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Abstract: This work investigates the stick–slip phenomenon during sliding motion between solid
lubricant-impregnated epoxy polymer-coated steel bars and AISI 52,100 steel balls. An acoustic
sensor detected the stick–slip phenomenon during the tribo-pair interaction. The wear characteristics
of the workpiece coated with different epoxy coatings were observed and scrutinized. The RMS
values of the acoustic sensor were correlated with the frictional coefficient to develop a standard
based on the acoustic sensor, leading to the detection of the stick–slip phenomenon. As per the
findings, the acoustic waveform remained relatively similar to the friction coefficient observed during
the study and can be used effectively in detecting the stick–slip phenomenon between steel and
polymer interaction. This work will be highly beneficial in industrial and automotive applications
with a significant interaction of polymer and steel surfaces.

Keywords: acoustic sensor; frictional properties; stick–slip phenomenon; polymer; coatings

1. Introduction

The application of polymers is crucial in tribology research due to their dynamic
contact, including adhesion and deformation between the surfaces [1]. Stick–slip is an
intermittent motion that consists of a stationary phase and a sliding phase and occurs in
equipment such as microdrives [2], geoscience [3], dental [4], and mechanical systems [5].
Stick–slip motion is known for its tendency to cause increased wear in polymer materi-
als [6]. The efficient and safe operation of high-value and complex equipment is crucial
for energy and resource conservation. The need for complete in-operation sensing and
faster data interpretation has led to advanced tools being necessary for assessing machine
status and detecting degradation earlier [7]. Effective condition monitoring techniques
are essential for efficient and reliable operation. Choosing reliable maintenance strategies
minimizes system failure and enhances machine performance [8]. Offline techniques, like
visual or high-end microscope devices, require disassembly and reassembly, causing time
loss and potential damage. For decades, tribo-sensing and condition monitoring have
been utilized in various industries. However, it was not until the 1990s that artificial
intelligence (AI) techniques were introduced, resulting in significant advancements in
signal manipulation [9], lubricant technology [10–13], composites [14,15], etc. Today, the
resurgence of AI and machine learning (ML) has sparked new research on using ML for
intelligent fault detection and diagnosis. The numerical modeling of interfaces, combined
with tribo-sensing, which monitors wear, friction, and lubrication in tribological systems
using sensors, is leading the way toward tribology digitalization in the future [16]. There
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are two methods for monitoring wear: direct and indirect [17]. The direct method involves
optical and electrical measurements. For example, a scanning electron microscope is used
in the optical technique to analyze wear scar topology [18]. The indirect technique includes
monitoring wear through techniques such as acoustic emission (AE), vibrations [19], and
electrostatic sensors [20]. AE is a widely used non-destructive technique that requires
only minimal machine installation. Acoustic emission (AE) systems detect minor material
changes and wear events, allowing for crack growth, slip, and debris accumulation analysis.
Sensors integrated with machine learning algorithms minimize the requirement for offline
inspection and continuous wear progression monitoring [21,22].

Many studies have previously used acoustic signals to monitor the wear of grind-
ing wheels [23–26], ball-on-flat sliding contact [27], stick–slip [28], bearings [29], gear-
boxes [30], mill-grinding tools [31], and tools [32]. AE data extraction methods include fast
Fourier transforms (FFT) [24], short-time Fourier transforms (STFT) [25], wavelet transform
(WT) [26], amplitude [28], AE count [33], spectral kurtosis [29], and root mean square
(RMS) [34], which are used to correlate tribological parameters with acoustic signals. RMS
is the most often used AE parameter to correlate wear and friction with the acoustic sig-
nal [35,36]. The amplitude of instantaneous RMS varies with COF and is influenced by
applied stress, velocity, and sliding component mechanical properties, which may also be
directly correlated with wear volume and wear rate [37,38]. Acoustic emission has been
widely applied in many tribo systems, for example, acoustic emission has been used to
monitor wear in self-lubricating composite bearing liners used in aerospace systems [39].
Geng et.al. [37] correlated the acoustic emission signal parameters, such as power, RMS
amplitude, mean frequency, and energy, with tribological parameters under dry sliding
conditions and reported that AE frequency reflected the wear behavior with high intensity.
Additionally, from the AE signal, the extension of the frequency crest appears to be linked
to increased wear. Twardowski et. al. [40] studied the prediction of tool wear using acoustic
emission signals and machine learning techniques. Based on AE signals, the decision tree
approach was utilized to evaluate the milling cutter’s degree of wear and the estimated
tool condition error was <6%. Taura et.al. [41] studied the stick–slip motion between a steel
plate and brass ball under sliding conditions using the AE signal and correlated it with the
tribological parameters at various speeds and reported that AE signals were dependent on
sliding speeds and increased during the slip. Additionally, they noted that the signals were
proportional to the level of friction. Shanbhag et.al. [42] studied an AE-based technique
for the condition monitoring of hydraulic cylinders to detect multiple component faults,
which involved bandpass filtering, and reported that AE-based condition monitoring was
effective in detecting fluid leakage stages and bearing and piston rod seal degradation.
Hase et al. [43] investigated the wear state of material under sliding friction conditions
using a pin-on-disk-type sliding friction tester in the presence of an electric current using
the acoustic emission frequency spectrum. Maia et al. [44] investigated the wear of an
AlCrN-coated and uncoated cemented carbide cutting tool during the turning of hardened
AISI 4340 steel using acoustic emission and found that the tool wear and tool wear mecha-
nism was correlated with the acoustic emission signal spectrum using the power spectrum
density method and auto-covariance method.

This work aims to detect the presence of the stick–slip phenomenon in the interaction
between solid lubricant-reinforced polymer-coated steel (LY556) and plain steel under slid-
ing conditions at different speeds. The usage of such a technique would highly be beneficial
for applications such as coated spline shafts and tie-rods in automobiles where there is an
interaction between a polymer coating and steel. To the best of the authors’ knowledge,
no work has been reported on detecting the stick–slip phenomenon of a semi-liquid cured
LY556 epoxy coating on bearing steel (EN31) using an acoustic emission technique. LY556
is a bisphenol-A type of phenolic resin that is widely used for coating applications due
to its superior thermo-mechanical properties, excellent adhesion, chemical inertness, and
wear resistivity [45]. These phenolic resins are present in various sliding applications
where human access is challenging, and detecting sliding wear poses difficulty through
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conventional friction graphs. Moreover, it is easier to identify friction in the absence of
lubricants, as sound tends to be more pronounced in dry conditions. However, in situations
where the coatings incorporate solid lubricants, detecting acoustics and correlating them
with the generated coefficient of friction (COF) becomes a challenging task.

The primary objective of this work was to determine the correlation between the
acoustic signal produced during friction between a mating pair of a self-lubricating epoxy
coating and a steel surface. The work is centered on absorbing the sound waves produced
during the tribo-test of a self-lubricating epoxy coating and mapping them in correlation
with the COF. The root mean square (RMS) of the acoustic signal was correlated with the
coefficient of friction generated during the tribo-pair interaction. The average acoustic
amplitude of all the samples at different speeds was interconnected with the average
coefficient of friction. The present work shows that AE emissions can be used effectively to
understand the frictional properties of coated surfaces.

2. Experiments
2.1. Materials

Epoxy polymer (Araldite LY 556) cured with hardener (Aradur HY 951) was used as the
base coating material on EN 8 steel rectangular-shaped bars (50 mm × 20 mm × 10 mm).
EN31 steel balls (Φ12.7 mm) were used as the counterpart in a tribology test. The average
hardness of the as-received bars was 88.667 ± 1.1547 HRB. The steel bars were coated
with the cured epoxy. The cured epoxy coating was also reinforced with micro-sized solid
lubricants in various weight percentages (graphite, hexagonal boron nitride, and talc). The
solid lubricants graphite, hexagonal boron nitride, and talc have been chosen due to their
lubricating properties [46–48]. 2-Ethoxyethanol and toluene were dispersed evenly the
coating on the steel bars. All materials were bought from local vendors in Chennai, India.
Table 1 shows the compositions of the EN 8 and EN 31 steels used in this work.

Table 1. Composition of EN 8 bars and EN 31 balls.

Material composition values of EN8 steel bar:

C Mn Si S P

0.440% 0.569% 0.176% 0.027% 0.080% -

Material composition values of EN31 steel ball:

C Mn Si S P Cr

0.928% 0.323% 0.186% 0.006% 0.019% 1.494%

2.2. Coating the Steel Bars with Self-Lubricating Coatings

A hybrid solid self-lubricating coating containing three different solid lubricants,
namely graphite, hexagonal boron nitride, and talc, in an epoxy matrix (LY556) was pre-
pared. Kadhim et al. [49] added solid lubricants (ceramic carbide filler, 5%, 10%, 15%) by
weight percentage in a bisphenol A-based epoxy matrix and investigated their tribological
properties. In this work, too, solid lubricants with different weight percentages (5, 10, 7.5,
15 wt%) were added and dispersed ultrasonically for 10 min. Epoxy resin was hydroxylated
with 10 wt% of 2-ethoxyethanol and mixed with 10 wt% of toluene. Table 2 shows the
contents of different solid lubricants in each coating. A curing agent was mixed with the
above epoxy mixture at a ratio of 100:10 at 50 rpm. To obtain a homogenous mixture, the
slurry mixture was mixed using a mechanical stirrer for 30 min. A dip-coating process was
utilized to apply the coating on the surface of the substrate (EN8 steel bars). The EN8 steel
bars were dipped twice for 5 s, taken out to drain the excess coating, and spread over the
surface of the substrate. The coated samples were cured at room temperature for 3 days and
at 60 ◦C for 120 min. The average thickness of the coatings was found to be 19.66 ± 3 µm.
Figure 1 shows the different kinds of coatings used in the present work.
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Table 2. Compositions of the coatings.

Coating Graphite (wt%) hBN (wt%) Talc (wt%) Total
Additives (wt%)

C1 15 7.5 15 37.5

C2 5 5 15 25

C3 0 7.5 10 17.5

C4 15 0 5 20
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Figure 1. Coated bars before test: (a) C1, (b) C2, (c) C3, (d) C4.

2.3. Measuring the Schallamach Waves and Wear

A reciprocating tribometer (make: Magnum Engineers, Bengaluru, India, model No.
RCP01) was used to determine the sliding wear of the coated bars. Each test was conducted
for 60 min at spindle speeds of 1 Hz, 2 Hz, 3 Hz, and 4 Hz with 10 N loads and a constant
stroke length of 15 mm at room temperature. A sound sensor (make: SeedStudio Groove,
Chennai, India) was mounted on the base plate near the coated substrate to track the
acoustic emission, which was later used for analysis. Table 3 shows the experimental
conditions for this present work. The experiments were conducted twice, and the average
COF and specific wear rate are reported in this present work. Figure 2 shows the schematic
and experimental setup used in the present work.
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Table 3. The experimental conditions for the bars considered during data generation.

Sample Frequency (Hz) Load (N) Stroke Length (mm)

C1 1

10 15
C2 2

C3 3

C4 4

2.4. Absorbance of Sound during the Tribo Test Using an Acoustic Sensor

During the experiment, a sound sensor was utilized to capture the acoustic signal
caused by friction and wear. The sensor has a sensitivity of −60~−56 dBV/Pa, operates
at 5 V, and can detect converted acoustic signals in the range of 0 to 5 V, digitally varying
from 0 to 1023. The acoustic sensor has an inbuilt audio amplifier based on the LM386 by
Texas Instruments, Dallas, TX, USA. The microphone output was connected to the audio
amplifier circuit, as shown in Figure 3.
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Figure 3. LM386 mono audio amplifier circuit.

In the amplifier circuit, pins 1 and 8 were left open to use a default gain of 20. This gain
was good enough to capture the sound of the 2 metals making contact with one another.
Any gain higher than this introduced unnecessary noise or amplified the ambient noise.

A 100 µF capacitor between pin 7 and the ground was used to prevent any power
supply noise from being amplified. In the circuit (Figure 3), a 100 nF capacitor was used for
filtering out high-frequency noise, and a 1000 µF capacitor was used to filter and smoothen
out ripples. The audio circuit was powered, and the output was fed to a spectrum analyzer.
A variable input sinusoid with a frequency varying between 20 Hz and 20 KHz was fed,
and the device was found to have a total harmonic distortion (THD) of 1.7%. For the given
application, this THD was a good number to start with.

The acoustic sensor was connected to an Arduino microcontroller using an inbuilt
10-bit analog-to-digital converter (ADC) and powered using an onboard 5 V supply. The
experiment was carried out for an hour, and the digital output of the ADC was converted
to analog voltage using Equation (1).

Analog Voltage (V) = (Digital Value)× 5
1023

(1)

where 5 V is the reference voltage provided to the ADC, and since it was a 10-bit ADC, the
resolution of the ADC was 210 = 1024.

Before the test, the acoustic sensor was switched on for one minute. This was carried
out to capture the baseline noise, including other electrical appliances running in the
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environment, people walking nearby, and other miscellaneous sounds produced near the
testing setup. The connectivity between the acoustic sensor and the Arduino is shown
in Figure 4a. The data from the Arduino were sent to a PC via a USB port and read at a
9600 baud rate. To estimate the error induced by the ambient noise, the ambient noise was
recorded for 60 s (Figure 4b), and the results indicate no significant noise level from the
surroundings. The post-processing of the acoustic signal insured that the influence of the
noise was completely removed from the acquired frictional noise.
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2.5. Preprocessing the Data

To reduce the influence of ambient noise, the mean of the first minute of data was
subtracted from the entire 60 min of experimental data. This ensured that only the noise
generated by friction was recorded by the microphone. Once the mean was subtracted,
the sensor values were normalized to bring it to the same scale as that of the coefficient
of friction 0 to 1, This was carried out by dividing the sensor values by the maximum of
the sensor value. Normalization was carried out to compare the levels of the COF and
the acoustic sensor mapped, i.e., the maximum, the minimum, and the range of COF vs.
the maximum of the acoustic sensor. Based on this, a mapping between the COF and the
acoustic sensor’s value was generated to standardize the acoustic sensor’s value in terms
of the COF.

Normalized sensor value =
sensor value

maximum sensor value
(2)

2.6. Surface Characterization of the Coated Specimen

The width of the wear scar on the coated surface was measured using an optical
microscope (make: Olympus, Tokyo, Japan, model: BX53M). The surface morphology and
surface roughness of the worn surface were analyzed using a non-contact surface roughness
tester (make: Taylor Hobson, model: Talysurf CCI Lite, Leicester, UK). The specific wear
rate of the coated bars was calculated using the Archard equation [50].

Speci f ic wear rate =
Volumetric loss

Sliding distance × Normal Load
(3)
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3. Results and Discussion
3.1. Measuring Coefficient of Friction and Stick–Slip Using a Reciprocating Tribometer

Figure 5 shows the coefficient of friction variation for the obtained results with a
10 N load at four different spindle speeds: 1 Hz, 2 Hz, 3 Hz, and 4 Hz. The steel ball
against the polymer-coated flat surface exhibited sudden crests and troughs in the COF
variation, indicating the presence of the stick–slip phenomenon at the Hertzian contact.
Similar observations of crests and troughs due to the stick–slip phenomena were reported
earlier [51].
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The variation in the COF was due to the composition of the coating and also the
sliding speed of the steel ball. It was reported earlier that when a polymer slides on steel,
there is a high chance of the stick–slip phenomenon [52]. Similarly, in the present work, the
adhesion (stick) of the ball onto the surface of the polymer coating led to a sudden increase
in the static coefficient of friction (Figure 5). When stress reached the critical value, the
ball slid, resulting in a kinetic coefficient of friction. The highest points shown in Figure 5
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indicate the maximum static friction coefficient (µs), and the lowest points indicate the
kinetic coefficient (µk) for the duration. The stick–slip phenomenon was analyzed for each
sample, and the amplitude of the stick–slip (Table 4) was calculated using Equation (4) [28]

Amplitude o f stick slip, µ∗ =
(µs − µk)

2
(4)

where µs is the maximum static coefficent of friction read during the test, and µk is the
minimum kinetic coefficent of friction read during the test.

Table 4. Amplitude of the stick–slip.

Samples Maximum Frictional Force Generated during the Tribo Test (N) µs µk µ*

C1 7.8332 0.8730 0.5957 0.1386

C2 8.8502 0.9512 0.4323 0.2594

C3 11.2936 1.2694 0.2116 0.5289

C4 4.5241 0.4958 0.2221 0.1368

In Table 4, it can be seen that C3 exhibited the maximum amplitude of stick–slip,
followed by C2, C1, and C4, respectively. Careful observation of the data generated during
the tribo-test indicates that the maximum frictional force (11.2936 N) generated in the case
of the C3 sample was higher than the applied load (10 N). This indicates that the sample
experienced more stick–slip phenomenon during the process, which resulted in high wear
and deep grooves, as indicated in Section 3.4. It should be noted that the COFs exhibited
by C3 and C4 were lower than those of C1 and C2, which may have been due to the several
non-contact positions between the two mating pairs (steel ball and the coating) due to deep
grooves. Also, the friction tended to reduce at higher speeds. The design of experiments
(DOE) protocol was not adhered to in this study, as the primary objective was to assess
the feasibility of a cost-effective solution utilizing an Arduino microcontroller equipped
with a built-in 10-bit analog-to-digital converter (ADC) and an acoustic sensor. The aim
was to capture the acoustic signals generated in self-lubricating coatings with varying
concentrations of solid lubricants. Furthermore, the study sought to establish a correlation
between the recorded acoustic signals and the friction coefficient throughout the intricate
processes of friction and wear.

3.2. Absorbance of Acoustic Emissions during the Tribo-Test and Correlation with the Coefficient
of Friction

Figure 6a presents a comparative analysis between the average amplitude generated
from the acoustic output and the average COF of all four samples obtained during the
tribo-testing. Notably, C2 exhibited the highest COF during the tribo-pair interaction,
followed by C1. This can be due to the presence of solid lubricants reinforced in the
epoxy, particularly with a high concentration of talc. Simultaneously, the same sample, C2,
concurrently recorded the maximum average voltage amplitude, followed by C1. Likewise,
C3 followed C1 with the third highest COF and corresponding average voltage amplitude,
while C4 exhibited the lowest COF and, consequently, the minimum average voltage
amplitude. Thus, from Figure 6a, it is evident that the average voltage amplitude and
average COF values can be easily correlated.

Figure 6b shows the specific wear rate of all samples with a 10 N load and at four
different spindle speeds: 1 Hz, 2 Hz, 3 Hz, and 4 Hz. C3 exhibited a more specific wear
rate of 1.89823 × 10−5 ± 7.95595 × 10−7 mm3/Nm and a notably lower average amplitude
and COF. The reason for the high wear of C3 was its composition of the solid lubricant,
which does not contain graphite, which is an excellent solid lubricant. C4 exhibited the
second maximum wear rate of 1.41288 × 10−5 ± 4.55309 × 10−7 mm3/Nm but generated
a lower noise level, leading to the lower average voltage amplitude of the sample. Despite
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C1’s low wear rate of 9.10743 × 10−6 ± 2.4282 × 10−6 mm3/Nm, it generated a higher
COF and high average voltage amplitude. Sample C2 exhibited a specific wear rate of
1.2073 × 10−5 ± 2.12514 × 10−6 mm3/Nm and produced very high noise and amplitude,
which could be due to the high interaction of the mating pairs at a low speed (2 Hz). Thus,
it can be seen that the composition of the epoxy coating played a major role in controlling
the friction.
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The average thickness of the coatings was found to be 19.66 ± 3 µm. In certain in-
stances, certain coatings experienced complete abrasion, suggesting an interaction between
the metallic pairs involved. The progression of the acoustic signals in cases C3 and C4
indicates direct metal-to-metal contact. The pronounced fluctuations and increased inten-
sity observed in these cases serve as clear evidence of this interaction. It can be seen that
the stick–slip phenomenon of C3 is more evident than in the rest of the samples. On the
other hand, keeping all external environments and processes under control, it can be seen
that the acoustic emission followed the trend of the coefficient of friction values. These
observations significantly strengthen the case for accepting acoustic emission as an efficient
tool in monitoring friction.

3.3. Mapping the Coefficient of Friction with Acoustic Emissions during Tribo Test

In Figure 7, it can be seen that the acoustic sensor’s output was consistent with the
COF, particularly for samples C2 and C4 (Figure 7c,d,g,h). Although the acoustic sensor’s
range and COF values varied, the acoustic sensor exhibited the same pattern as the COF in
almost all the samples. During the experiment, it was also observed that the variation in
the acoustic sensor output of C1 in one of its experiments did not follow the exact variation
in the COF (Figure 7a), possibly due to the lower amplitude of the stick–slip, while in the
second experiment, the trend was exactly followed again (Figure 7b). Figure 7c,d shows the
result of the COF correlation with the AE at 10 N and 2 Hz for sample C2. The variation in
the COF is consistent with the amplitude. In Figure 7c, it can be seen that the crests and falls
of the COF coincide with the AE from the 35th to the 50th min of the experiment. Similarly,
in Figure 7d, the crests and falls of the CoF and AE coincide from 15 min 30 s to 17 min 30 s.
Figure 7e,f shows the result of the COF correlation with the AE at 10 N and 3 Hz for C3.
The rise and fall of the acoustic signals is similar to that of the COF. Furthermore, the AE
output indicates sharp-edged crests with high amplitude whenever there is a stick–slip
crest and fall in the COF graph. Figure 7g,h shows the result of the COF correlation with
the AE at 10 N and 4 Hz for sample C4. Similar to the other samples, the variation in the
COF consistently follows the sensor’s output voltage.
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Figure 7 exhibits that the acoustic signal followed the stick–slip phenomenon observed
in the trend of the COF. Particularly for C2 and C4, the acoustic signal was synchronized
with the COF signal. This synchronization could not be observed for C1 due to the use
of highly complex solid lubricants (Table 2). This, in turn, significantly reduced stick–
slip and wear and tear (Figure 6b). The flatness in the acoustic sensor in Figure 7a is
also due to the averaging effect of the resistor-capacitive components in the acoustic
sensor’s amplifier circuit. The slight delays observed in the acoustic signals’ trends are
due to the sensor picking up sound from a small distance from the sample’s test bed. The
microphone’s amplifier circuit has capacitive elements, which caused the sensor output
to have a discharge time that exceeded the consecutive stick–slip duration of the acoustic
sensor. This resulted in the sensor averaging the next stick–slip phenomenon with the
previous stage instead of distinctly tracing the stick–slip individually. Figure 8 clearly
illustrates this phenomenon.

Technologies 2024, 12, x FOR PEER REVIEW 12 of 17 
 

 

sensor�s amplifier circuit. The slight delays observed in the acoustic signals’ trends are 
due to the sensor picking up sound from a small distance from the sample’s test bed. The 
microphone’s amplifier circuit has capacitive elements, which caused the sensor output to 
have a discharge time that exceeded the consecutive stick–slip duration of the acoustic 
sensor. This resulted in the sensor averaging the next stick–slip phenomenon with the 
previous stage instead of distinctly tracing the stick–slip individually. Figure 8 clearly il-
lustrates this phenomenon. 

 
Figure 8. Illustration of the discharge time of the capacitors in the acoustic sensor amplifier and filter 
circuit introducing the averaging/smoothening effect of the stick–slip phenomenon. 

3.4. Analyzing the Surfaces of the Coated Samples and Co-Relating the Surface Features with 
Acoustic Emissions 

The surfaces of the coatings were analyzed using an optical microscope and a three-
dimensional profilometer (Figure 9). A well-known fact is the formation of Schallamach 
waves during the interaction of an elastomer with a hard surface [53]. As observed from 
the images, Schallamach waves were prominent in C1 (Figure 9b), but as the speed in-
creased, the Schallamach waves seemed to decrease. Similar results of the formation of 
fewer Schallamach waves at a low speed were reported earlier [54]. Thus, the present re-
sults are in line with previously reported works. The formation of irregular surfaces due 
to the Schallamach waves hindered the performance of acoustic sensors, and thus, the 
acoustics and COF results of C1 are slightly deviated from each other. Therefore, the AE 
emissions do not follow the trend of the COF. Thus, this deviation is a strong point of 
detection for surface irregularities. The average amplitudes of samples C3 and C4 when 
the tribo-tests were running at a high speed were found to be lower than those of C1 and 
C2. However, the reading average amplitude of C2 was higher than C1, which is due to 
the presence of the different additives, which control the friction. The coefficient of friction 
of C2 was also more than that of C1, and therefore, the amplitude of the acoustic emission 
was also higher in C2 than C1. 

Figure 8. Illustration of the discharge time of the capacitors in the acoustic sensor amplifier and filter
circuit introducing the averaging/smoothening effect of the stick–slip phenomenon.

3.4. Analyzing the Surfaces of the Coated Samples and Co-Relating the Surface Features with
Acoustic Emissions

The surfaces of the coatings were analyzed using an optical microscope and a three-
dimensional profilometer (Figure 9). A well-known fact is the formation of Schallamach
waves during the interaction of an elastomer with a hard surface [53]. As observed from the
images, Schallamach waves were prominent in C1 (Figure 9b), but as the speed increased,
the Schallamach waves seemed to decrease. Similar results of the formation of fewer
Schallamach waves at a low speed were reported earlier [54]. Thus, the present results
are in line with previously reported works. The formation of irregular surfaces due to the
Schallamach waves hindered the performance of acoustic sensors, and thus, the acoustics
and COF results of C1 are slightly deviated from each other. Therefore, the AE emissions
do not follow the trend of the COF. Thus, this deviation is a strong point of detection for
surface irregularities. The average amplitudes of samples C3 and C4 when the tribo-tests
were running at a high speed were found to be lower than those of C1 and C2. However,
the reading average amplitude of C2 was higher than C1, which is due to the presence of
the different additives, which control the friction. The coefficient of friction of C2 was also
more than that of C1, and therefore, the amplitude of the acoustic emission was also higher
in C2 than C1.
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4. Conclusions

The authors of this paper investigated the ability of an acoustic sensor to detect the
stick–slip phenomenon of polymer coating steel under sliding conditions with a 10 N load
at 1 Hz, 2 Hz, 3 Hz, and 4 Hz spindle speeds.

• The presence of the stick–slip phenomenon was confirmed by analyzing the variation
in the coefficient of friction during tribo-pair interaction. The amplitude of the stick–
slip of C3 was high, and it was observed that C3 generated a 11.29 N maximum friction
force under a 10 N applied load and showed high amplitudes of stick–slip, a high
wear rate, and deep grooves.

• The average amplitude of the acoustic signal was compared with the average value of
the coefficient of friction. The amplitude of acoustic emission followed the trend of the
coefficient of friction.

• The coefficient of friction was mapped with the acoustic sensor output voltage. The
variation in the coefficient of friction followed the trend of the acoustic sensor output
voltage, particularly C2 and C4.

• Schallamach waves were observed during the surface morphology analysis. The C1
under low speed showed a higher Schallamach wave presence, which obstructed the
performance of the acoustic sensor, and thus the correlation between the variation in
the coefficient of friction and the acoustic signal did not follow the trend.

• Even though the acoustic signal was capable of mapping the frictional coefficient, a
few drawbacks listed below still remain.

• Although the acoustic sensor’s trend was similar to the COF, it lacked resolution due to
the averaging effect of the electronic components. The averaging effect can be reduced
by fine-tuning the values to suit the quick response needed to exhibit the same trend
as the COF.

• A second issue that limits the use of the acoustic sensor is that the experimental set-up
was not in a sound-insulated environment. An acoustic sensor with high sensitivity
can capture every sound due to friction/wear and tear for such applications. On the
contrary, in a non-insulated (acoustic) environment, the sensor may pick up noises
from other operating machines or environmental sounds that could occur during
the experiment.

Considering the observations listed above, it can be seen that acoustic sensors are
quite capable of mapping the acoustic emissions and frictional properties of epoxy coatings
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effectively; however, it is important to have a controlled environment so that the ambient
noises do not affect the results.
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