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Abstract: As the world grapples with the energy crisis, integrating renewable energy sources into
the power grid has become increasingly crucial. Microgrids have emerged as a vital solution to
this challenge. However, the reliance on renewable energy sources in microgrids often leads to low
inertia. Renewable energy sources interfaced with the network through interlinking converters lack
the inertia of conventional synchronous generators, and hence, need to provide frequency support
through virtual inertia techniques. This paper presents a new control algorithm that utilizes the
reinforcement learning agents Twin Delayed Deep Deterministic Policy Gradient (TD3) and Deep
Deterministic Policy Gradient (DDPG) to support the frequency in low-inertia microgrids. The RL
agents are trained using the system-linearized model and then extended to the nonlinear model to
reduce the computational burden. The proposed system consists of an AC–DC microgrid comprising
a renewable energy source on the DC microgrid, along with constant and resistive loads. On the AC
microgrid side, a synchronous generator is utilized to represent the low inertia of the grid, which
is accompanied by dynamic and static loads. The model of the system is developed and verified
using Matlab/Simulink and the reinforcement learning toolbox. The system performance with the
proposed AI-based methods is compared to conventional low-pass and high-pass filter (LPF and
HPF) controllers.

Keywords: reinforcement learning; TD3; DDPG; virtual inertia; microgrid; artificial intelligence;
frequency support; renewable energy sources integration

1. Introduction

The transition from conventional fossil-fuel-based power generation to renewable
energy sources (RESs) has significantly transformed the global energy landscape, establish-
ing sustainable and eco-friendly electricity networks [1–3]. The current paradigm shift in
energy production, characterized by the widespread adoption of renewable sources such as
wind and solar energy, owes much to their abundant supply and decreasing costs [4]. Nev-
ertheless, this transition presents substantial challenges to the stability and dependability
of electrical grids [5].

Traditional power systems primarily rely on synchronous generators (SGs), which
offer the necessary inertia to maintain frequency stability through their large rotating
masses [6]. However, with the increased penetration of RESs that lack physical inertia, such
as wind and photovoltaic (PV) generation, the system’s overall inertia is reduced, leading
to a higher risk of frequency instabilities [7]. This issue is more prominent in islanded
microgrids that operate autonomously and cannot depend on the central grid’s inertia for
frequency stabilization [8]. A paramount concern is ensuring frequency stability in islanded
microgrids, where voltage source converters (VSCs) interface with RESs. These microgrids
are often deprived of the inertial support that synchronous generators provide to maintain
grid stability. Therefore, a meticulous approach to maintaining frequency stability becomes
necessary to ensure a reliable and uninterrupted power supply.
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Microgrids (MGs) have emerged as a pivotal element in the evolution of electricity dis-
tribution networks, signifying a transformative shift from traditional power systems towards
a more distributed, smart grid topology, attributed largely to the integration of distributed
energy resources (DERs) [9], including both renewable and conventional energy sources.
Microgrids are a network of DERs that can operate in islanded or grid-connected modes [10].
Microgrids can be DC, AC, or hybrid [11]. They enhance power quality [12,13], improve
energy security [14], enable the integration of storage systems [15,16], and optimize system
efficiency. Microgrids offer economic advantages [17], reduce peak load prices, participate
in demand response markets, and provide frequency management services to the larger
grid [18].

Moreover, the utilization of power-electronics-linked (PEL) technologies in the mi-
crogrids, despite their benefits, presents notable obstacles. These include intricate control
issues resulting from short lines and low inertia within microgrids, leading to voltage and
frequency management complications [19]. The interdependence between reactive and
active powers, arising from microgrid-specific features like relatively large R/X ratios [20],
poses pivotal considerations for control and market dynamics, particularly regarding
voltage characteristics. Additionally, the limited contribution of PEL-based DERs during
system faults and errors raises safety and protection concerns [21]. Microgrids often need
more computational and communication resources, like larger power systems, demanding
cost-effective and efficient solutions to address these challenges. Abrupt or significant load
changes can also cause instability in isolated microgrid systems [22]. Sustaining system
stability becomes especially demanding when incorporating a blend of inertia-based gener-
ators, static-converter-based photovoltaics, wind power, and energy storage devices. This
complexity is further compounded by integrating power electronic devices and virtual
synchronous generators, necessitating comprehensive investigations and close equipment
coordination to ensure stability.

Various methods are used for microgrid frequency control, including conventional
droop control [23] and its more advanced variant, adaptive droop control [24]. Other
notable methods include robust control, fractional-order control, fuzzy control, PI deriva-
tive control, adaptive sliding mode control [25], and adaptive neural network constraint
controller [26]. Advanced primary control methods relying on communication offer su-
perior voltage regulation and effective power sharing, but they require communication
lines among the inverters, which can increase the system’s cost and potentially compro-
mise its reliability and expandability due to long-distance communication challenges [27].
Although control techniques have made significant advancements, there are still prevalent
challenges common to primary control methods. These challenges include slow transient
response, frequency, voltage amplitude deviations, and circulating current among inverters
due to line impedance [28]. Due to microgrids’ complexities and varied operational condi-
tions, each control method has advantages and disadvantages. As a result, it is difficult for
a single control scheme to address all drawbacks in all applications effectively. Ongoing
research in this field is crucial for improving the design and implementation of future
microgrid architectures, ensuring they can meet the dynamic and diverse needs of modern
power systems [29].

Virtual inertia (VI) has been introduced to address these challenges in power systems,
particularly in microgrids [30]. VI-based inverters emulate the behavior of traditional SGs.
These systems consist of various configurations like virtual synchronous machines (VSMs) [31],
virtual synchronous generators (VSGs) [32], and synchronverters. By emulating the inertia
response of a conventional SG, these VI-based systems help stabilize the power grid frequency,
thus countering the destabilizing effects of the high penetration of RES. While implementing
VI-based inverters has shown promising results in stabilizing frequency in microgrids, it also
presents new challenges and research directions. The selection of a suitable topology depends
on the system control architecture and the desired level of detail in replicating the dynamics
of synchronous generators. This variety in implementation reflects the evolving nature of



Technologies 2024, 12, 39 3 of 25

VI systems and underscores the need for further research, particularly in the systems-level
integration of these technologies [33].

The introduction and advancement of VI technologies in microgrids marks a significant
step towards accommodating the growing share of RES in power systems while maintaining
system stability and reliability [34]. As power systems continue to evolve towards a more
sustainable and renewable-centric model, the role of VI in ensuring smooth and stable
operation becomes increasingly crucial [35].

The current landscape of power system control is characterized by increasing complex-
ity, nonlinearity, and uncertainty, leading to the adoption of machine learning techniques
as a significant breakthrough. In particular, reinforcement learning (RL) has shown con-
siderable potential in addressing intricate control challenges in power systems [36]. RL
enables a more adaptable and responsive approach to VI control, crucial for maintaining
frequency stability in microgrids heavily reliant on RES [37].

The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm is a notable
advancement in RL. TD3 ia an extension of the Deep Deterministic Policy Gradient (DDPG)
algorithm; both algorithms address the overestimation bias found in value-based methods
like Deep Q-Networks (DQNs). The TD3 algorithm leverages a pair of critic networks
to estimate the value function, which helps reduce the overestimation bias. Additionally,
the actor network in TD3 is updated less frequently than the critic networks, further
stabilizing the learning process [38]. The use of target networks and delayed policy updates
in TD3 enhances the stability and performance of the RL agent, making it a robust choice
for complex and continuously evolving systems like power grids.

In the context of power systems, RL can be instrumental in optimizing the operation
of VI systems. Implementing RL in VI systems involves training an RL agent to control the
parameters of the VI system, such as the amount of synthetic inertia to be provided, based
on the real-time state of the grid. The agent learns to predict the optimal control actions
that would minimize frequency deviations and ensure grid stability, even in the face of
unpredictable changes in load or generation [39].

The RL agent’s ability to continuously learn and adapt makes it particularly suited for
managing VI systems in dynamic and uncertain grid conditions. For instance, in scenarios
with sudden changes in load or unexpected fluctuations in RES output, the RL agent can
quickly adjust the VI parameters to compensate for these changes, thereby maintaining
grid frequency within the desired range. This adaptability is crucial, given the stochastic
nature of RES and the increasing complexity of modern power grids.

Furthermore, implementing RL in VI systems can lead to more efficient and cost-
effective grid management. By optimizing the use of VI resources, RL can help reduce the
need for expensive traditional spinning reserves, leading to economic benefits for utilities
and consumers. It also supports the integration of more RES into the grid, contributing to
the transition towards a more sustainable and low-carbon power system. Applying RL
offers a promising pathway for enhancing the operation and efficiency of virtual inertia sys-
tems in power grids. In microgrid control, [40] introduced a new variable fractional-order
PID (VFOPID) controller that can be fine-tuned online using a neural-network-based algo-
rithm. This controller is specifically designed for VI applications. The proposed VFOPID
offers several advantages, including improved system robustness, disturbance rejection,
and adaptability to time-delay systems; however, it needs to address some technical issues
for the VIC system in terms of algorithm performance evolution, including computational
complexity reduction, accuracy enhancement, and robustness improvements, including
testing the proposed controller on a nonlinear microgrid system. Ref. [41] addressed
the challenges of inertia droop characteristics in interconnected microgrids and proposed
an ANN-based control system to improve coordination in multi-area microgrid control
systems. Additionally, [42] presented a secondary controller that utilizes (DDPG) tech-
niques to ensure voltage and frequency stability in islanded microgrids and future work
includes studying the high penetration level of RES. Ref. [43] explored a two-stage deep
reinforcement learning strategy that enables virtual power plants to offer frequency regula-
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tion services and issue real-time directives to DER aggregators, demonstrating the potential
of advanced machine learning in optimizing microgrid operations and highlighting the
need for more utilization of RL techniques in virtual inertia applications and paving the
road for utilizing new techniques like TD3.

This paper addresses a significant issue in power system control—the underutilization
of reinforcement learning techniques in implementing VI systems for islanded microgrids.
Integrating RES into microgrids is a step towards sustainable energy, but it can lead to
frequency deviations that impact stability and reliability. To tackle this issue, a VI controller
based on the TD3 and DDPG algorithms is proposed. The RL-based VI controller is
designed to optimize the VI system’s response to frequency deviations, thereby enhancing
the stability and reliability of islanded microgrids. This innovative approach fills the
critical gap in applying advanced reinforcement learning methods to VI, contributing to
developing more resilient and efficient power systems. This work aims to demonstrate
the potential of RL in revolutionizing the control mechanisms for modern power systems,
particularly in the context of frequency regulation in microgrids.

The remainder of the paper is organized as follows: Section 2 provides a detailed
modeling of the microgrid system under study. Section 3 introduces the RL algorithms,
detailing their operational principles. Section 4 presents the simulation results, highlighting
the efficacy of the proposed RL-based VI controller in regulating frequency deviations.
Finally, the paper concludes by summarizing the key contributions of the present study
and outlining the future directions of research in advancing microgrid technology.

2. System Model

The microgrid system under study represents a common configuration used by oil
and gas industries situated in remote areas far from the central power grid. The system
also represents a typical power system when the grid is disconnected for a long time
and only emergency supply and renewable energy sources are available. This microgrid
predominantly relies on synchronous generators, including motor and static loads. In recent
developments, the system has been augmented by integrating renewable energy sources.
A prototypical site powered by synchronous generators utilizes droop control to distribute
the load evenly. This setup serves as a model in the current study to simulate the dynamic
operations characteristic of a standard oil and gas facility. Moreover, an adjacent DC
microgrid, sourced from local renewable energy, has been implemented to support the AC
grid loads.

Figure 1 illustrates the microgrid configuration being analyzed. This system comprises
a diesel generator, various static loads, and induction motor loads. These components are
all interconnected at the AC microgrid’s point of common coupling (PCC). Additionally,
the DC microgrid is linked to the AC grid through a VSC, which is regulated by a virtual
inertia control loop with the reinforcement learning agent based on the TD3 employed.

The DC microgrid consists of a constant power source representing renewable energy
sources, such as a PV or wind system.

The system outlined in Figure 1 is the basis for analyzing the microgrid’s frequency
response, focusing on the rate of change of frequency (RoCoF) and nadir. It also examines
how AC-side fluctuations impact the DC microgrid’s DC voltage. Furthermore, the study
delves into the dynamic efficacy of the suggested virtual inertia controller for frequency
stabilization, as illustrated in the same figure.

For the purpose of the training process of the reinforcement learning agent, a small-
signal linearized model of the microgrid’s components has been developed. The outcomes
of this analysis are detailed in the subsequent subsections.
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Figure 1. Microgrid system under study.

2.1. DC Microgrid Modeling

In this study, the VSC serves as the pivotal link between the DC and AC microgrids
being examined. The control of the VSC plays a crucial role in maintaining the microgrid’s
stability, especially during contingency scenarios. This is achieved by aiding the microgrid
frequency in terms of the rate of change of frequency (RoCoF) and nadir through the provi-
sion of virtual inertia support. The VSC accomplishes this by adapting the reinforcement
learning techniques.

The control system incorporates an agent trained in reinforcement learning, trained
at reducing frequency deviations and improving nadir values. The study also includes
a comparative analysis with two reinforcement learning agents, the DDPG and the TD3,
to assess their effectiveness in mirroring dynamic behavior and enhancing overall perfor-
mance. The subsequent sections will detail these different methods’ results and present a
comparative analysis.

The net power contribution of the DC microgrid towards the AC grid, denoted as
Pex, is calculated by deducting the sum of the constant power load (PCPL) and the resistive
load present in the DC microgrid from the constant power source. Concurrently, the power
transmission to the AC microgrid is represented by Ps. Furthermore, the behavior of the
DC link capacitor (Cdc) associated with the interconnecting VSC is described by

1
2

CdcV2
dc = Pex − Ps. (1)

Disregarding any losses in the VSC, Equation (2) delineates the power delivered to the
AC microgrid.

Ps = Vd Id + Vq Iq. (2)

where Vd and Vq represent the voltages in the DQ reference frame of the AC grid, and
Id and Iq represent the output currents of the VSC within the same DQ reference frame.
In the DC microgrid, the renewable energy sources are effectively represented as a constant
power source with a power output of PDG. This constant power is consistently fed into the
AC grid, and the voltage of the DC grid is controlled through the interlinking VSC. This
mechanism is attributed to the relatively slow variation in power output from renewable
energy sources, especially when compared to the dynamics of the inertia support loop.
The resistive loads within the DC microgrid are modeled as resistance, denoted as R.
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As a result, the surplus power generated by the DC microgrid can be determined by the
following calculation:

Pex = PDG − PCPL −
V2

dc
R

. (3)

The linearized equation of the power transferred to the AC microgrid is given by (4):

∆Ps = ∆IdVSCVdoSb + ∆Vd1.5IdVSCoVb + ∆IqVSCVqoSb + ∆Vq1.5IqVSCoVb (4)

where Vb and Sb are the base voltage and power of the system, Vdo and Vqo are the operating
points where the system is linearized, ∆IdVSC and ∆IqVSC are small changes in the current
in the DQ reference frame.

Figure 2 depicts the current control loop of the VSC, where the reference current values
are denoted as I∗dVSC and I∗qVSC. In this setup, the q-reference is maintained at zero, whereas
the d-reference is derived from the virtual inertia; the control includes an outer current
loop and an inner voltage loop with the decoupling components. kp and ki represent
the proportional–integral (PI) controller gains of the current loop. Notably, the virtual
inertia loop is controlled by a reference signal provided by the agent’s actions, directly
influencing the I∗dVSC reference. The agent’s action is driven by the RL framework, where
the states of the environment are measured through the frequency of the system and DC
link voltage, and both are then compared to the nominal value to produce the errors as the
states. The reward function drives the agent’s learning to generate the actions that produce
the required virtual inertia support.
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dq
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Idref

I qref
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+
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+
-

PIP

Vdcerror
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Figure 2. Control of the VSC in the RL framework.

2.2. Model of Induction Machine

The dynamics of the induction motor (IM), particularly relations between its stator
and rotor voltages and currents within the rotating reference frame, are listed in the
equations denoted as (5). While these equations can be formulated using a variety of
state variables, including both fluxes and currents, it is noted that these variables are not
mutually exclusive. For the purpose of cohesively integrating the IM’s state equations into
the broader linearized model of the microgrid, it is more advantageous to use currents
as the state variables. Consequently, the interplay between stator and rotor voltage and
current within the IM is detailed in the universally recognized synchronous DQ reference
frame, as outlined in the following equations [44].

Vqs = Rs Iqs + Lsiqss + Lmiqrs + wrLs Ids + wrLm Idr, (5a)
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Vds = Rs Ids + Lsidss + Lmidrs− wrLs Iqs − wrLm Iqr, (5b)

Vqr = Rr Iqr + Lriqrs + Lmiqss + (ws − wr)Lr Idr + (ws − wr)Lm Ids, (5c)

Vdr = Rr Idr + Lridrs + Lmidss− (ws − wr)Lr Iqr − (ws − wr)Lm Iqs, (5d)

In these equations, Ls and Lr denote the inductances of the stator and rotor, respectively.
Similarly, Rs and Rr refer to the resistances of the stator and rotor. Additionally, Lm signifies
the mutual inductance, ωs refers to the synchronous speed, and ωr indicates the speed of
the rotor. The formulation of the electromagnetic torque within this context is presented
as follows:

Te =
3
2
∗ ρ

2
Lm

(
Iqs Idr − Ids Iqr

)
. (6)

The correlation between torque and mechanical can be established:

(Te − Tm) ∗
ρ

2J
= ωrs. (7)

where ρ stands for the number of poles, J denotes the combined inertia of the motor and
its load, and Tm refers to the torque exerted by the load. It is important to note that
before proceeding with the linearization of these machine equations, one must consider the
influence of the stator supply frequency, which is governed by the droop equations in a
microgrid system. This necessitates accounting for the minor variations in signal, essential
for developing a comprehensive and integrated model for small-signal analysis. Therefore,
the linear differential equations for the induction machine can be articulated as follows:

UIM︷ ︸︸ ︷
∆Vqs
∆Vds
∆Vqr
∆Vdr
∆Tm

 = F

XIM︷ ︸︸ ︷
∆iqs
∆ids
∆iqr
∆idr
∆ωr

+E
d
dt

ẊIM︷ ︸︸ ︷
∆iqs
∆ids
∆iqr
∆idr
∆ωr

+D1∆ωr (8a)

∆ẊIM = (−E−1F︸ ︷︷ ︸
AIM

)∆XIM + E−1︸︷︷︸
B1IM

∆UIM + (−E−1D1︸ ︷︷ ︸
B2IM

)∆ωr (8b)

F =


Rs ωroLs 0 ωroLm 0

−ωroLs Rs −ωroLm 0 0
0 (ωs −ωs)Lm Rr (ωs −ωs)Lr −Lm Isdo − Lr Irdo

−(ωs −ωs)Lm 0 −(ωs −ωs)Lr Rr Lm Isqo + Lr Irqo
3
4 ρLm Irdo − 3

4 ρLm Irqo − 3
4 ρLm Isdo

3
4 ρLm Isqo 0

 (8c)

E =


Ls 0 Lm 0 0
0 Ls 0 Lm 0

Lm 0 Lr 0 0
0 Lm 0 Lr 0
0 0 0 0 −2J

ρ

, D1 =


Ls Isdo + Lm Irdo
−(Ls Isqo + Lm Irqo)

Lr Irdo + Lm Isdo
−(Lr Irqo + Lm Isqo)

0

 (8d)

where XIM is the state vector, UIM is the input vector, AIM is the system matrix, and BIM is
the input matrix, which is divided into two parts, B1IM and B2IM.

2.3. Model of Diesel Generator
2.3.1. Generator Model

The AC microgrid model utilized in this study incorporates a diesel generator, along
with the dynamics of both the governor and the automatic voltage regulator (AVR). The syn-
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chronous generator within this model is defined such that ωs represents the synchronous
speed, and the difference between the actual rotor speed and this synchronous speed is
expressed as ∆ωpu.

The stator currents and voltages in the dq0 reference frame are denoted by Id, Iq, Io
and Vdterm, Vqterm, Voterm, respectively. Additionally, the stator fluxes in the dq0 frame are
represented as ψd, ψq, ψo. The rotor fluxes and input field voltage from the exciter are
symbolized in their per-unit form as ψ′d, ψ′q, and E f d, respectively. Pmech stands for the
mechanical power input from the turbine.

The constants for this per-unit model are detailed in Table 1. The equations that model
the diesel generator are as follows [45,46] and the equations are detailed in [30].

Table 1. Parameters of the synchronous generator.

Parameter Value (pu) Parameter Value (pu)

H 1.5 D 1.33
Rs 0.0095 Xd 2.11
X
′

d 0.17 X
′′

d 0.13
Xq 1.56 X

′
q 1.56

X
′′
q 0.23 xl 0.05

T
′

d 4.4849 T
′′

d 0.0681
T
′
q 0.33 × 0.00001 T

′′
q 0.1

The state-space equations of the synchronous generator are described in (9a) and (9b),
and the matrices of the synchronous generator are described in (9c) and (9d).

∆Xgen = Agen∆Xgen + Bgen∆Ugen (9a)

∆ygen = Cgen∆Xgen + Dgen∆Ugen (9b)

Agen =



0 ωs 0 0 0 0
0 −Po

2H
−Ido f
2Hb

−Iqoe
2Ha

−Iqoc
2Ha

−Idod
2Hb

0 0 −Xcq
T′qo

0 0 XQd
T′qob2

0 0 0 −Xcd
T′do

XDc
T′doa2 0

0 0 0 1
T′′do

−1
T′′do

0

0 0 1
T′′qo

0 0 −1
T′′qo


, Bgen =



0 0 0 0
1

2H 0 −IqoXs+E′′do
2H

−IdoXs+E′′qo
2H

0 0 0 (1− d
b )XQ

T′qo

0 1
T′do

−(1− c
a )XD

T′do
0

0 0 −a
T′′do

0

0 0 0 b
T′′qo


(9c)

Cgen =


0 E′′do + Iqo

f
b 0 0 d

b
0 E′′qo − Ido 0 e

a
c
a 0

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

, Dgen =


0 0 −Rs X′′q
0 0 −X′′d −Rs
0 0 0 0
0 0 0 0
0 0 0 0

 (9d)

2.3.2. Governer and Engine Model

In this model, the governor and turbine are configured to endow the generator with a
droop gain, designated as Kdroop. This feature is critical for illustrating power distribution
when multiple generators are in operation. Furthermore, the throttle actuator and the
engine within the model are simulated using a low-pass filter approach. Each of these
components is associated with its own time delay, identified as T1 for the throttle actuator
and T2 for the engine, detailed as follows [45]:

Pmech = GTurbine(s)GGoverner(s)(ωLoad + Kdroop∆ω), (10a)
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GGoverner(s) =
1

T1s + 1
, (10b)

GTurbine(s) =
1

T2s + 1
. (10c)

2.3.3. AVR Model

The AVR in the model is designed in line with the IEEE AC5A type, as illustrated in
Figure 3. Key parameters of this AVR are shown in Table 2.

Table 2. The values of parameters of the AVR.

Parameter Name Value

KA Voltage regulator gain 100
TA Time constant 0.02
KE Exciter gain 1
TE Exciter time constant 0.02
KF Damping filter gain 0.03
TF1 Time constant 1 1
TF2 Time constant 2 0
TF3 Time constant 3 0

Vt

-
-

+
Vtref

KA

1+sTA

sKF (1+sTF3)
(1+sTF1)(1+sTF2)

1

sTE

KE

EF

GAVR1 GAVR2

-
+

Figure 3. AVR model.

The AVR setup is determined as follows:

E f = GAVR1(s)GAVR2(s)(V∗t −Vt). (11)

3. Reinforcement Learning Controller

The RL is a subset of machine learning, where an agent is trained to make optimal
decisions through interactions with an environment guided by a system of states and
rewards. This learning process involves the agent developing a policy, essentially a function
that maps given states to actions, with the aim of maximizing cumulative rewards over
time. The RL controller is utilized in this paper to be trained to provide frequency support
by controlling the virtual inertia. In this context, the key components of an RL task are
observation states, actions, and rewards, as shown in Figure 4.

In the system addressed in this study, the observation state and action are represented
as st and at, respectively. They are defined as follows:

st = {∆ f ,
∫

∆ f dt, ∆VDC,
∫

∆VDCdt}

at = {I∗d}
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EnvironmentAgent

Reward

Action

States

Figure 4. Reinforcement learning framework.

Such that ∆ f represents the frequency deviation from its nominal value, and ∆VDC
indicates the deviation in the DC link voltage. The integrated values of these errors are also
included in the states. The action I∗d refers to the reference input for the (VSC) controller.
The RL framework involves the RL agent interacting with a learning environment, in this
case, the VSC controller. At each time step t, the environment provides the RL agent
with a state observation st. The RL controller then executes an action from its action
space, observes the immediate reward r(t), and updates the value of the state–action pair
accordingly. This iterative process of exploration and refinement enables the RL-controlled
controller to approximate an optimal control policy. The reward function is designed to
penalize frequency deviation, DC link voltage deviation, and the magnitude of the previous
action by the RL agent as follows:

r(t) = −R1(|∆ f |)− R2|∆VDC| − R3|ut−1| (12)

such that |∆ f | is the absolute value of deviation in frequency from the nominal value,
|∆VDC| is the absolute DC link voltage deviation from the nominal value, and ut−1 is the
previous action by the RL agent; the values of the parameters used in the reward function
are shown in Table 3.

Table 3. The values of parameters used in the reward functions.

Parameter Value

R1 4 × 1800
R2 0.01
R3 0.01

In this study, two RL agents are presented; the first agent is based on DDPG, presented
and discussed in detail in [47], and the second agent is based on TD3. This section presents
the structure and the training algorithm of the TD3 algorithm. The TD3 algorithm is an
advanced model-free, online, off-policy reinforcement learning method, evolving from the
DDPG algorithm. The TD3, designed to address DDPG’s tendency to overestimate value
functions, incorporates key modifications for improved performance. It involves learning
two Q-value functions and using the minimum of these estimates during policy updates,
updating the policy and targets less frequently than Q functions, and adding noise to target
actions during policy updates to avoid exploitation of actions with high Q-value estimates.
The structure of the actor and critic networks used in this article is shown in Figure 5 and
the structure of the DDPG actor and critic is shown in Figure 6.

The network architectures were designed using a comprehensive approach that bal-
anced several considerations, including task complexity, computational resources, empirical
methods, insights from the existing literature, and demands required by different network
functions. Networks with more layers and neurons are needed in complex scenarios with
high-dimensional state spaces and continuous action space. The methodology for selecting
the most appropriate network architecture was mainly empirical, entailing the exploration
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and evaluation of various configurations. This iterative process typically begins with the de-
ployment of relatively simple models, with subsequent adjustments involving incremental
increases in complexity in response to training performance and computational time. The
existing literature and benchmarks relevant to our task further informed our design choices.
By examining successful network configurations applied to similar problems, we could
draw upon established insights and best practices as a foundation for our architectural
decisions. The activation function at the output neuron of the actor network greatly affected
the network’s performance during the training; the tanh activation function fitted the most
in the architecture of the actor network and produced the best outcome compared to the
ReLU activation function.
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Figure 5. Structure of the actor and critic networks for the RL-TD3 agent.

During its training phase, a TD3 agent actively updates its actor and critic models
at each time step, a process integral to its learning. It also employs a circular experience
buffer to store past experiences, a crucial aspect of iterative learning. The agent utilizes
mini-batches of these stored experiences to update the actor and critic, randomly sampled
from the buffer. Furthermore, the TD3 agent introduces a unique aspect of perturbing
the chosen action with stochastic noise at each training step, an approach that enhances
exploration and learning efficacy.

The TD3 uses a combination of deterministic policy gradients and Q-learning to ap-
proximate the policy and value functions. The algorithm uses a deterministic actor function
denoted by (µ|θµ), where θµ are its parameters, inputs the current state, and outputs deter-

ministic actions to maximize long-term reward. The target actor function (µ
′ |θµ

′
) uses the

same structure and parameterization as the actor function but with periodically updated
parameters for stability. The TD3 also uses two Q-value critics (Qk|ϕQk ), with parameters
(ϕQk ) to input observation (st) and action (at) and output the expected long-term reward.
The critics have distinct parameters (ϕk) and if two critics are used, they generally have
the same structure but different initial parameters. The TD3 utilizes two target critics

(Q
′
k|ϕ

Q
′
k ) whose parameters (ϕQ

′
k ) are periodically updated with the latest critic parameters.

The actor, the target actor, the critics, and their respective targets have identical structures
and parameterizations.
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Figure 6. Structure of the actor and critic networks for the RL-DDPG agent.

The actor network in a TD3 agent is trained by updating actor and critic properties at
each time step during learning. It uses a circular experience buffer to store past experiences,
sampling mini-batches from this buffer for updates. The action chosen by the policy is
perturbed at each training step using stochastic noise. The actor is trained using a policy
gradient. This gradient, ∇θ J, is approximated as follows:

∇θ J ≈ 1
M

M

∑
i=1

Gai Gπi (13)

Gai = ∇A min
k

(Qk(Si, A; ϕ)) (14)

with
A = π(Si; θ) (15)

Gπi = ∇θπ(Si; θ) (16)

where Gai is the gradient of the minimum critic output with respect to the action, and Gπi

is the gradient of the actor output with respect to the actor parameters, both evaluated
for the observation Si. The actor parameters are then updated using the learning rate ζµ

as follows:
θµ = θµ − ζµ∇θµ J(θµ) (17)

In the TD3 algorithm, the critic is trained at each training step by minimizing the loss
(Lk) for each critic network. The loss is calculated over a mini-batch of sampled experiences
using the equation

Lk =
1

2M

M

∑
i=1

(yi −Qk(Si, Ai; ϕk))
2 (18)

where yi is the target value for the ith sample, Qk is the output of the kth critic network for
the state Si and action Ai, and ϕk are the parameters of the kth critic network. This training
process helps the critic to accurately estimate the expected rewards, contributing to the
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overall effectiveness of the TD3 algorithm. The critic parameters are then updated using
the learning rate ζQ.

ϕQk = ϕQk − ζQk∇ϕQk L(ϕQk ) (19)

The target networks are then slowly updated using smoothing target factor τ.

ϕQ′k ←− τϕQk + (1− τ)ϕQ′k (20)

θµ′ ←− τθµ + (1− τ)θµ′ (21)

The training algorithm of the TD3 agent is shown in Figure 7.
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Figure 7. TD3 training algorithm.
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4. Simulation Results

This section evaluates the dynamic performance of the proposed RL-based virtual
inertia controller for frequency support in the microgrid system presented in Section 2. The
Matlab version used is 2022b alongside the Simulink and reinforcement learning toolbox.
The computational features of the computer utilized are a dual-core processor of Intel
Core i7 type, alongside 8 GB of RAM and a 500 GB SSD hard drive. The simulations
are conducted in two separate steps. In the first step, the system is analyzed using a
linearized model around an operating point where the synchronous generator supplies
0.75 pu, and the DC microgrid supplies 0.25 pu. This model is used for training the RL
agent. This approach is adopted due to the intensive computational requirements and
hardware resource utilization involved in training reinforcement learning agents and its
difficulty in being implemented on a nonlinear model. The trained agents are applied to
a nonlinear model to assess the dynamic response. The results obtained are compared
with conventional methods, such as LPF and HPF controllers. A DDPG agent is also
trained and examined to compare with the performance of the TD3 agent. This two-
stage simulation comprehensively evaluates the system’s performance under different
operational conditions.

4.1. Linear Model

The RL agents in this study are trained in the linearized system environment, where
the microgrid’s linearized model is considered the environment. During the training,
the environment introduces a load disturbance in each training episode. Each training
episode simulation time is t = 5 s. The training process of the TD3 agent is visualized
in Figure 8, plotting each episode’s reward along with the moving average value of the
reward across the number of episodes equal to 20. This training continues until the moving
average of the rewards meets the pre-determined criteria to stop training, ensuring the
agent is adequately trained.
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ar
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105

Moving Average Reward
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Figure 8. Cumulative reward for each training episode.

In the linearized system part of the simulation results, the comparative analysis of
frequency responses to a 3% dynamic load increase at t = 1 s in the microgrid shown in
Figure 1. Figure 9 shows distinct behaviors among the different control methodologies:
RL-TD3, RL-DDPG, LPF, and HPF. The reinforcement-learning-based TD3 controller (RL-
TD3) and the DDPG controller exhibit a rapid recovery from the disturbance, achieving
a superior rate of frequency change and maintaining a nadir point closer to the nominal
value than other techniques with higher performance of the DDPG. On the other hand,
the LPF controller shows a moderate response with a more noticeable deviation. The HPF



Technologies 2024, 12, 39 15 of 25

controller, in contrast, experiences the most significant frequency dip and the slowest
recovery. This comparison underscores the effectiveness of the RL agents in maintaining
frequency stability under dynamic load conditions, surpassing the performance of LPF and
HPF controllers. It is important to note that the DDPG-RL agent was also trained on the
same linear system as the TD3 agent in the simulation. However, it required significantly
more training time, taking 280 episodes to reach the designated average reward threshold,
compared to only 131 episodes for the TD3 agent.
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Figure 9. Comparison between RL-TD3, RL-DDPG, LPF-, and HPF-based controllers for virtual
inertia loop in terms of frequency response.

Figure 10 illustrates the DC voltage responses for the same case of a 3% dynamic
load increase for the different controllers. The RL-DDPG controller initially shows a sharp
voltage drop, indicating strong inertial support to the AC microgrid, but it successfully
keeps the DC link voltage within a 5% change boundary. It reaches its nadir earlier than
the other controllers, providing the best inertial support due to the power transfer to the
AC grid before stabilizing. It is followed by the RL-TD3 agent, which encounters similar
behavior in voltage drop but tries to restore the voltage to reduce the penalty or increase
the reward when the frequency deviation starts to decrease; however, when the frequency
deviation starts to grow back again, the agent drops the voltage to the maximum level
to reduce the frequency deviation through inertial support. In comparison, LPF exhibits
moderate dips with oscillatory tendencies, while HPF maintains a relatively stable voltage
profile. Overall, the RL controllers demonstrate robust transient response and effective
inertial support, outperforming conventional controllers in maintaining voltage stability
under dynamic load conditions.

The controller’s stability in the linearized system was tested in the study by examining
the controller’s response under different loading conditions. This approach was aimed
at assessing the controller’s robustness under varying conditions. The performance and
stability of the controller were then compared with that of the low-pass filter (LPF) controller.
This comparison was crucial to evaluate how well each controller adapted to changes in
the system’s dynamics and maintained operational stability, providing valuable insights
into the effectiveness of the proposed control strategy under different scenarios.
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Figure 10. Comparison between RLTD3, RL-DDPG, LPF-, and HPF-based controllers for virtual
inertia loop in terms of DC link voltage.

Figure 11, comparing the RL-TD3 and LPF controllers under dynamic torque load
increases from 3% to 6%, shows the RL controller’s superior performance in managing
disturbances. Both controllers exhibit oscillatory behaviors post-disturbance, but the RL
controller stabilizes in less setting time to the nominal frequency, particularly at higher
torque loads. The RL controller’s frequency nadir values are less pronounced than those
of the LPF, indicating a more robust response. On the other hand, in Figure 12, the LPF
controller shows larger oscillations and a slower return to baseline. Under these conditions,
the DC link voltage response graph reveals the RL controller’s more pronounced voltage
drop, signifying greater power allocation to the AC side for enhanced inertial support,
especially critical during substantial load changes. In contrast, the LPF maintains higher
DC voltage levels but may offer different inertial support levels. The RL controller’s
approach is beneficial for grid stability in microgrids, provided the voltage remains within
the boundaries. The same change in load torque is made, and the response for the RL-
DDPG controller compared to the LPF is shown in Figures 13 and 14, which show a superior
performance of the RL-DDPG over the conventional LPF controller.
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Figure 11. TD3-RL and LPF frequency response under dynamic load increase.
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Figure 12. TD3-RL and LPF DC voltage response under dynamic load increase.
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Figure 13. RL-DDPG and LPF frequency response under dynamic load increase.
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Figure 14. RL-DDPG and LPF DC voltage response under dynamic load increase.
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Figures 15 and 16 demonstrate the impact of varying static load levels on the mi-
crogrid’s frequency regulation performance, specifically when managed by RL and LPF
controllers. With increased static load, from 0.25 pu to 1.25 pu, both the RL controllers
adeptly handle the additional demand, maintaining frequency stability with minimal devi-
ation. This indicates the RL controller’s robustness and ability to provide effective inertial
support even as static load parameters change, reflecting a resilient control strategy suitable
for dynamic microgrid environments.
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Figure 15. RL-TD3 and LPF frequency response under DC static load change.
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Figure 16. RL-DDPG and LPF frequency response under DC static load change.

4.2. Nonlinear Model

Following the successful implementation and validation of a linearized model, the RL
controllers are then integrated into a nonlinear model to evaluate its robustness. This crucial
step ensures that each controller’s performance holds under more complex and realistic
operating conditions. Examining each controller’s behavior in a nonlinear environment
is fundamental to validating its efficacy, providing a comprehensive understanding of
its potential in practical applications. This further confirms the controllers’ capabilities,
reinforcing confidence in its deployment for real-world microgrid applications.

In the nonlinear model environment, the RL controllers’ frequency and DC voltage
responses to a 3% increase in dynamic load at t = 25 are depicted in Figures 17 and 18.
The frequency response demonstrates a similar pattern to that observed in the linearized
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model, with the controller effectively dampening oscillations and rapidly returning to the
nominal frequency after a disturbance. The DC voltage response also performs similarly to
the linearized environment, displaying a sharp initial drop and then stabilizing without
exceeding the 5% boundaries, illustrating the controllers’ robustness. This consistent
behavior across linear and nonlinear models underscores the RL controllers’ reliability and
effectiveness in dynamic conditions.
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Figure 17. TD3-RL frequency response in nonlinear model.

Figure 18. TD3-RL DC voltage response in nonlinear model.

This section illustrates the robust performance of the RL controllers in a nonlinear
microgrid environment. The graph in Figure 19 demonstrates the frequency response under
varying DC loads, where the TD3 controller maintains frequency stability despite DC load
variations. Figure 20 shows the DC link voltage response, indicating that the controller
adeptly manages voltage sags, contributing to effective inertial support. The graph in
Figure 21 demonstrates the frequency response under varying DC loads, where the DDPG
controller maintains frequency stability despite DC load variations. Figure 22 shows the
DC link voltage response; both figures indicate that the controllers have a similar response
to the linear model.
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Figure 19. RL-TD3 frequency response with changing DC loading.
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Figure 20. RL-TD3 DC voltage response with changing DC loading.
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Figure 21. RL-DDPG frequency response with changing DC loading.
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Figure 22. RL-DDPG DC voltage response with changing DC loading.

Figure 23 depicts the frequency response of decreasing the microgrid’s overall iner-
tia by turning off the dynamic loading and replacing the induction motor with an equal
amount of power of static loading. The results show the comparison between the response
of the proposed RL controller compared with the conventional LPF controller. The RL con-
troller depicts a better inertial response regarding RoCoF and nadir than the conventional
controller. The figure also contains the same comparison when the loading utilized is a
dynamic load; the frequency nadir in both controllers’ cases is lower in the case of dynamic
loading. The results show the effect of reducing overall inertia due to the replacement of
induction machine loads and demonstrate the robustness of the proposed RL controller.

Figure 24 depicts the DC link voltage for replacing the dynamic loads with static loads.
The DC link voltage demonstrates that the RL agent is trained to transfer the maximum
allowed inertia support to the AC microgrid by reducing the DC link voltage.
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Figure 23. Frequency response with replacing the dynamic loading with static loading.
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Figure 24. DC link voltage response with replacing the dynamic loading with static loading.

5. Conclusions

This paper presented a new control algorithm that utilizes the Twin Delayed Deep
Deterministic Policy Gradient (TD3) and Deep Deterministic Policy Gradient (DDPG)
reinforcement learning methods to support the frequency in low-inertia grids. The RL
agents are trained using the system-linearized model and then extended to the nonlinear
model to reduce the computational burden. The Matlab/Simulink and reinforcement
learning toolbox are utilized to compare the system performance using the proposed AI-
based methods with conventional low-pass and high-pass filter (LPF and HPF) controllers
referenced in the literature. The proposed TD3- and DDPG-based frequency support
controllers demonstrate superior performance over the conventional methods, where the
frequency dynamics in terms of RoCoF and nadir are significantly improved. The inertial
support provided to the AC microgrid site is sourced from the DC microgrid side’s DC
link voltage. At different loading scenarios based on the nonlinear model under various
operating conditions, the results show the robustness of the proposed algorithms against
various disturbances. The conducted work emphasizes the pivotal role of reinforcement
learning in enhancing the dynamic performance of low-inertia grids, which facilitates the
integration of more renewable energy resources into existing grids. The controller poses
some limitations due to the complexity of the neural networks, which results in complexity
in studying the stability analysis and needs a high processing time during the training and
testing of the proposed controller. Future work will include fault analysis of the proposed
microgrid system and testing the proposed controller’s response to faults.

Author Contributions: Conceptualization, A.M.I.M. and M.I.M.; methodology, A.M.I.M. and M.I.M.;
software, A.M.I.M. and M.A.A.; validation, A.M.I.M. and M.A.A.; formal analysis, A.M.I.M. and
M.A.A.; investigation, A.M.I.M., M.A.A. and M.I.M.; resources, A.M.I.M. and M.I.M.; data curation,
A.M.I.M. and M.A.A.; writing-original draft preparation, M.A.A. and A.M.I.M.; writing-review and
editing, A.M.I.M. and M.I.M.; visualization, A.M.I.M. and M.A.A.; supervision, A.M.I.M. and M.I.M.;
project administration, A.M.I.M. and M.I.M.; funding acquisition, M.I.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.



Technologies 2024, 12, 39 23 of 25

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AVR Automatic voltage regulator
CPS Constant power source
DDPG Deep Deterministic Policy Gradient
DERs Distributed energy resources
DQN Deep Q-Networks
HPF High-pass filter
IM Induction motor
LPF Low-pass filter
MG Microgrid
PCC Point of common coupling
PEL Power electronics-linked
PI Proportional–integral
PV Photovoltaic
RESs Renewable energy sources
RL Reinforcement learning
RoCoF Rate of change of frequency
SGs Synchronous generators
TD3 Twin Delayed Deep Deterministic Policy Gradient
VI Virtual inertia
VSCs Voltage source converters
VSGs Virtual synchronous generators
VSMs Virtual synchronous machines
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