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Abstract: Transperineal prostate biopsy is the most reliable technique for detecting prostate cancer,
and robot-assisted needle insertion has the potential to improve the accuracy of this procedure.
Modeling the interaction between a bevel-tip needle and the tissue, considering tissue heterogeneity,
needle bending, and tissue/organ deformation and movement is a required step to enable robotic
needle insertion. Even if several models exist, they have never been compared on experimental
grounds. Based on this motivation, this paper proposes an experimental comparison for kinematic
models of needle insertion, considering different needle insertion speeds and different degrees
of tissue stiffness. The experimental comparison considers automated insertions of needles into
transparent silicone phantoms under stereo-image guidance. The comparison evaluates the accuracy
of existing models in predicting needle deformation.

Keywords: robotic needle insertion; kinematic models; models identification; needle tip prediction;
robotic transperineal prostate biopsy

1. Introduction

One of the main causes of death for men is prostate cancer (PCa), which is the second
most common cancer after breast cancer [1]. Epidemiologic studies of prostate cancer have
revealed numerous ways in which individual biology and lifestyle factors, such as older
age and family history, influence the risk of developing prostate cancer and survival from
this disease [1]. Prostate cancer is a clinically heterogeneous disease; some men have an
aggressive form, and most others have a slow-growing or indolent form of the disease.
The successful treatment of high-risk patients and avoiding overtreatment in low-risk
patients depends greatly on early and accurate PCa detection. Needle biopsy is the most
reliable technique for detecting PCa and estimating its aggressiveness [2]. The majority of
biopsies are performed under ultrasound guidance. A traditional transrectal biopsy can
be replaced by a safer transperineal biopsy, which reduces infection risks but may require
sedation and must be conducted in an operating room. Robot-assisted needle insertion
can improve the accuracy of this procedure, helping to place the tip of the needle safely
and accurately without damaging tissues, organs, and vessels. Unfortunately, precise
needle placement is difficult to accomplish in real practice because of tissue heterogeneity,
needle bending, and tissue/organ deformation and movement. As a result, modeling
the interaction between the needle and the tissue is a critical requirement for robotic
needle insertion.

During transperineal prostate biopsy, the physician uses ultrasound images to guide
the needle from perineum entry points towards the selected target spots [3]. Due to several
reasons including economic cost, needles with a bevelled tip are the most commonly used.
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Unfortunately, when these needles cross the prostate, they deflect in the tissue due to
tissue forces acting on the bevelled tip, producing an unwanted deflection and degrading
the accuracy of the system. The advantage of a bevelled tip is that it causes less tissue
damage than a symmetric tip and that curved trajectories can be used to avoid delicate
tissues, such as bones and blood vessels, which are located between practical entry sites
and possible targets. During transperineal prostate biopsy, the surgeon can compensate
for the deformation of the needle by twisting the instrument to reach the lesion on the
prostate. If we consider robotic automated insertions of the needle for prostate biopsy,
needle twisting is not possible, so it is necessary to plan the trajectory from the entry points
to the points to be sampled on the organ considering the deformation of the needle and
surrounding tissue. Thus, modeling the needle deflection path becomes of paramount
importance, and several authors have addressed this topic over the years [4,5]. Previous
reports depict three different formalisms to model needle deflection: kinematic models,
finite element (FE) models, and quasi-static approximated mechanical models.

In this work, we explore one of these formalisms: kinematic models. A kinematic
model for needle insertion was presented for the first time in Park et al. [6]. The authors
developed a simple nonholonomic 2D unicycle model to describe how an ideal needle with
a bevelled tip moves through a firm tissue. One year later, Webster et al. [7] introduced a
nonholonomic 3D bicycle-like model for steering flexible bevelled tip needles. This model
describes the same circular arc of the unicycle model but differs when an axial rotation
of the needle occurs between two straight insertions. Both models assume that the tissue
does not deform. Inserting the needle into stationary tissue causes negligible deformation
of the surroundings as the needle bends, so modeling is limited to the motion of the tip.
However, if the tissue is not stiff, as the instrument bends, the tissue is compressed. This
leads the needle tip to follow a non-circular path. For this reason, Fallahi et al. [8] proposed
an extension to the bicycle model of Webster et al. [7]. In this model, the back wheel is
replaced with an omnidirectional wheel that can move sideways, allowing the needle to
follow a path with a variable radius of curvature.

In this article, we propose an experimental comparison of kinematic models evaluating
their accuracy in the context of a transperinary prostate biopsy, considering different needle
insertion speeds and different organ stiffnesses. We adapt Fallahi’s extended bicycle
model to suit our application. To enable a comparative experimental analysis of models,
we develop:

1. identification procedures to estimate model parameters,
2. a vision algorithm based on an RGB-D camera system to reconstruct the needle tip

position at each insertion step,
3. four transparent phantoms with different degrees of stiffness which allow the use of

standard cameras to collect needle insertion frames.

The paper is organised as follows: Section 2 provides the theoretical background on
kinematic models and explores in detail the considered models. Section 3 describes the
proposed method, including the vision algorithm that recognizes and tracks the needle,
the robotic setup and the phantom design. Sections 4 and 5 describe the experimental
results and their discussion and Section 6 reports our conclusions and future works.

2. Kinematic Models

The transperineal prostate biopsy procedure consists of straight needle insertion into
tissues without twisting. For this reason, the original bicycle model [7] cannot be used in this
context because it describes a needle trajectory in a 3D space which is not distinguishable
from the unicycle model when limited to a 2D space. Therefore, our comparison considers
the unicycle [6] and the extended bicycle models [8]. These models consider a bevelled-tip
needle driven by insertion speed v. The tip moves along a path defined by the surrounding
material’s properties, the geometry of the needle’s bevelled tip, and the needle insertion
speed. We suppose that the needle is inserted at constant velocity v, measured with respect
to the {A} frame along the z-axis and without twisting.
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2.1. Unicycle Model

The unicycle model considers the needle tip as located at the center of a single wheel
(unicycle) lying on the ZY plane as shown in Figure 1. Labels {A} and {B} represent the
global fixed frame and the needle tip frame, respectively.

Y

Y

Z

OA

{A}

{B}
γ

Z

c

r

v

Figure 1. Unicycle model of a flexible needle with a bevelled tip.

According to this model, the needle tip follows a planar path formed by a single
arc of fixed curvature with center c = [0, cy] and radius r, considering entry point OA at
(0, 0) in the {A} frame. Here, we assume that the needle tip is oriented such that bending
occurs toward the negative y-axis as in Figure 1. We let (z, y, γ) define the configuration
of the needle tip frame shown in Figure 1, where vector (z, y) is the tip location and γ is
the angle between the z-axis of the {A} frame and the z-axis of the {B} frame that is the
needle tip direction. Considering that the needle bends toward the negative y-axis, we
have γ ∈ [−π/2, 0].

Since the wheel movement satisfies the pure rolling, non-slipping constraint, in the
{B} frame, the velocity has only the z-axis component, without lateral movements:

Bvy = 0 (1)

where we suppose that wheel speed vz equals insertion velocity. The dynamic evolution of
the needle configuration can be described as

A ż(t) = cos γ(t)vz (2a)
Aẏ(t) = sin γ(t)vz (2b)
Aγ̇(t) = −vz

r
(2c)

with an r constant. Considering OA the entry point of insertion at t = 0, the integration of
Equations (2) leads to

Az(t) = −r sin γ(t) (3a)
Ay(t) = cy + r cos γ(t) (3b)
Aγ(t) = −vz

r
t (3c)
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2.2. Extended Bicycle Model

The extended bicycle model [8] considers a bicycle lying on the ZY plane as shown
in Figure 2 where labels {A}, {B} and {C} denote, respectively, the global fixed frame,
the needle tip frame (back wheel) and the front wheel frame. The model consists of two
wheels positioned at a fixed distance l from each other with the front wheel oriented at
a fixed angle β. The well-known bicycle model with front and back wheels is defined as
(z, y, γ), parameterized by the (z, y) location of the back wheel and the angle of the bicycle
body with respect to horizontal γ. The constraints for the front and back wheels are formed
by setting the sideways velocity of the wheels to zero. Using the Pfaffian constraints [9],
the following dynamical system is obtained:

ż = vz cos γ (4a)

ẏ = vz sin γ (4b)

γ̇ =
vz

l
tan β (4c)

with a β constant.

γv
Needle tip path

Front wheel

Back wheel

Y

Z

OA

{A}

α

{C}

{B}
θ

β

Y

Z

l

Z

Y

Figure 2. Extended bicycle model of a flexible needle with a bevelled tip.

This model is modified in such a way that when the needle is moving forward into the
tissue, lateral movements can happen on the back wheel due to tissue deformation. In this
case, the final shape of the needle does not follow the tip path. This model, in contrast
to the bicycle model in Equation (4), accounts for this phenomenon by considering an
additional state, θ. As for the unicycle model, we suppose that the needle path points
toward the negative y-axis starting from entry point OA. As in the standard bicycle, (z, y, θ)
represents the {B} frame configuration which is the back wheel body frame. In contrast to
the standard bicycle model, the needle tip configuration is (z, y, γ), where γ is the angle
between the z-axis of the {A} frame and the needle tip velocity vector Bv. In practice, γ
describes a back wheel slippage phenomenon along the y-axis of the {B} frame. If γ defines
needle tip velocity with respect to frame {A}, α defines the same quantity with respect to
frame {B}, and the following relation holds:

Bα = θ − γ (5)

As the needle bends toward the negative y-axis, tissue deformation pulls the needle in
the opposite direction, so α ∈ [−π/2, 0] and γ ∈ [−π/2, 0]. The needle tip velocity vector
Bv and the lateral slipping velocity Bvy are defined as
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Bv = vz + vy (6a)
Bvy = vz tan α (6b)

where authors assume α as a quadratic function of γ,

Bα = λ1γ2 + λ2γ (7)

and λi represent tissue-specific parameters related to its mechanical properties. Considering
the definition of α as the slippage of the back wheel (Equation (7)), it is clear that for
non-zeros λ1 and λ2, the needle path deviates from the constant curvature circular path
corresponding to λ1 = λ2 = 0. Using the definition of needle tip velocity Bv (6a) and angle
Bα (5), angle Bθ can be expressed as

B
θ̇ =

vz + vy

l
[tan (θ − γ) + tan β] (8)

Considering angle Bα (5)–(7), the time variation of angle Bγ, Bγ̇, is calculated as

Bγ̇ = θ̇ − α̇ (9a)
Bγ̇ = θ̇ − γ̇(2λ1γ + λ2) (9b)

Bγ̇ =
θ̇

1 + 2λ1γ + λ2
(9c)

Bγ̇ =
θ̇

1 + ∂α
∂γ

(9d)

Finally, the extended bicycle model [8] can be written as

B ż = v cos γ (10a)
Bẏ = v sin γ (10b)
B

θ̇ =
v
l
[tan (θ − γ) + tan β] (10c)

Bγ̇ =
θ̇

1 + ∂α
∂γ

(10d)

3. Method

The experimental comparison is carried out with the setup shown in Figure 3. It
consists of a robotic system which performs the insertion with a bevelled tip needle. This
system, described in Section 3.4, includes a force sensor on the needle base and an external
RGB-D camera. The insertions are performed on phantoms with different degrees of
stiffness that emulate the prostate with different tumor levels defined by the Gleason score,
which is a grading system for the progress of the tumor. Phantom preparation is described
in Section 3.5.



Technologies 2024, 12, 33 6 of 14

Figure 3. Setup.

A fundamental step of our methodology is to identify the parameters of the unicycle
and extended bicycle models to fit needle tip trajectory (Sections 3.1 and 3.2). The trajectory
is reconstructed using a vision algorithm (Section 3.3) that identifies and tracks the needle
tip throughout its insertion.

3.1. Unicycle Model Identification

This section introduces a methodology to estimate parameters r and cy for the unicycle
model. Given needle tip coordinates Bz(t) and By(t) computed from the vision algorithm
(see Section 3.3), these are fitted to the unicycle circumference. The implicit equation of a
circumference with a center in (0, cy) and radius r can be written as

z2(t) + (y(t)− cy)
2 = r2 (11)

To obtain a formulation suitable for least square regression in the form Φρ = b, we
rewrite (11) as

2yρ1 + ρ2︸ ︷︷ ︸
Φρ

= z2 + y2︸ ︷︷ ︸
b

(12)

where ρ1 = cy and ρ2 = r2 − c2
y. Then, cy and r can be easily found.

3.2. Extended Bicycle Model Identification

The authors of [8] introduced a methodology to estimate the parameters of the ex-
tended bicycle model: β and l in (8) and λ1, λ2 in (7). From the needle tip trajectory (z, y),
computed from the vision algorithm in Section 3.3, it is possible to measure the γ angle as
the orientation of needle tip velocity in the {A} frame:

γ = sin−1(
∆y
∆d

) = tan−1(
∆y
∆z

) (13)

where ∆y, ∆z, and ∆d denote, respectively, the variations of needle tip deflection, insertion,
and depth between two sample times. In this context, depth refers to the Euclidean distance
in the ZY plane between two successive tip positions. Angle θ is not directly measurable,
but its time variation can be expressed in two different formulations, leading to

θ̇ =
v
l
(tan (λ1γ2 + λ2γ) + tan β) (14a)

θ̇ = γ̇

(
1 +

∂α

∂γ

)
= γ̇(1 + 2λ1γ + λ2) (14b)



Technologies 2024, 12, 33 7 of 14

where (14a) is obtained from (8) substituting (7) while (14b) is calculated from (10d) consid-
ering (7). We combine (14a) and (14b) to obtain

−2lλ1γ
γ̇

v
− lλ2

γ̇

v
− l

γ̇

v
+ tan β + tan

(
λ1γ2 + λ2γ

)
= 0 (15)

which is a function of parameters and known quantities. Known quantities are γ, (13), its
time variation γ̇ and the needle tip speed v. Unknown parameters are l, β, λ1, and λ2, and
they can be identified by a non-linear least square regression algorithm as proposed by
the authors [8]. Unfortunately, the objective function presents several local minima and,
to improve the results, the following constraints are imposed:

l ∈ [0, 2] (16a)

β ∈ [−π

2
, 0] (16b)

λ1 ∈ [−1, 1] (16c)

λ2 ∈ [−1, 1] (16d)

Even using such constraints, this methodology, as proposed by the authors [8], is not
always able to find an appropriate solution. For this reason, we use a genetic algorithm to
minimize the residual error between the experimental data and the predicted ones.

3.3. Needle Recognition and Tracking

To track the needle tip position in each time frame, we used the semantic segmentation
module based on the Generative Adversarial Network (GAN) model [10]. Compared to
the other models, this network has the advantage of requiring very few RGB samples
representing the setup to obtain high-quality results. The GAN consists of two main
components: a generator and a discriminator.

• Generator: The generator takes an input image, processes it through a neural network,
and produces an output image. It learns to create realistic and visually appealing
results by mimicking the patterns, textures, and styles found in the training data.
As training progresses, the generator becomes increasingly adept at generating images
that are indistinguishable from real data.

• Discriminator: The discriminator, on the other hand, acts as a critic. It tries to dis-
tinguish between real images from the training dataset and fake images generated
by the generator. Through adversarial training, the discriminator becomes skilled at
identifying flaws or inconsistencies in the generated images.

As training continues, the generator and the discriminator engage in a competitive
process, with the generator constantly improving its ability to generate convincing output
and the discriminator becoming better at discerning real from fake. This dynamic equilib-
rium ultimately results in the generator producing high-quality, pixel-to-pixel output that
retains the essential characteristics of the input data.

Figure 4 shows an example of segmentation of an image acquired from the realsense
camera. The classes corresponding to objects in the scene are encoded following Table 1.

Table 1. Semantic Scene Color Encoding.

Color Semantic Meaning
Background

Needle
Markers
Tissue
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(a) (b)
Figure 4. An example of real-time semantic segmentation computed with the realsense camera. (a)
Realsense view; (b) Segmented image.

Once we obtained the segmented image, we defined the workspace by placing a
chessboard over a 3D-printed support where the needle passes through. This allowed us
to retrieve the pixel/millimeter ratio that is needed to have the needle position in the 3D
metric space. Starting from the pose of the chessboard, we filtered out an area of interest
around the needle path and created a bounding box in the semantic image, and then
worked with a smaller image. Finally, we segmented the needle from the semantic image
and then extracted the center point of the needle tip as shown in Figure 5, which was used
later for model estimation.

Figure 5. An example frame with the needle tip estimation represented as a red dot.

The coordinates (z, y) of the needle tip, which are derived from the mask obtained
through semantic segmentation for each frame, were individually subjected to a third-
order polynomial fitting process over time-to-position data in order to mitigate measure-
ment noise.

3.4. Experimental Setup

We design a robotic system to perform insertion experiments into tissues, with one
degree of freedom (DoF) capable of translational motion along the needle’s principal axis.
A mechanical drive system pushes the needle into the phantom using a direct drive motor
(model EC90flat) and a worm gear system. The trajectory of the needle tip is reconstructed
using an Intel RealSense d435 camera positioned approximately 20 cm from the surface of
the phantom, operating at a rate of 30 Hz to capture the images fed into the vision algorithm.
The use of transparent phantoms and a camera allows us to acquire the entire needle tip
trajectory during the insertion with good accuracy, which is something ultrasound imaging
cannot afford due to its noise.

The needle bevel tip is oriented so that the needle deflection plane ZY is parallel to
the imaging plane. In the experiments, a standard 18-gauge brachytherapy needle with a
bevel angle of 15◦ is used. The insertions are carried out at various constant velocities to a
depth of 100 mm.

3.5. Phantom Design

In our comparative experiment, we evaluate four transparent phantoms with varying
stiffness values (30, 50, 70, 100 kPa), covering the range associated with both benign and
malign conditions of the prostate gland [11,12]. Two-component silicone elastomers (SL
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3358 A and SL 3358 B, KCC Corporation, Korea) were utilized in equal amounts for the
preparation of the phantom. Silicone oil (G Line T100, KCC Corporation, Korea) in differing
amounts (50, 55.5, 66.6) and 0.03 wt% cotton fibers were added to the silicone mixture to
adjust the stiffness of the model and simulate the fibrous and muscular tissue of the prostate.
The preparation of the first layer of the phantom body with fibers (2.5 cm height) was followed
by the insertion of 65 pin markers (13 × 5 rows) positioned at the required locations (Figure 6a).
Subsequently, the final layer of the phantom (0.5 cm height) with fibers was produced by
curing the silicone formulation that is equivalent to the bottom layer. Each layer was cured
separately at 70 °C in an oven for 100 min (20 cm × 14 cm × 3 cm) (Figure 6b).

(a) (b)

Figure 6. (a) The sketch of the prostate phantom and the markers; (b) the view of the prostate
phantom from the top.

3.6. Mechanical Characterization

Different formulations of the two-component silicone elastomers with silicone oil and
cotton fiber supplements were prepared in dog bone shape according to the American
Society for Testing and Materials International (ASTM) standards. The specimens were
tested with 200 N force using the Universal Testing Machine (UTM) (Zwick/Roell), and an
average of three tests were reported (Figure 7).

Figure 7. (a) The mechanical property measurement setup in Zwick/Roell UTM, (b) silicone sample
prepared in dog-bone shape, and the image of the silicone sample (c) during the tensile test and (d) at
the end of the test (fracture).

The degrees of stiffness were adjusted with the addition of silicone oil and supplemen-
tary materials (e.g., cotton fibers) to reach the highest resemblance to the reported values of
the prostate tissue. The stiffness of the phantom body range was between 32.8 and 107 kPa
(Figure 8).
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Figure 8. The stiffness of the different silicone-based prostate model formulations with supplements
that are utilized in the design of the phantom body.

4. Experimental Results

Using the robotic setup, the needle is inserted to a depth of 100 mm considered to be
the longest distance between the perineum and the apex of the prostate. Insertions are
performed at two different velocities (10, 20 mm/s). For each stiffness and velocity pair, we
perform four repetitions. We perform model identification procedures using data from the
first three repetitions, and we use the fourth repetition to assess the prediction accuracy of
the models. The unicycle model and the extended bicycle model are labeled, respectively,
as M1 and M2. Results in Tables 2 and 3 show, respectively, the average final tip deflection
ωexp(l) with the standard deviation of the final tip position σexp and the average tip error
identification for unicycle model emeanM1 and extended bicycle model emeanM2 with their
standard deviations σeM1 and σeM2 for every phantom’s stiffness and velocity pair. Figure 9
shows examples of data from identification procedures related to phantoms with stiffness
30 kPa and 100 kPa at velocities 10 mm

s and 20 mm
s .

Table 2. Average final tip deflection and standard deviation considering 8 experimental conditions
(4 phantom and 2 velocity pairs) with four repetitions each.

Insertion Velocity Stiffness ωexp(l) σexp
[mm/s] [kPa] [mm] [mm]

10

30 −8.26 0.43
50 −10.80 0.95
70 −12.18 1.13

100 −12.58 1.11

20

30 −7.65 0.56
50 −9.51 0.20
70 −10.57 1.14

100 −11.78 1.44
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(a) (b)

(c) (d)
Figure 9. Models identification on needle insertions experiments in the prostate stiffness range
(30, 100 kPa) at two different velocities (10, 20 mm/s). (a) Stiffness: 30 kPa, Velocity: 10 mm/s;
(b) Stiffness: 30 kPa, Velocity: 20 mm/s; (c) Stiffness: 100 kPa, Velocity: 10 mm/s; (d) Stiffness:
100 kPa, Velocity: 20 mm/s.

Table 3. Average tip error identification and standard deviation for the Unicycle Model and the
Extended Bicycle Model considering 8 experimental conditions (4 phantom and 2 velocity pairs) with
four repetitions each.

Insertion Velocity Stiffness emeanM1 emeanM2 σeM1 σeM2
[mm/s] [kPa] [mm] [mm] [mm] [mm]

10

30 6.15 × 10−4 0.012 5.18 × 10−7 2.52 × 10−4

50 0.051 0.065 0.005 0.006
70 0.056 0.338 0.005 0.156

100 0.130 0.364 0.020 0.174

20

30 0.053 0.126 0.004 0.022
50 0.013 0.142 0.022 0.032
70 0.014 0.151 0.027 0.033

100 0.153 0.166 0.031 0.034

We estimate the parameters of the models by performing a least square identification
for the unicycle model and using a genetic algorithm for the extended bicycle model as
described in Sections 3.1 and 3.2. To robustify the identification procedure, the estimated
parameters are averaged considering data from the three insertions. To access the mod-
els’ accuracy, the simulated needle trajectory is compared to experimental data of the
fourth repetition.

Results in Table 4 show the maximum tip prediction error for unicycle model emaxM1
and extended bicycle model emaxM2 and their root-mean-squared errors (RMSEs) RMSEM1
and RMSEM2 for every phantom’s stiffness and velocity pair. Figure 10 shows examples of
data from prediction procedures related to phantoms with stiffness 30 kPa and 100 kPa at
velocities 10 mm

s and 20 mm
s .
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Table 4. Maximum tip prediction error and the root-mean-squared error (RMSE) for Unicycle Model
emaxM1 and Extended Bicycle Model emaxM2 considering 8 experimental conditions (4 phantom and
2 velocity pairs) with four repetitions each.

Insertion Velocity Stiffness emaxM1 emaxM2 RMSEM1 RMSEM2
[mm/s] [kPa] [mm] [mm] [mm] [mm]

10

30 0.18 0.77 0.11 0.49
50 0.32 0.45 0.26 0.27
70 0.43 2.07 0.31 0.76

100 0.44 1.04 0.28 0.71

20

30 0.20 0.61 0.12 0.19
50 0.22 0.45 0.18 0.26
70 0.29 0.78 0.19 0.33

100 0.75 1.24 0.29 0.85

(a) (b)

(c) (d)
Figure 10. Unicycle and Extended Bicycle Model prediction on the fourth needle insertion experiment.
(a) Stiffness: 30 kPa, Velocity: 10 mm/s; (b) Stiffness: 30 kPa, Velocity: 20 mm/s; (c) Stiffness: 100 kPa,
Velocity: 10 mm/s; (d) Stiffness: 100 kPa, Velocity: 20 mm/s.

5. Discussion

From Table 2, one can notice that insertions exhibit a notable final displacement, around
10% of their whole length, and this motivates the use of models for the prediction of needle
deflection. From Table 4, one can observe that both models are quite accurate in predicting
the tip’s final position. In terms of RMSE, we achieved a tenth of a millimetre accuracy
down to the millimetre (in the case of more rigid phantom insertions). The maximum errors
were less than or equal to 0.75 mm for the unicycle model and less or equal to 2.07 mm
for the extended bicycle model. In spite of its lower complexity, the unicycle model is
more accurate than the extended bicycle model. Both in terms of RMSE and maximum
error, the unicycle model is, on average, 2.5 times more accurate than the extended bicycle
model. In any experimental scenario, the unicycle model generates smaller errors than the
extended bicycle model (for each stiffness and velocity pair). For both models, higher errors
in predicting the final needle tip deflection were obtained when the needle was pushed into
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the more rigid phantoms (70 and 100 kPa) at the highest velocity (20 mm
s ). Since the unicycle

model is a linear regression identification, it is faster and requires less computational effort
than the extended bicycle model. We measured an average computation time of 0.7 ms for
the unicycle model and 45 s (range 20–65 s, executed on Intel Core i7-6700HQ processor
running four threads) for the extended bicycle model as a final remark.

6. Conclusions

This work compares the kinematic models for robotic needle insertion targeting
straight needle insertion as in transperineal prostate biopsy. Our experimental compari-
son considers four transparent phantoms with increasing stiffness simulating fibrous and
muscular prostate tissue in benign and malignant disease conditions. Experimental results
show that, in spite of its simplicity, the unicycle model outperforms the extended bicycle
model in terms of accuracy and computational time. Modeling the deformation of the
needle and the surrounding tissue during insertion into the prostate allows surgeons to
take samples accurately from the organ, thus ensuring the accurate identification of prostate
cancer and indicating the level of risk for the patient. Prostate biopsy is one of the most
impactful and independent parameters that direct physicians to the surgery if it is not
possible to follow other treatments. In this comparative study of kinematic models, the tis-
sue is considered rigid or with small deformation, allowing modeling of the deflection of
the needle without necessarily considering the forces of interaction with the tissue. How-
ever, heterogeneous tissues with different stiffness levels are crossed in the transperineal
biopsy procedure. In our future work, we will evaluate non-straight needle insertions,
including more complex models such as virtual spring mechanical models [13,14] and finite
element models [15–17] and the influence of skin tension, subcutaneous fat, and pelvic
diaphragm will be considered to evaluate the targeting error in a complete robotic needle
insertion procedure.
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