the 3D bounding
box marked with red edges and an obstacle depicted with yellow box in the location of the adaptable
grid system for avoiding the obstacle. We consider the camera coordinate system and world coordi-
nate system to determine how the user is supposed to move around obstacles based on the feedback
of free spaces on the adaptable grid.

The distance from the camera to the observed object is measured in meters. To make
the grid size adaptable to the apparent size of the object in the image, we need to normalize
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this distance to a range between 0 and 1 using a min–max scaling approach. We divide
the actual distance by max_distance to obtain a normalized distance value between 0 and 1.
This normalized distance represents how close the object is relative to the maximum
distance. The normalization is given by Equation (5) The adaptable grid size helps not only
in the selection of the obstacle but also determining the apparent size of the objects so we
can be aware of the impact and can adjust it. This helps to guide the blind successfully.

normalize_distance = min(
distance

max_distance
, 1.0) (5)

To determine the size of the adaptable grid for each object based on its normalized
distance, we conducted visual observation to empirically establish the minimum and
maximum grid sizes that can bound a detected object as max_grid_size and min_grid_size
in pixels within the frames captured, respectively. The calculation for the grid size is
defined by the following Equation (6)

grid_size = min_grid_size + (max_grid_size−min_grid_size)× (1− normalized_distance) (6)

The max_grid_size is the maximum size the grid can have in pixels when objects are
very close to the camera, while min_grid_size is the smallest size the grid will have when
objects are at or beyond the max_distance. As illustrated in Figure 5, the grid will have the
smallest size a for a detected object when the camera is at a point P1 and a distance c1 and
distance max_distance, and the grid a will have a size b almost covering the whole image
when the camera is at point P0 and a distance c0. This configuration ensures that the grid
adjusts well to the region along the pathway covered by the obstacle.

Figure 5. An illustration of various distance and camera configurations for creating the dynamic grid
for selection of the obstacles. The dynamic grid size generation is based on the linear relationship
between the distance and the size of the grid to be generated.

The size of the inner grid is obtained and divided into the three (3) equal smaller grids.
This division of the grid_size helps us to obtain a 3× 3 grid we can use in guiding the user
to shift their direction to the safer regions when there is an obstacle in front of them.

inner_grid_size =
1
3
× grid_size (7)

To avoid obstacles in the path of the system user, we employed a deep learning
framework, the YOLOv5 object detection model, and to detect objects in the scene captured
by the stereo camera we obtained the distances of all the objects using the depth map
estimation obtained from the camera. The objects captured, their distances from the camera,
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and bounding box information are used in calculating the 3D bounding boxes, which are
then provided to obstacle avoidance strategy algorithms presented in Algorithm 1 for
selecting the closest obstacles in the path of the VIPs to react to while keeping the other
information on other possible obstacles for future reference. The algorithm iterates through
the list of objects captured and determines those closest to VIPs and in the path of the VIPs.
We determine the closeness of the object to the center of the captured scene.

Algorithm 1 The algorithm for our proposed approach for obstacle avoidance

1: procedure OBSTACLE AVOIDANCE(data)
2: System Initialization
3: data← Camera . stereo images from stereo camera
4: objects← YOLOv5 (data)
5: objects← generate3DBoxes (objects)
6: objects← calculateDistance (objects)
7: for obj← objects do
8: if obj.distance <= 2 then
9: grid← calculateGridSize (obj.distance)

10: Calculate IoU between obj.boundingBox and grid
11: if obj.boundingBox overlaps grid then
12: for cell← grid cells do
13: Calculate IoU between obj.boundingBox and cell
14: if obj.boundingBox overlaps cell then
15: obj← obstacleAttribute . id that object as obstacle
16: obstacles← obj
17: else
18: if obj.id does not exist in savedObjectData then . Save the object data for

future reference and tracking
19: savedObjectData← obj

return obstacles

3.3. Hardware Setup

To test obstacle avoidance in real-time, we developed a wearable assistive device. The
hardware component of our wearable assistive device comprises a single-board computer,
the Jetson Nano, which serves as the central processing unit of the system, and a stereo
camera system that provides depth perception, the ZED2 Camera [45]. The Jetson Nano
is a powerful single-board computer that can serve as the brain of the system. It offers an
integrated 128-core Maxwell GPU, quad-core ARM A57 64-bit CPU, and 4GB LPDDR4
memory, along with support for MIPI CSI-2 and PCIe Gen2 high-speed I/O. The ZED2
camera is a stereo camera system that provides depth perception. It can capture RGB
images and generate a depth map of the environment. The ZED2 camera is mounted
on the microcontroller system to capture the real-time visual input of the surrounding
environment. The device is powered by a lithium-ion battery for charging laptop devices
and configured to power the Jetson Nano, making it possible to power up our devices
for 12 h. The ZED2 stereo camera uses the disparity calculated from the left and right
images to determine the depth information obtained from the camera. The wearable device
is presented in Figure 6, demonstrating how it is worn and the portable unit that can be
carried around.

The cost of developing this system is quite high since higher accuracy is the optimal
goal, and cheaper components can be used as trade-off accuracy for affordability.

3.4. Auditory Feedback

Designing effective feedback systems for wearable assistive devices is crucial as they
serve as the interface between the device and the user, particularly for electronic travel
aids (ETAs) for visually impaired persons (VIPs). Common feedback mechanisms include
auditory and tactile approaches. In this context, we propose a novel approach rooted in the
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neural perception concept of dorsal and ventral pathways. The neural perception concept
proposed suggests ways visual information is interpreted by the brain when a scene is
captured by the eye [46,47].

Figure 6. An image of the wearable assistive device strapped onto the chest of the user on the
(left side) and the processing device on the (right side).

Schinazi et al. [6] worked on spatial cognition, highlighting the need for spatial
learning. Even though the sensory perception may not be active, similar information
received by the brain can help the VIP act similarly as a response of a sighted person. This
led to the adoption of this concept. The dorsal pathway, responsible for spatial processing
and action guidance, can enhance navigation systems by providing real-time user position
updates, direction cues, and obstacle alerts. On the other hand, the ventral pathway,
associated with object recognition, aids in identifying landmarks and route confirmation.
The audio cues provided focus on informing the VIP early on obstacles (objects) in terms of
size and shape and understanding distances in terms of steps to take during walking. With
the spatial cognition already mentally mapped out, the cues received will trigger similar
responses from the blind. The cues needed are those of immediate obstacles to prevent
confusion between which obstacles and responses to act on. The cues are repeated at an
interval of 10 s, and loudness is based on how close the obstacles are to the user.

An effective system integrates both dorsal and ventral processing, combining spatial
data with visual recognition cues. For instance, it can audibly instruct users to take a left
turn at a specified distance while simultaneously visually displaying a distinctive landmark
as a reference point. While understanding these cues might be challenging for the early
blind subjects, they develop spatial organization skills as they gain experience later on [48].
This integration also enables dynamic route adjustments based on real-time environmental
data and user movement patterns, optimizing travel efficiency.

For example, the system can deliver spoken instructions like “Obstacle detected at 2 m
on your left” through headphones connected to the microcontroller system. This approach
provides comprehensive, user-friendly navigation assistance for VIPs. We present some of
the audio cues in Table 1.

Table 1. An example of audio cues for conditions determined by the device in which obstacles were
detected close to the VIP.

Condition Feedback

Obstacle in the middle area [Obstacle], at 1 m ahead
Obstacle in the left area Go right, [Obstacle] at 1 m
Obstacle in the right area Go left, [Obstacle] at 1 m

4. Experiments

This experiment aims to provide a comprehensive evaluation of an obstacle avoidance
system for the visually impaired. Through a combination of quantitative and qualitative
measures and considering diverse environmental factors, the aim of this study is to offer
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valuable insights into system effectiveness and user satisfaction. The results of this exper-
iment have the potential to guide the development of a more robust obstacle avoidance
strategy for assistive technologies catering to the visually impaired.

4.1. Experimental Objectives

To assess robustness in terms of accuracy in detecting and selecting critical obstacles,
the response time, and adaptability to changes in the environment, we set the following
primary objectives of this experimental design are as follows:

• Evaluate the accuracy and effectiveness of obstacle detection and avoidance in diverse
environmental conditions.

• Measure the system’s response time in providing alerts and guidance to users.
• Investigate the impact of environmental factors, such as lighting conditions and

obstacle types, on system performance.

4.2. Experimental Setup and Procedure

To evaluate the accuracy and effectiveness of selecting or classifying detected objects
as obstacles under diverse conditions, we arranged a course cluttered with objects at known
distances. The objects may become obstacles as a user moves through the course and comes
into close proximity to them. We established a scenario with 10 objects, out of which
6 would become obstacles during the traversal at a normal pace. At one point, one of the
six obstacles needs to be reported to the user as the most hazardous.

Objects of different sizes were used to observe the adaptability of the grid to the size
of the obstacle, capturing the true apparent size of objects that might be in the user’s path.
Among the obstacles meeting the condition of close proximity, we checked for objects with
imminent danger based on their location in the grid and closeness to the user.

The setup involved an indoor environment, including a corridor, classroom, and
laboratory. In the experiment, we verified whether the system could capture all the objects
meeting the condition to be considered obstacles in the course. At that point, we checked
whether the audio feedback correctly identified the most imminent obstacle. The experi-
ment aimed to evaluate the system’s performance in a realistic indoor setting, providing
insights into its effectiveness and adaptability.

5. Results and Discussion

In this section, we present the results of testing the avoidance strategy in an indoor
environment and discuss their implications. We analyze the accuracy of object classifi-
cation as obstacles, distance measurements, and the total execution time for the obstacle
avoidance strategy.

5.1. Results on the Trained YOLOv5

The customized YOLOv5 model demonstrated promising results in terms of both
accuracy and speed. Its lightweight architecture facilitated deployment on the resource-
constrained NVIDIA Jetson Nano device. In real-world testing scenarios, the model demon-
strated the ability to accurately detect and classify obstacles in near real-time, making it
well-suited for autonomous navigation tasks. The confusion matrix, precision, and recall
graphs from training the model in Figures 7, 8, and 9, respectively, illustrate the model’s
ability to predict and detect objects accurately.

5.2. Field Test Results on Obstacle Accuracy Detection

The experiments aimed to assess the accuracy of object detection using YOLOv5, along
with the classification of objects and obstacles based on their distance and their placement
within the cells of the adaptable grid. Table 2 presents the results of the measured distances
of the obstacles from the system and the corresponding sizes of the adaptable grids created.
The data indicate that the grid effectively adjusts to changing distances, even with relatively
small changes. Additionally, we reported the error in predicted distances compared to
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the actual distances. The average measurement error rate was found to be only 2.79%, a
negligible margin that has minimal impact on the proposed strategy’s accuracy.

Figure 7. A confusion matrix of the model YOLOv5 predictions during training.

Figure 8. Plot of the precision–confidence curve for the trained YOLOv5s model. The precision
represents the proportion of true positive predictions out of all positive predictions, while the
confidence represents the scores or probabilities assigned by the YOLOv5 model to its predictions.
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Figure 9. Plot of the recall curve for the trained YOLOv5s model. The recall measures the ability of
the model to correctly identify all positive instances out of all actual positive instances, while the
confidence represents the scores or probabilities assigned by the YOLOv5 model to its predictions.

Table 2. Distance ranges of the objects detected from the camera and the adaptable grid size for
the objects.

Obstacles Actual Distance,
AD (m)

Predicted Distance,
PD (m) Error (AD-PD) (%) Grid Size

Chair 0.90 0.95 5.50 (737 × 737)
Table 1.50 1.48 1.33 (695 × 695)
Persons 1.80 1.75 2.77 (694 × 694)
Chair 1.05 1.05 0.00 (726 × 726)
Persons 1.80 1.75 2.77 (695 × 695)
Fridge 1.15 1.20 4.34 (720 × 720)

To calculate the precision with which the systems classify objects and obstacles, we
utilized the following equations to assess precision (sensitivity of obstacle classification, pre-
sented in Equation (8), recall (specificity of obstacle classification, presented in Equation (9)),
and accuracy of object selection as obstacles in Equation (10).

Precision :
TP

(TP + FN)
(8)

Recall :
TN

(TN + FP)
(9)

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

In Table 3, we present a confusion matrix on accuracy to show the classification of the
objects and obstacles from the detected objects. The accuracy for the true positives of the
objects was 95%, while the true positives for the obstacle was 96%.
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Table 3. A confusion matrix on the accuracy of the recognition of obstacles from the list of objects
detected by the custom YOLOv5.

Predicted Value

Detected as Objects Detected as Obstacle

Actual Values
Detected as Objects 95% 5%

Detected as Obstacle 4% 96%

Furthermore, we presented another confusion matrix on selecting the most imminent
obstacle to avoid as the user may have a high likelihood of bumping into it. We term that
obstacle the critical obstacle. We present the classification accuracy for the critical obstacles
from many detected obstacles (Table 4).

Table 4. A confusion matrix on the accuracy selection of most hazardous obstacles from the set of
obstacles based on close proximity.

Predicted Value

Critical Obstacle Selected Obstacles

Actual Values
Critical Obstacle 93% 7%

Selected Obstacles 7% 94%

As usual, the diagonal elements represent the accurately predicted objects and ob-
stacles in the experimentation. Table 3 shows how well the strategy selects all obstacles
from the detected objects, while Table 4 focuses on choosing the immediate obstacle, the
critical obstacle, to inform the user of the hazard in front of them. Figures 10 and 11 depict
a moment before the detection of objects to the moment of selecting an obstacle. Various
objects are recognized, and then the adaptable grid algorithm helps in determining the
objects that are obstacles, then the obstacle that is closest directly in the path of the user is
chosen. In this scenario, the table on the right is the imminent obstacle that the user needs
to avoid even though the chairs and tables are detected as objects.

Figure 10. A screenshot showing the multiple adaptable grid boxes indicated with blue lines created
for each detected object and used in determining the object in the proximity of the user to be
considered obstacles.
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Figure 11. A screenshot showing the multiple adaptable grid boxes indicated with blue lines created
for each detected object and used in determining the object in the proximity of the user to be
considered obstacles.

Figures 11 and 12 depict an RGB image and its corresponding depth representation,
both derived from stereo images, with the algorithm in action to identify obstacles and
determine safe areas for the user’s passage. In the color image, you can observe the
adaptable grid, which plays a crucial role in obstacle selection, contributing to a faster
process. On the right side of the color image, you can see an aerial representation of the
detected objects and the tracking of potential obstacles. The depth representation employs
3D bounding boxes to obtain the distance of the detected objects. In the screenshot, the
adaptable grid is employed to identify safe regions where there are no overlaps with
the detected obstacles. These unoccupied grid cells indicate safe areas, and the user is
subsequently directed to shift either left or right to navigate through these safe zones,
thereby avoiding collisions with obstacles.

Figure 12. A screenshot of depth maps from the stereo camera data with the detected objects bound by
3D bounding boxes. The distances are calculated based on the center coordinates of the 3D bounding
box around the objects.

Table 5 presents the results for detected objects and the identification of potential
obstacles in various challenging environmental conditions. The system prioritized the
nearest obstacle in the user’s pathway. In conditions with poor lighting, where most
laboratory lights were turned off, the system performed well, detecting all seven objects,
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selecting four meeting obstacle criteria and correctly prioritizing the relevant one. This
suggests the system can achieve approximately 90% accuracy in low-light environments. In
cluttered conditions, where various objects clutter the scene, the system maintained good
accuracy and speed, detecting 15 out of 16 objects, with a 90% accuracy rate for the four
obstacles. The unstable camera condition simulated brisk walking, and despite camera
instability, the system effectively identified cluttered objects and obstacles, showcasing its
ability to inform the user of high-risk obstacles.

Table 5. Obstacle detection in the path with the shortest distance and in the critical region being
prioritized under unfavorable conditions.

Condition Objects Obstacles Shortest
Distance Prioritized? Processing

Time (s)

Normal 5 out of 6 2 out of 3 0.9 Yes 0.25
Poor lighting 7 out of 7 4 out of 5 1.5 Yes 0.4
Cluttered area 15 out of 15 3 out of 4 0.7 Yes 0.5
Unstable camera 8 out of 10 4 out of 5 0.8 Yes 0.31

The results of this research offer insights into the potential of adaptable grid-based
obstacle avoidance systems for practical applications, particularly in the context of assistive
devices. The adaptable grid approach demonstrated promising results in terms of obstacle
detection and avoidance. By segmenting the spatial pathway into a grid of cells, the system
effectively organized the space and recognized obstacles within each cell. This level of gran-
ularity facilitated precise obstacle localization, contributing to accurate decision-making.

One of the notable advantages of the adaptable grid approach is its ability to dynami-
cally adjust the grid resolution based on the perceived complexity of the environment. In
simpler environments, the grid could use larger cells, reducing computational overhead.
Conversely, in more intricate settings with dense obstacles, finer grids improved obstacle
detection accuracy. This adaptability ensured that the system could perform efficiently
across a wide range of scenarios.

While the adaptable grid approach showed promise, one notable limitation is worth
mentioning. The system’s performance heavily relies on the accuracy of object detection
methods and the quality of perception sensors, such as cameras, used to collect data
for the grid. Variations in sensor quality and environmental conditions could impact
detection accuracy. To address this limitation, we opted for YOLOv5, a reliable and stable
version of object detection methods. Additionally, the high-quality image output from
ZED2 significantly contributes to obtaining accurate input data for the obstacle avoidance
strategy. Therefore, we have taken steps to mitigate these limitations in this work.

Furthermore, the grid-based approach necessitated a delicate trade-off between grid
resolution and computational resources. Finer grids offered greater accuracy but required
more computational power. Achieving this balance was vital to sustain real-time obstacle
avoidance capabilities. It is worth noting that the computational resources provided by the
Jetson Nano played a crucial role in striking this balance, as evidenced by the system’s fast
real-time response times.

In Table 6, we compare our approach to some existing related research utilizing
different camera types and various approaches to detecting obstacles. The comparison
involves assessing the systems based on features such as the type of cameras used, the
environments in which the system operates, coverage distance, detection of obstacle shape
and size, portability, obstacle detection, prioritization of high-risk obstacles, accuracy of
selecting high-risk obstacles, and a qualitative score using the evaluation method proposed
by Tapu et al. [22].
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Table 6. Comparison of our proposed obstacle avoidance strategy with related research in terms of
features.

Features Mechantronic [49] Mocanu
et al. [32]

Jafri
et al. [50]

Sound of
Vision [51]

Everding
et al. [52]

Shwarze
et al. [38] Ours

Type Monocular-Based Monocular-Based RGB-D-Based RGB-D-Based Stereo-Based Stereo-Based Stereo-Based
Usability Outdoor Indoor/Outdoor Indoor Indoor/Outdoor Indoor Outdoor Indoor/Outdoor
Coverage distance (m) 10 5 2 5–10 6 10 10–20
Shape and size Yes Yes Yes Yes Yes Yes Yes
Portability Yes Yes Yes Yes Yes Yes Yes
Obstacle detection Yes Yes Yes Yes Yes Yes Yes
Prioritization No No No No Yes Yes
Accuracy selection - - - - - - 93%

Score [22] 5.86 8.74 5.69 8.19 8 8.32 8.80

Many of the systems focus on recognizing or detecting obstacles but lack specificity
regarding which obstacle poses the highest risk to the user. While a few mention obstacle
selection, the criteria for prioritization and informing the visually impaired are often unclear.

In addressing this gap, we considered a scenario with multiple obstacles, emphasizing
how the obstacle detection system chooses which obstacle presents the most risk and how to
navigate around it. The selection criteria which are based on the assumption of prioritizing
the obstacles closest to and directly in harm’s way of the user ensure that the user is alerted
and informed on how to evade it. Most related works did not explicitly address this issue.
Our selection process is based on the assumptions outlined in Section 3.2.

The qualitative evaluation of most wearable assistive devices was calculated using a
formula presented in Tapu et al. called the Global Score:

GlobalScore = ∑N
i=1 wi × Fi

N
(11)

where Fi is the score assigned to the ith feature, N is the number of characteristics used
in the evaluation, and wi is the weight assigned to each feature. The features considered
in the qualitative evaluation include processing speed, usability, robustness, coverage
distance, obstacle detection, portability, and friendliness. This set of features has become a
standard for comparison in many research reviews. Below are the definitions of the features
considered in the evaluation:

• Processing speed: The device should operate in real-time, and feedback should be
timely for the user’s response to obstacles at a minimal distance of 1.5 m.

• Usability: The device should function in both indoor and outdoor environments.
• Robustness: The system should not be influenced by scene dynamics or lighting conditions.
• Coverage distance: The maximum distance between the user and the object should be

considered so that the system can detect the object.
• Obstacle detection: The system should be able to detect any object regardless of the

shape, size, and state of the object.
• Portability: The device should be ergonomically convenient to wear and move with.
• Friendliness: The device should be easy to operate.

Our assumptions emphasize that close proximity obstacles pose the greatest risks
and that the adaptable grid, flexible in adapting to the apparent shapes and sizes of
images, leads to a more accurate approach in selecting the most imminent obstacle to
avoid. We believe that identifying and determining the types of obstacles and the risks
they pose to VIPs are crucial for ensuring their safety while navigating in both indoor
and outdoor environments.

6. Conclusions

In this research work, we proposed an effective strategy for obstacle avoidance using
an adaptable grid-based approach. The objective was to develop a strategy that not only
detects obstacles in real-time but is also dynamically flexible to adjusting its grid representa-
tion to optimize the accuracy of obstacle avoidance strategy for various environments and



Technologies 2023, 11, 168 18 of 21

scenarios. A wearable assistive device, the ETA, was developed to aid visually impaired
individuals in detecting and avoiding obstacles. The obstacle detector system demonstrated
a high detection rate of up to 95% in specific environments and 93% for high-risk obstacles.
The system effectively provides visually impaired individuals with timely and relevant
information, enabling them to navigate safely and independently in various environments.
By addressing the unique challenges faced by VIPs, our research contributes to improving
their quality of life and fostering their inclusion in society. For further improvements in
the future, we would like to adapt the approach to non-rigid objects and ground surfaces
as well.
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RGB-D Red Green Blue and Depth
SPP Spatial Pyramid Pooling
TP True Positive
TN True Negative
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