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Abstract: Although multiview platforms have enhanced work efficiency in mining teleoperation
systems, they also induce “cognitive tunneling” and depth-detection issues for operators. These
issues inadvertently focus their attention on a restricted central view. Fully immersive virtual reality
(VR) has recently attracted the attention of specialists in the mining industry to address these issues.
Nevertheless, developing VR teleoperation systems remains a formidable challenge, particularly in
achieving a realistic 3D model of the environment. This study investigates the existing gap in fully
immersive teleoperation systems within the mining industry, aiming to identify the most optimal
methods for their development and ensure operator’s safety. To achieve this purpose, a literature
search is employed to identify and extract information from the most relevant sources. The most
advanced teleoperation systems are examined by focusing on their visualization types. Then, various
3D reconstruction techniques applicable to mining VR teleoperation are investigated, and their
data acquisition methods, sensor technologies, and algorithms are analyzed. Ultimately, the study
discusses challenges associated with 3D reconstruction techniques for mining teleoperation. The
findings demonstrated that the real-time 3D reconstruction of underground mining environments
primarily involves depth-based techniques. In contrast, point cloud generation techniques can mostly
be employed for 3D reconstruction in open-pit mining operations.

Keywords: 3D reconstruction; teleoperation; mining industry; virtual reality

1. Introduction

Teleoperation in the mining industry has gained massive attention due to the safety
and health issues associated with this operation. This has led operators to perform tasks
from a safer distance, reducing exposure to hazardous environments. Furthermore, the
increasing operational costs in the mining industry have led companies to adopt innovative
technologies. This integration not only improves safety but also streamlines operations, en-
hances overall production efficiency, and boosts reliability [1,2]. Implementing driverless ve-
hicles in mining operations for haulage improves safety by eliminating the need for human
operators to navigate hazardous working environments, minimizing the risk of accidents,
and ensuring a secure and controlled mining operation [3,4]. However, ever-changing
factors affecting mining operations and the complexity of rock loading/excavation hinder
the widespread utilization of fully autonomous systems in underground and surface mines.
By integrating human oversight with autonomous systems, a more reliable operational
framework is established, capable of effectively addressing the dynamic and intricate
demands of mining operations [5–7]. An efficient teleoperation system can significantly
reduce the number of hazards in mine sites by removing the operators and workers from
dangerous working environments.

The historical analysis of the National Institute for Occupational Safety and Health
(NIOSH) and the Mine Safety and Health Administration (MSHA) databases [8,9], spanning
from 2000 to 2022, as depicted in Figure 1, reveals that despite the implementation of diverse
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safety measures in United States mining operations, inherent risks persist. The analysis
indicates a decline in the number of injuries from 1630 in 2000 to 5049 in 2022; however, it
is apparent that the figures remain notably significant.
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Figure 1. The number of injuries, including fatalities in mining operations, from 2000 to 2022.

A substantial factor contributing to mining accidents is powered haulage, present-
ing considerable risks to both operators and laborers. The movement of haulage units,
including trucks and conveyors, introduces inherent dangers [10]. Despite advancements
in safety measures, regulations, and the integration of proximity detection technologies,
our data analysis from 2000 to 2022, as depicted in Figure 2, reveals a significant number of
five fatalities in 2022.
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Figure 2. Number of powered haulage fatalities in mining operations from 2000 to 2022.

While powered haulage constitutes a relatively small share of all injuries (with an
annual average of 8% of total injuries), it consistently plays a significant role in incidents
leading to death or severe harm, in conjunction with other contributing factors. A compar-
ative classification of fatality data from 2000 to 2022, as illustrated in Figure 3, indicates
that powered haulage accounts for 32% (320 out of 983) of the fatalities during this pe-
riod. This procedure analyzed factors that resulted in more than 50 fatalities during the
specified timeframe.
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Teleoperation systems can be one of the most promising solutions to address these
challenges, but they are not widely used because of low efficiency. One of the most critical
factors influencing the efficiency of teleoperation is the operator’s awareness of the working
environment, also known as situational awareness [5,11]. Enhancing operators’ situational
awareness can be achieved through various tools: furnishing a comprehensive map of
the working environment, ensuring a real-time and synchronized stream of videos or
amalgamated data, providing precise spatial information, and strategically reducing the
number of monitors to mitigate cognitive tunneling [12,13]. Creating a 3D model of the
operational environment constitutes a significant method to augment visualization and
situational awareness [14]. Nevertheless, these approaches are constrained by their high
computational costs [12].

In recent years, significant strides in 3D construction techniques have facilitated the
precise, non-real-time reconstruction of static scenes. This is achieved through meth-
ods such as depth map fusion, which involves employing multiple RGB-D cameras [15]
alongside point cloud-generating sensors like Light Detection and Ranging (lidar) [16,17].
However, the challenge persists in developing a real-time solution capable of concurrently
reconstructing two diverse mining environments with the requisite accuracy for teleoper-
ation applications, necessitating further research [18]. Mining environments are mainly
categorized into two major groups, surface and underground; similar to outdoor and
indoor settings for 3D reconstruction, they present a mix of static and dynamic scenes en-
compassing rigid and non-rigid objects. This diverse array of environmental factors poses
a multifaceted challenge in achieving real-time 3D reconstruction meeting the demands of
teleoperation systems.

Contemporary teleoperation systems encompass three primary components: (1) the
robot integrated with various sensors, (2) the communication infrastructure encompassing
servers and algorithms, and (3) the operator’s user interface, which can take the form of
a monitor or Head-Mounted Display (HMD) [19]. The effectiveness of 3D reconstruction
techniques utilized in these systems is contingent upon the specific environmental factors,
such as indoor or outdoor settings, the nature of 3D reconstruction (real-time or non-real-
time), the characteristics of the objects (rigid or non-rigid), the object’s motion (static or
dynamic), and the relative positioning of the camera and the object. Diverse methodologies
cater to these conditions and requirements in the 3D reconstruction process.

The primary objective of this review study is to bridge the disparity between present-
day teleoperation systems and the potential application of VR in mining operations. Given
the inherent hazards of mining activities, ranging from rock falls to dusty environments
and equipment collisions, it becomes imperative to explore the viability of integrating
3D reconstruction techniques in current teleoperation systems to enhance the operator’s
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situational awareness. To address these challenges, this study conducts a systematic review,
examining various facets of novel platforms, sensors, and algorithms pertinent to 3D
reconstruction. The intended contributions of this study encompass the following:

• The identification and evaluation of existing teleoperation platforms capable of poten-
tial transformation into VR-based teleoperation systems tailored for mining operations.

• The investigation and classification of sensor technologies that possess the capacity to
enhance telepresence within the mining operation.

• The analysis of 3D reconstruction research studies and algorithms relevant to scenarios
adaptable for employment in surface and underground mining telepresence scenarios.

The paper is structured as follows: Section 2 outlines the systematic review method-
ology, emphasizing criteria for selecting teleoperation platforms and research papers.
Section 3 offers a detailed explanation of existing teleoperation platforms and. discusses
3D reconstruction methods for enhancing teleoperation systems in the mining industry.
Section 4 addresses the limitations of current teleoperation systems and proposes leverag-
ing 3D reconstruction for enhanced operator awareness in virtual reality. Finally, Section 5
concludes by emphasizing the underutilized potential of 3D reconstruction in mining
teleoperation and anticipating long-term benefits in safety and productivity.

2. Materials and Methods

This systematic review study comprises two key phases, as depicted in Figure 4, to
address aspects of teleoperation systems and relevant research studies comprehensively.

As shown in Figure 4, Phase 1 focuses on evaluating the existing landscape of teleop-
eration platforms, identifying those adaptable to fully immersive VR systems for mining
operations. This phase adopts a comprehensive approach, drawing insights from both
research laboratories and industry, involving an in-depth analysis of selected teleoperation
platforms. Nineteen teleoperation systems from research laboratories (n = 19) and nine
systems from the industry (n = 9) were chosen for the study. Phase 2 involves a meticulous
analysis, emphasizing relevant research studies on 3D reconstruction techniques appli-
cable to surface and underground mining teleoperation scenarios. This phase includes
the analysis of sensor technologies’ capacity to enhance teleoperation in the mining sector
(Phase 2(a)), along with extracting and elucidating algorithms and sensors employed in
selected research studies (Phase 2(b)), highlighting their applications and relevance in the
context of mining teleoperation.

Research has been conducted by investigating and screening companies’ websites,
handbooks, technical reports, and papers from IEEE Xplore, Science Direct, and Springer
Link using keywords such as “Real-time, Non-real-time 3D reconstruction, visualization”,
“Indoor, outdoor 3D reconstruction, visualization”, and “Dynamic scene, static scene”. Since
this survey contains both mining environments, research papers from other industries are
also included because of their similarity. The screening was conducted by considering
multiple criteria, including date, language, technological aspects, and fields of study. At the
first step, 458 papers (n = 458) were selected for the review. The next step involved title and
keyword screening to eliminate papers not focused on 3D reconstruction. It was followed
by abstract screening, removing papers unsuitable for real-time indoor 3D reconstruction
and non-real-time outdoor reconstruction or lacking teleoperation potential. Full-text
screening identified and excluded papers unfit for application in mining VR immersive
teleoperation. The quantity of selected publications concerning the respective publication
years, depicted in Figure 5, illustrates that most relevant studies in the 3D reconstruction of
indoor environments (32 studies) were conducted between 2020 and 2022. The increase
in research is linked to the prevalent accessibility of reasonably priced RGBD sensors,
exemplified by Microsoft’s Kinect, delivering precise depth details in conjunction with
color data. Progress in computational capabilities, especially in GPUs, eased the real-time
processing of extensive datasets. Incorporating machine learning and computer vision
methodologies and a rising enthusiasm for AR and VR applications amplified the need for
precise and effective indoor mapping.
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3. Results

The Materials and Methods Section involved a comprehensive evaluation of teleop-
eration platforms for mining VR systems, resulting in selecting one laboratory and three
industry teleoperation systems. A rigorous screening of 458 papers through title, keyword,
abstract, and full text identified 49 pertinent papers. Additionally, this process identified
six sensors, further enriching the study with a focused exploration of sensor technologies
suitable for mining VR immersive teleoperation.

3.1. Current Technologies in Teleoperation

In recent years, it has been possible to teleoperate mining equipment efficiently thanks
to massive technological achievements in sensor production, 5G communication networks,
visualization tools, and algorithms. Two crucial sections should be considered when
investigating the state-of-the-art mining and construction teleoperation systems technolo-
gies. The first sector comprises programmable teleoperation systems, predominantly
developed within laboratories for research purposes. The second segment encompasses
equipment manufacturer companies dedicated to constructing and commercializing these
teleoperation platforms.

3.1.1. Research Laboratories

One of the most advanced teleoperation systems has been developed as a remotely
operated walking excavator [20] research project called HEAP [21] (a customized Menzi
Muck M545 Excavator [22]), indicated in Figure 6, in robotic labs at ETH Zurich. This
platform was first presented at Bauma Fair 2019 [23].
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A multicamera vision system installed on the excavator uses industrial cameras from
XIMEA, which utilize low-latency image processing provided by MRTech SK (MRTech™)
City: Western Slovak city Country: Slovakia [25] and run on the NVIDIA Jetson TX2
platform. Within the HEAP platform, the cockpit is simulated atop a 3-degree-of-freedom
(3-DoF) motion platform, indicated in Figure 7. This setup ensures synchronized motion
between the chassis and the platform during excavator operation. The initial iteration of
IBEX [26] provided visual feedback through three 3D monitors displaying live feeds from
three distinct cameras. The primary use of this platform is for construction purposes, but it
also has the potential to be employed in mining operations.
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3.1.2. Heavy Equipment Manufacturers

The pinnacle of advanced teleoperation technology is evident in heavy equipment
manufactured by industry-leading companies such as Komatsu, Caterpillar, Hitachi, Sand-
vik, Epiroc, Liebherr, Doosan, Volvo, and Hyundai. Despite these advancements, these
platforms continue to rely on multiple monitors to visualize the operational environment.

As the most advanced technology of Komatsu in Teleoperation, a new PC-7000 ex-
cavator was teleoperated, loading a fully autonomous concept truck in Arizona from Las
Vegas during MINExpo 2021 [27]. An Immersive Technologies [28] console provided the
information and visualization of the working environment separated by 413 miles. The
components of the teleoperation system used in the platform include the following:

• A 360◦ view monitor and machine display;
• The implementation of a semi-automated loading system;
• Real-time operator guidance and coaching through augmented reality (AR) technology.

Doosan is the pioneer in deploying 5G technology for the global “Teleoperation”
of construction machinery, debuting this groundbreaking platform at the Bauma 2019
exhibition in Munich, Germany. The innovation was demonstrated by operating a Doosan
DX380LC-5 40-tonne crawler excavator over 8500 km away in Incheon, South Korea,
from the Bauma stand in Munich. The teleoperation system used a low-latency video
transmission module and rapid video transfer through encoding and decoding methods,
which is crucial in minimizing time delays [29,30].

Caterpillar has introduced an advanced technology known as “Cat® Command,”
a versatile platform offering remote control, semi-autonomous, and fully autonomous
functionalities for equipment operations [31]. This platform includes two variants tailored
for teleoperation: a console and a station. The console is designed to enable operators to
control the machinery near the site [32], which is available for select Cat dozers, excavators,
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and wheel loaders. The Cat Command Station, available for Cat dozers, excavators, and
wheel loaders, is designed to enable operators to conduct operations remotely [32,33].
The Cat Command system has been adapted for underground operations, offering three
distinctive levels of operation [34]:

• “Teleremote”—employed for bucket loading and unloading;
• “Copilot”—a semi-autonomous mode;
• “Autopilot”—facilitating autonomous machine operation.

Mentioned technologies use multiple monitors to visualize the working environment.
However, there is a severe problem with this type of visualization called “cognitive tun-
neling”. This means that providing operators with excess visual information makes them
subconsciously pay attention to a limited view, thereby ignoring other views. In addition,
depth detection is not possible using 2D monitors.

3.2. 3D Reconstruction Approaches for Immersive Mining Teleoperation

Integrating 3D reconstruction techniques holds considerable potential for enhancing
immersive teleoperation in mining operations [35]. The initial stage in 3D reconstruction
for immersive mining teleoperation involves exploring diverse data acquisition options,
including active and passive sensors, and selecting the most suitable one based on the
type of challenges and requirements of the mining environment. This careful selection lays
the foundation for capturing accurate spatial information, which is essential for creating
detailed 3D models. 3D modeling in surface mines differs significantly from underground
mines due to distinct environmental challenges. In surface mining, sensors like lidar and
RGB cameras are often employed to capture large-scale structures and detailed surface
features effectively. However, in underground mines with limited visibility, low light, and
dust, sensors such as RGB-D cameras and lidar become crucial, offering real-time capabili-
ties and depth sensing. The 3D reconstruction of surface and underground mines diverges
in sensor selection and applied algorithms. In surface mining, structure from motion (SfM)
techniques, leveraging cameras and photogrammetry, are commonly utilized, as indicated
in Figure 8, created by Metashape software [36]. These methods excel in reconstructing
large-scale surfaces, incorporating multiview stereo (MVS) vision and simultaneous lo-
calization and mapping (SLAM) for detailed reconstructions. Conversely, underground
mining demands algorithms capable of navigating low-light conditions, limited visibility,
and the presence of dust. Simultaneously, algorithms like SLAM and volumetric methods,
accommodating the unique challenges of underground environments, take precedence.
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3.2.1. Data Acquisition for 3D Reconstruction

In recent years, various sensor technologies have been pivotal in 3D reconstruction,
capable of directly or indirectly measuring point clouds. A point cloud refers to a set of data
points in a 3D coordinate system, often characterized by X, Y, and Z coordinates, typically
representing the external surfaces of objects. In addition to mapping 3D coordinates, point
clouds can encompass attributes such as intensity, RGB color, impulse return numbers,
and semantic information, providing more in-depth details. The measurement of point
clouds is typically accomplished through two primary data acquisition methods [37],
i.e., range [38] and image [39,40], known as range-based and image-based approaches,
respectively. Sensors employed for point cloud measurement can be categorized into two
primary groups: active and passive. Active sensors directly collect the point cloud data,
while passive sensors, such as different cameras, capture images that contribute to the
formation of point clouds [37,41].

Active Sensors

Active sensors proactively emit signals or energy into the environment to gather
information. These sensors independently generate and transmit signals, allowing them to
interact actively with the surroundings for data collection.

• Lidar

The term lidar, presented in Figure 9a [42], derived from Light Detection and Ranging,
characterizes a technology essential for active remote sensing, relying on the time between
emitting and receiving laser signals reflected from a target to measure distances [43,44].
Pulsed lasers are predominantly utilized in civil and mining activities, primarily in terres-
trial applications.

The position and type of lidar sensors play a crucial role in determining the density
of acquired point clouds. Airborne lidar scanning achieves decametric resolutions, while
ground-based laser scanning, known as terrestrial laser scanning (TLS), achieves centimetric
to millimetric resolutions. Another terrestrial approach, known as Terrestrial Mobile Laser
Scanning (TMLS), enables point cloud collection from moving vehicles and is adaptable to
both indoor and outdoor environments [43,45].

Terrestrial and, more recently, airborne laser scanning, notably through drones equipped
with lidar sensors, are extensively utilized in close-range methods for 3D reconstruction in
both surface and underground mining operations. These methods prove essential for tasks
such as discontinuity mapping for slope monitoring, a critical safety measure [46].

• Radar

The term radar, derived from radio detection and ranging, represents a detection
system that employs radio waves to detect objects and compute targets’ range (distance),
angle, and velocity [47]. A combination of radar with a vision sensor, indicated in Figure 9b,
has the potential for 3D reconstruction applications [48]. The robustness of radar in outdoor
environments makes it suitable as a reliable 3D reconstruction sensor for surface mines.

Passive Sensors

These sensors rely on naturally occurring stimuli, such as ambient light or thermal
radiation, to gather information from their surroundings. Passive sensors observe and
respond to environmental conditions without initiating external energy transmission [49].

• RGB-D Camera

These sensors are specialized devices designed for depth sensing in conjunction with
an RGB camera, generating image outputs embedded with depth information, showcas-
ing the significant potential for indoor 3D reconstruction, particularly when paired with
simultaneous localization and mapping (SLAM)-based algorithms [50]. These sensors,
indicated in Figure 9c, produced by various manufacturers such as Microsoft, Asus, and
Intel, among others, are notably affordable and have established themselves as reliable tools
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for research purposes in 3D modeling [51]. However, they present critical challenges related
to limited range and degradation of depth accuracy, prompting extensive research into
sensor calibration to enhance precision. Typically, these sensors comprise an RGB camera,
an IR (infrared) camera, an IR projector, and an IR source [52]. Despite their advantages,
utilizing RGB-D cameras in an underground mine environment presents notable challenges
because of dust and low illumination.

• Monocular Camera

Monocular cameras, indicated in Figure 9d [53], a prevalent type of vision sensor,
differ from binocular cameras as they consist of a single lens. Traditionally employed for
object detection due to their 2D image (or video) output, these sensors were unsuitable for
depth estimation [54]. They are specifically engineered for applications requiring compact,
lightweight, and potentially cost-effective cameras [55]. Many deep learning methods
have emerged for depth estimation and 3D reconstruction in underground and surface
environments [56].

• Binocular/Stereo Camera

A stereo camera, presented in Figure 9e [57], comprising two monocular cameras,
utilizes the parallax principle to estimate scene depth, providing a tool to obtain a dense
depth map from images [55]. A dense depth map can be obtained from images [58].
Leveraging structure from motion techniques, stereo cameras find extensive application in
3D reconstruction in surface environments. Nonetheless, the calibration process for these
paired cameras presents notable challenges [59].

• Fisheye Cameras

Fisheye cameras, a variation of monocular cameras presented in Figure 9f [60], boast
an ultra-wide angle of view, making them particularly adept for object detection [55]. Their
expansive field of view (FOV) renders them suitable for large-scale 3D reconstructions in
surface mines, capturing a more comprehensive perspective than other cameras. Alterna-
tively, employing deep learning techniques for depth extraction, akin to monocular 3D
reconstruction, is a viable approach [61].
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Table 1 comprehensively evaluates various sensors—lidar, radar, RGB-D camera,
monocular camera, stereo camera, and fisheye camera—focusing on their applicability to
3D reconstruction in mining environments. The columns describe the essential criteria:
range, accuracy, environment suitability, real-time capability, and robustness in dusty/noisy
environments. This analysis aims to assist in selecting the most suitable sensors for mining
applications based on their performance in these key aspects. According to the table, lidar
emerges as the top-performing sensor, boasting a long-range (up to 300 m+) and high
accuracy at the millimeter level for both environments. The moderate real-time capability
can be improved using high-performance processing hardware. It exhibits robustness in
dusty/noisy conditions, making it a comprehensive choice. Following closely is the RGB-D
camera, which is suitable for underground environments and has high real-time capability.
While not explicitly specified for surface mine environments, the RGB-D camera offers
versatility in capturing detailed 3D data. On the contrary, monocular cameras lag as the
less favorable option due to their limited accuracy and range. It is essential to note that the
comparison of sensors is based on general characteristics, and the performance can vary
significantly depending on the specific models.

Table 1. A comparison of sensors based on their application for 3D reconstruction in mining.

Sensor Range Accuracy Environment Suitability Real-Time
Capability

Robustness in
Dusty/Noisy

Environments

Lidar Long (up to 300 m+) High (mm level) Underground and surface Moderate to high Moderate to high

Radar Medium to long Moderate to high Underground and surface High High

RGB-D Short to medium Moderate to high Underground High Low to moderate

Monocular Short Low to moderate Underground and surface High Low

Stereo Short to medium Moderate to high Underground and surface Moderate to high Moderate to high

Fisheye Wide field of view Low to moderate Underground and surface High Low to moderate

3.2.2. 3D Reconstruction in Surface Mines

In surface mining applications, the generation of 3D reconstructions primarily relies
on point clouds derived from a mix of various RGB cameras (monocular, binocular, stereo),
laser scanners, or a hybrid approach [62,63]. Several methodologies contribute to creating
point clouds with 3D measurements, including multiview stereo (MVS) vision, structure
from motion (SFM), simultaneous localization and mapping (SLAM), and single image
depth estimation.

Of these approaches, the “structure from motion” method, illustrated in Figure 10, is
being investigated in this section due to its extensive functionality in reconstructing mining
environments. This method encompasses various stages, including camera calibration,
feature extraction, feature matching, sparse 3D reconstruction, model parameter correction,
and dense 3D reconstruction [64,65]. The steps involved in this process can vary depending
on the camera type.
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Figure 10. The procedure of constructing geometry models from images.

Point Cloud Generation from Stereo Images

In generating point clouds from stereo images, the process typically involves a sequen-
tial five-step approach: camera calibration, feature extraction, feature matching, sparse 3D
reconstruction, model parameter correction, and dense 3D reconstruction. Each stage’s
output serves as the input for the subsequent step, signifying that the accuracy of the
resulting 3D model significantly hinges on the initial processing phases. The effectiveness
and precision at these early stages are pivotal in achieving a high-quality final 3D model.

Stereo Camera Calibration

Camera calibration involves estimating intrinsic and extrinsic camera parameters,
lens distortion coefficients, etc. Two primary calibration methods are utilized. Chart-
based calibration (CBC) relies on an object with known geometry in all input images and
structures from motion. Intrinsic camera parameters are crucial before the process or can
be recovered a posteriori through auto-calibration [66]. A bundle adjustment (BA) stage
refines the positions of points and all parameters [67]. Selecting feature correspondences
(SFC) is pivotal in both methods. Stereo camera calibration works to calibrate and calculate
intrinsic and extrinsic parameters for both lenses [68–70]. First, intrinsic parameters for each



Technologies 2024, 12, 40 13 of 27

camera are estimated using pre-measured spatial geometry. Then, extrinsic parameters are
estimated via SfM and refined by patch-based multiview stereo and bundle adjustment [65].

Feature Extraction

The objective of this step is to collect feature points from images, which is achieved
through two primary types of algorithms: feature point detectors and descriptors. De-
tector algorithms determine the point locations, which are then characterized by descrip-
tor algorithms. Various algorithms, including SIFT (scale-invariant feature transform),
ASIFT (affine scale invariant feature transform), SURF (speeded-up robust features), FAST
(features from accelerated segment), ANMS (adaptive non-maximal suppression), and
Forstner–Harris, are commonly used for detection due to their robustness [71]. For instance,
in SIFT, a scale space is created by convolving a primary image with a Gaussian function,
generating a series of images. The difference-of-Gaussian images are obtained by eliminat-
ing neighboring images from this space. Point candidates are gathered by differentiating
adjacent pixels, and final feature points are selected via candidate filtering [72]. In ASIFT,
all possible distortions stemming from the camera’s optical axis orientation are considered,
producing reproduced images of the primary image. Subsequently, SIFT is employed to
collect feature points [73].

SURF detects feature points by approximating the Hessian determinant of pixels
in the scale space and selecting candidates based on these approximations [74]. Harris
corner detection assesses intensity changes around each pixel to identify corners [75]. FAST
identifies corner pixels based on pixel count within a specific circle of neighboring pixels,
determining corners by exceeding a set threshold [76]. While most detectors search for local
maximums, ANMS selects only the maximum features that significantly surpass adjacent
features within a set radius, preventing uneven distribution [71,77].

For feature description, various descriptors are employed, i.e., SIFT, Surf, FREAK
(Fast REtinA Keypoint), and MSD (Multi-Scale Descriptor). The SIFT descriptor calculates
gradient magnitude and orientation for each image point within a defined radius to classify
feature points [72]. Surf generates vectors using Haar-wavelet responses [78]. FREAK
creates a binary string pattern based on one-bit differences of Gaussians [79]. MSD utilizes
intensity gradients over multiple scales for vector generation to classify feature points [72].

Table 2 assesses prominent feature detection algorithms—FAST, Harris, ASIFT, SURF,
and SIFT—specifically tailored to their applicability in 3D reconstruction within mining
environments. Each algorithm is scrutinized based on essential criteria outlined in the
columns: application, process speed, and robustness to scale of the images. The table
reveals that selecting the “best” and “worst” feature extractor from the table requires a
nuanced consideration of specific application requirements. FAST, specializing in keypoint
detection, exhibits high process speed and robustness to scale, making it a strong candidate
for real-time 3D reconstruction of surface mines. SURF offers a balance between speed
and robustness.

Table 2. A comparison of feature extractors in SFM.

Feature
Detectors

Application Process Speed Robustness to Scale

Object
Recognition

Image
Matching

Image
Stitching

Keypoint
Detection High Mod * Robust Limited

FAST - - ✓ ✓ ✓ - - ✓

Harris ✓ ✓ - - ✓ - - ✓

ASIFT ✓ - ✓ - - ✓ ✓ -

SURF ✓ ✓ - - ✓ - ✓ -

SIFT ✓ - ✓ - - ✓ ✓ -

* Mod stands for moderate.
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Feature Matching

Feature matching from multiple images is critical to identify and discard incorrect
matches. Approximate Nearest Neighbor (ANN) algorithm initially matches feature points
using its Euclidean distances, possibly leading to incorrect matches. The Fast Library for
Approximate Nearest Neighbor (FLANN) is used as an alternative matching algorithm.
Random Sample Consensus (RANSAC) is applied to eliminate false matches. RANSAC
estimates epipolar geometry by randomly sampling feature points, effectively reducing
false matches. Outlier Removal by Sequential Analysis (ORSA) performs better than
RANSAC when incorrect matches exceed a specific threshold.

Table 3, comparing the feature matchers in SFM regarding their processing speed
and robustness to the scale of the images, uncovers that FLANN and ANN, both utilizing
approximate nearest neighbor techniques, showcase high process speed and moderate
robustness to scale are suitable for applications prioritizing quick processing such as real-
time 3D modeling of the surface mines.

Table 3. A comparison of the feature matchers in SFM.

Feature Matcher
Process Speed Robustness to Scale

High Med Mod Limited

FLANN ✓ - - ✓

ANN ✓ - - ✓

RANSAC - ✓ ✓ -

Sparse 3D Reconstruction

This step aims to create a sparse point cloud using triangulation algorithms. Data from
the camera parameters calculated during camera motion estimation and matched image
pairs from the previous step are essential to generate the point cloud. The point cloud is
generated by computing the 3D coordinates of the points.

Model Parameter Correction

To refine camera parameter correction, the 3D locations of points from the previous
step and estimated camera parameters are utilized. Bundle adjustment, employing a non-
linear least square technique, is a robust approach for optimizing the 3D point locations
and camera parameters.

Dense 3D Reconstruction

In subsequent stages, the obtained camera parameters and sparse point clouds are
refined to create a denser, more precise point cloud. However, errors can accumulate during
this process, necessitating the elimination of unnecessary images. This is achieved through
CMVS (clustering views for multiview stereo) to cluster images. Subsequently, PMVS
(patch-based multiview stereo) utilizes the final images to produce a denser point cloud.
Another method for achieving denser point clouds is SGM (Semiglobal Matching), which
optimizes a global energy process.

A comparison of dense 3D reconstruction algorithms in Table 4 regarding their scala-
bility, accuracy, computational efficiency, applicability, and robustness based on different
scenes indicates that PMVS is positioned as a strong contender, offering high accuracy in
challenging scenes like surface mines with complex geometry and occlusions. Following
closely is CMVS, known for its high scalability, accuracy in complex scenes, and efficiency,
which are particularly suitable for reconstructing large-scale structures. While demonstrat-
ing versatility and generally robust performance, SGM holds a moderate position in terms
of scalability and computational efficiency.
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Table 4. A comparison of dense 3D reconstruction algorithms from sparse point clouds.

Algorithm Scalability Accuracy Computational
Efficiency Applicability Robustness

CMVS * High High in complex
scenes Efficient Large-scale

structures Complex scenes

PMVS ** Depends on
patch size

High in
challenging scenes

Depends on
patch size

Complex geometry
and occlusions Occlusions

SGM *** Moderate High in structured
environments

Moderate (depends
on scene size) Versatile Generally robust

* CMVS stands for Clustering Views for Multiview Stereo, ** PMVS stands for Patch-based Multiview Stereo,
*** SGM stands for Semiglobal Matching.

Point Cloud Segmentation

Segmentation of a dense point cloud into distinct regions/segments is crucial for
various applications related to 3D reconstruction in mining environments. This section
discusses several common techniques for processing point cloud data that are appropriate
for 3D reconstruction:

1. Voxel Grid Based: This technique divides the data into uniform cubes, known as
voxels. It is versatile and widely applicable for analyzing, segmenting, and processing
point cloud data, making it useful for object recognition, augmented reality, CAD
modeling, and other applications in large-scale scenes [80].

2. Plane Detection: Detecting flat surfaces (planes) in point cloud data is a versatile
method in 3D reconstruction. RANSAC and Hough transformation are among this
method’s most common algorithms/techniques [81].

3. Clustering: This method effectively clusters irregularly shaped objects, making it
suitable for reconstructing outdoor environments. K-means and DBSCAN are popular
algorithms used in this technique [82].

4. Deep Learning Based: Convolutional neural networks have gained significant atten-
tion for their performance in 3D reconstruction. Techniques such as Mask R-CNN,
FCN (Fully Convolutional Network), DeepLab, and PSPNet (Pyramid Scene Parsing
Network) are notable in this domain [83].

A comparison of these algorithms in Table 5, regarding their accuracy, robustness,
processing speed, and applications, reveals that RANSAC is a strong candidate due to its
high accuracy in model fitting and robustness to outliers, which is needed to reconstruct
outdoor environments such as surface mines. However, its processing speed is moderate to
slow. DBSCAN, known for high accuracy in dense clusters and robustness to noise and
outliers, is next, with its processing speed contingent on points and density.

Table 5. A comparison of point cloud segmentation algorithms.

Algorithm Accuracy Robustness Processing Speed Common Applications

DBSCAN * High in dense clusters Robust to noise
and outliers

Depends on points
and density Object recognition

K-means
Struggle with

non-spherical or
unevenly sized clusters

Sensitive to outliers Fast, even for
dense points

Clustering spherical
structures

Hough Transform High in detecting
geometric shapes Robust to noise Computationally

expensive
Line detection, circle

detection

RANSAC ** High in model fitting Robust to outliers Moderate to slow Fitting models to
geometric structures

* DBSCAN stands for Density-based spatial clustering of applications with noise, ** RANSAC stands for Random
Sample Consensus.
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Point Cloud Modeling

This step involves modeling the segmented regions from the previous phase to gen-
erate accurate 3D visualizations of objects. Common methods used in this phase include
the following:

1. Mesh Generation: Algorithms like Ball Pivoting and Marching Cubes are usually
employed for this method [84].

2. Volumetric Based: Regular shape representation is commonly achieved using Voxels
and TSDF (Truncated Signed Distance Function) [85].

The analysis in Table 6, regarding the accuracy, robustness, processing speed, and
applications of the algorithms, uncovers that Marching Cubes emerges as the top choice due
to its high accuracy across a diverse range of surfaces and adaptability to complex shapes
and topologies, making it particularly well suited for terrain 3D modeling. Following
closely is Ball Pivoting, recognized for its capacity to achieve high accuracy in reconstructing
intricate structures and robustness in handling noisy data, albeit with a dependency on
point cloud density.

Table 6. A comparison of point cloud modeling techniques.

Algorithm Accuracy Robustness to Processing Speed Common Applications

TSDF * High Noisy input Computationally
intensive

3D reconstruction in
structured environments

Marching Cubes High for a wide range
of surfaces

Complex shapes
and topologies

Depends on
voxel resolution Terrain 3D modeling

Ball Pivoting High for
intricate structures Noisy data Depends on point

cloud density
3D Reconstruction of

irregular surfaces

TSDF * stands for Truncated Signed Distance Function.

3.2.3. 3D Reconstruction in Underground Mines

Reconstructing highly detailed indoor environments poses considerable challenges
due to limited visibility, complex object interactions, and occlusions that hinder complete
scenes [86]. This complexity is exacerbated in underground mining conditions characterized
by low light, leading to inaccuracies in reconstructing walls, roofs, floors, and 3D objects.
Inadequate surface textures and the presence of dust further complicate accurate data
acquisition. Addressing these challenges necessitates meticulous sensor selection and
installation to navigate these environmental limitations [87]. Diverse sensors, including
RGB, RGB-D, Lidar, various cameras, or their combinations, are suitable for indoor 3D
reconstruction, each offering unique advantages based on the scene’s requirements. The
subsequent step involves algorithm selection tailored to the input data and the specific
reconstruction type needed. This ensures the most effective generation of the 3D model
based on the acquired data.

Real-time indoor 3D reconstruction algorithms can be classified based on their under-
lying methodologies. Some of the most used algorithms are simultaneous localization and
mapping (SLAM) [88], volumetric methods [89], NN-based approaches [90], depth sensing
and fusion [91], and hybrid methods [92].

These categories are not strictly separate, and specific algorithms may concurrently
encompass features from multiple categories. The domain of 3D construction has seen
extensive advancements over recent decades. The demand for 3D modeling is prevalent
due to its vast applications in virtual and augmented reality, the gaming industry, robotics,
fabrication, and numerous other fields. Additionally, the availability of high-quality and
cost-effective sensors has significantly transformed this process [93].

An analysis of studies on real-time 3D reconstruction in indoor environments applica-
ble for mining teleoperation is conducted in Table 7, consisting of a summary of 30 studies.
Each row corresponds to individual research, while the columns encapsulate key character-
istics and findings. The “Input Data” column categorizes the data type used in the studies,
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distinguishing between RGB, RGB-D, and other sources. The “Methods” column classifies
the general reconstruction techniques, including SLAM, volumetric, sparse, and hybrid
approaches. The “Scene” column distinguishes between indoor and outdoor settings,
providing insights into the environmental context of the studies. “Scalability” indicates
whether the studies were conducted on a large, small, and even applicable for both scales.
The subsequent columns delve into the robustness of the reconstruction methods, consid-
ering factors such as adaptability to reconstruct dynamic scenes or objects, resilience to
deformable objects, and the specific algorithms or techniques employed in the last column.

According to the table, the RGB-D sensor emerges as the paramount choice for 3D
reconstruction in underground mines, leading the field with 17 out of 30 studies in real-time
reconstruction endeavors, followed by RGB sensors with 10 out of 30 studies. Lidar, IMU,
and SWIR sensors were observed to be less frequently utilized in the surveyed studies.
The availability of RGB-D sensors, coupled with the numerous sophisticated algorithms
highlighted in the table, holds great promise in enhancing research efforts within this field,
indicating a potential leap forward in 3D reconstruction methodologies.

Simultaneous localization and mapping (SLAM) stands out as the predominant
method, featured in 12 out of 30 cases, demonstrating its efficacy in navigating the complex-
ities of underground mine environments. Volumetric methods also contribute significantly,
representing 11 out of 30 cases. The combined use of SLAM and volumetric methods,
complemented by various neural network solutions detailed in the table, holds significant
promise in influencing the future trajectory of 3D reconstruction methodologies.

Moreover, the research landscape extends its relevance to large-scale 3D reconstruction
in underground mines, acknowledged by 23 out of 30 studies demonstrating promising
applicability for large-scale 3D reconstruction, mainly showcasing the potential for effec-
tively reconstructing expansive underground mines. This suggests a growing interest and
feasibility in employing advanced techniques in large-scale subterranean environments.

However, the limited attention provided to robustness in dynamic scenes or objects
(only 8 out of 30) and deformable objects (also 8 out of 30) highlights areas for improve-
ment in current research efforts. Overall, the prevalence of RGB-D sensors, coupled with
the widespread adoption of SLAM and volumetric methods, positions them as the op-
timal combination for addressing the challenges of 3D reconstruction in underground
mining environments.
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Table 7. A summary of studies conducted on real-time 3D reconstruction for underground mines.

Author
Input Type Method Scene Scalability Robustness to Dynamic

Scenes/Object
Robustness to

Deformable Object Algorithms/Technique
RGB RGB-D Other SLAM Volumetric Sparse Other Indoor Outdoor Small Large Robust Limited Robust Limited

A. Brasoveanu
et al. [93] - ✓ - - ✓ - - ✓ - - ✓ - ✓ - ✓ End-to-end, SIFT

B. Petit et al. [94] ✓ - - - - ✓ - ✓ - - ✓ - ✓ - ✓ EPVH

C. Zhao et al. [95] - ✓ - ✓ - - - ✓ - - ✓ - ✓ - ✓ CRF, CRF-RNN (recognition)

J. Lin et al. [96] - ✓ - ✓ - ✓ - ✓ - - ✓ - ✓ - ✓ Optimized Feature-adaptive

J. hua
Lin et al. [97] ✓ - - ✓ ✓ - Hybrid ✓ - - ✓ - ✓ - ✓ CPU-to-GPU processing

A. Agudo
et al. [98] ✓ - - - - ✓ - ✓ ✓ ✓ - - ✓ ✓ - EKF-FEM-FRP

Y. Xu et al. [99] ✓ - - ✓ - - - ✓ ✓ ✓ - - ✓ - - cGAN

M. Runz
et al. [100] - ✓ - ✓ - - - ✓ - - ✓ ✓ - ✓ - Multi-model SLAM-based,

Mask-RCNN

F. Lu et al. [101] - ✓ - ✓ - - - ✓ - - ✓ ✓ - ✓ - 6D pose prediction, GLSL

P. Stotko
et al. [102] - ✓ - SLAMCast - - - ✓ - - ✓ - ✓ - ✓ Improved voxel block hashing

T. Laidlow
et al. [103] ✓ - CNN-SLAM - - - ✓ - - ✓ - ✓ - ✓ Improved U-Net

C. Li et al. [104] ✓ - RGB+IMU - ✓ - - ✓ ✓ ✓ - - ✓ - ✓ MSCKF, EKF

M. Gong
et al. [105] ✓ - Lidar - ✓ - - ✓ ✓ - ✓ - ✓ - ✓ SLAM

S. Zhang
et al. [106] - ✓ - - - - Hybrid ✓ - - ✓ - ✓ - ✓ Pyramid FAST, Rotated BRIEF,

GMD-RDS, improved RANSAC

Y. He et al. [107] - - Lidar - ✓ - - ✓ - ✓ - - ✓ - ✓ Improved voxel block hashing

Y. Fu et al. [108] - ✓ - ✓ - - - ✓ - - ✓ - ✓ - ✓ PEAC, AHC, ICP

C. Fei et al. [109] - - SWIR - - - FTP ✓ - ✓ - ✓ - ✓ - Improved FTP

D. Menini
et al. [110] - ✓ - - - - NN ✓ - - ✓ - ✓ - ✓ AdapNet++, SGD optimizer

H. Matsuki
et al. [111] - ✓ - ✓ - - - ✓ - - ✓ - ✓ - ✓ Sparse SLAM

Q. Jia et al. [112] - ✓ - - - - YOLACT++ ✓ - ✓ - - ✓ - ✓ YOLACT++, BCC-Drop, VJTR

S. Yu et al. [113] ✓ - - - - - EC-PCS - ✓ - ✓ - ✓ - ✓ Crowdsourcing (EC-PCS)

J. Sun et al. [114] - ✓ - ✓ ✓ - Hybrid ✓ - - ✓ - ✓ - ✓ FBV, GRU Fusion, ScanNet

S. Izadi
et al. [115] - ✓ - - ✓ - - ✓ - - ✓ ✓ - ✓ - SLAM, TSDF, ICP
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Table 7. Cont.

Author
Input Type Method Scene Scalability Robustness to Dynamic

Scenes/Object
Robustness to

Deformable Object Algorithms/Technique
RGB RGB-D Other SLAM Volumetric Sparse Other Indoor Outdoor Small Large Robust Limited Robust Limited

M. Keller
et al. [116] - ✓ - - ✓ - - ✓ - - ✓ ✓ - ✓ - ICP

M. Niesner
et al. [117] - ✓ - - ✓ - - ✓ ✓ - ✓ - ✓ - ✓ TSDF, ICP, Voxel Hashing, DDA

H. Kim et al. [118] ✓ - - ✓ - - - ✓ ✓ - ✓ ✓ - - ✓ EKF

A. Geiger
et al. [119] ✓ - - - - ✓ - ✓ ✓ - ✓ ✓ - ✓ - SAD, NMS, KF, RANSAC,

ELAS [120]

V. Pradeep
et al. [121] ✓ - - - ✓ - - ✓ - ✓ - - ✓ - ✓ ZNCC, RANSAC, SVD, FAST,

SAD, SDF

M. Zeng
et al. [122] - ✓ - - ✓ - - ✓ - - ✓ ✓ - - ✓ TSDF, ICP
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4. Discussion

Mining operations are inherently hazardous, presenting various risks such as rock
falls, equipment accidents, and challenging environments in both underground and surface
mines. To address these risks, teleoperation and fully autonomous systems have emerged
as promising solutions, enabling remote operation and monitoring of equipment. However,
the broad adoption of these systems faces hindrances like implementation costs, techno-
logical complexity, safety concerns, operator training, reliability, industry resistance to
change, and insufficient operator situational awareness. Current teleoperation systems
rely on multiple monitors, leading to inefficiency and operator discomfort due to cognitive
tunneling and depth detection issues. An obstacle to the widespread adoption of current
teleoperation systems is the operator’s reluctance due to the complexity of focusing on
multiple video streams from various equipment cameras, making simple operations chal-
lenging. Leveraging 3D reconstruction techniques, these systems can move beyond the
limitations of multi-monitor visualization, transitioning towards a virtual reality mode
that significantly enhances an operator’s awareness of their surroundings. The proposed
platform aims to address this issue by combining multiple views into a VR goggle.

Choosing appropriate sensors and algorithms for 3D reconstruction used in VR tele-
operation platforms is an intricate task that requires careful consideration of the trade-offs
between precision, speed, and flexibility. This discussion explores the challenges of the
selection process and outlines potential solutions proposed in recent research. The rapid
real-time data processing requirement complicates the intricate task of selecting sensors
and algorithms for 3D reconstruction. Achieving speed without sacrificing accuracy poses
a challenge, as not all sensors and algorithms can meet this demand. The unpredictable
surface and underground mine environments also introduce an extra layer of complexity
to the selection process.

Current studies thoroughly explore the effectiveness of different sensor types and
algorithms in 3D reconstruction. Some studies highlight the prevalent utilization of RGB
and RGB-D sensors in real-time indoor 3D visualization methods. These sensors are partic-
ularly adept at simultaneously capturing color and depth information, making them highly
suitable for dynamic underground mine environments. These studies also shed light on
the limited use of specific sensor types like binoculars, spherical cameras, radar, and lidar
within underground mine environments. These findings encourage further investigation
into the potential benefits that these sensors might provide, especially in non-real-time ap-
plications where considerations like lighting conditions and texture significantly influence
outcomes. In surface mine environments, some studies recognize the widespread use of
RGB cameras in conjunction with a fusion of lidar as the predominant sensor combination.
This deliberate fusion strikes a harmonious balance between the comprehensive visual data
captured by cameras and the depth information supplied by lidar, making it well suited for
real-time and non-real-time 3D visualization in open pit mines.

Some studies emphasize the significance of depth-based algorithms in real-time 3D
reconstruction within underground mines. Coupled with sensors like RGB-D cameras,
these algorithms have emerged as the most employed methods. The depth information they
furnish substantially improves the precision of reconstructions, making them particularly
suitable for applications where accuracy is of utmost importance. Point cloud-based
algorithms for 3D reconstruction have become the leading methods for non-real-time
surface mining applications. Utilizing data from lidar sensors or photogrammetry, these
algorithms meticulously craft a detailed representation of a scene by processing extensive
sets of individual data points in three-dimensional space. Their widespread adoption of
non-real-time scenarios is justified by their proficiency in capturing intricate details in
diverse landscapes or large structures. Point cloud-based approaches excel in managing
irregular terrains, delivering a comprehensive and accurate portrayal of surface mine
scenes. Their versatility in handling various data sources and navigating the intricacies
of open pit environments establishes them as the preferred choice for researchers and
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practitioners involved in non-real-time outdoor 3D reconstruction projects, prioritizing
precision and comprehensive detail.

A key obstacle in 3D reconstruction involves the significant computational power
needed for the timely processing and reconstruction of three-dimensional scenes. Analyzing
extensive data from various sensors comes with complexities that require considerable
computing resources, frequently surpassing the capabilities of typical hardware setups. In
response to this challenge, continuous research is directed towards creating and refining
algorithms for 3D reconstruction that achieve a harmonious balance between computational
complexity and precision. Furthermore, progress in parallel processing, the adoption of
specialized hardware such as Graphics Processing Units (GPUs), and the exploration of
cloud-based computing solutions all play a role in improving the computational efficiency
of 3D reconstruction procedures. These initiatives strive to fully exploit the capabilities of
contemporary computing technologies fully, thereby making real-time or near-real-time 3D
reconstruction more attainable and practical across various applications, spanning from
VR teleoperation to autonomous systems.

One notable criticism of VR platforms is the occurrence of “motion sickness” or sim-
ulator sickness [123,124]. This problem can be attributed to factors such as visual–vestibular
mismatch, frame rate, latency, field of view, rapid locomotion, and inner ear sensitivity [125].
These issues can be significantly mitigated by optimizing hardware settings, increasing
frame rates, reducing latency, limiting field of view, and employing high-detail models [126].
Enhancements in 3D reconstruction for mining teleoperation can also positively impact
various other research areas in mining, including autonomous systems, slope stability moni-
toring, resource estimation, the digital twin concept, geological analysis, and AI integration.

Incorporating VR teleoperation systems is a recently introduced idea in the mining
sector. Despite the clear benefits regarding safety and operational efficiency, there has been
some hesitancy in the industry, primarily due to apprehensions about the related expenses.
Nevertheless, it is important to acknowledge that the initial investment in these systems
constitutes a forward-thinking approach with substantial potential for enhancing safety
and overall progress in the mining industry. This reduces immediate safety hazards for
operators and offers enduring advantages by decreasing the frequency of accidents and
injuries. As technology advances and costs potentially decline with broader acceptance, the
mining industry is poised to reap significant benefits in terms of enhanced worker safety,
streamlined operational processes, and heightened overall productivity.

5. Conclusions

The 3D reconstruction of environments has garnered significant interest due to its
diverse range of applications, yet its adoption within the mining industry remains rela-
tively limited, not fully achieving its potential. This research aimed to explore how 3D
reconstruction can extend beyond conventional applications in mine surveying, potentially
revolutionizing fully automated and teleoperation systems for mining equipment. The
study delved into major scientific studies and manufacturing companies that exhibit poten-
tial for conversion to VR mode within teleoperation technology. Also, it has focused on
identifying and evaluating various sensors used for 3D reconstruction in underground and
surface mining operations, categorizing them into passive and active sensors. Additionally,
this study investigated the scope of existing 3D reconstruction research studies applicable
to surface and underground environments, emphasizing research with potential utility in
the mining industry. Moreover, it differentiated the non-real-time process of surface 3D
reconstruction, primarily utilizing point clouds based on structure-from-motion algorithms.
Furthermore, it dissected real-time 3D reconstruction within underground environments,
elucidating these systems’ specific frameworks, algorithms, sensors, and practical applica-
tions. Finally, the paper scrutinizes the challenges and advantages of current teleoperation
platforms in mining and examines how VR mode integration could address these issues.
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Abbreviations

ANMS Adaptive non-maximal suppression
AR Augmented reality
BRIEF Binary robust independent elementary features
CGAN Conditional generative adversarial nets
CMVS Clustering views for multiview stereo
CRF Conditional random fields
DBSCAN Density-based spatial clustering of applications with noise
DDA Amanatides and Woo 1987
EKF Extended Kalman filter
FEM Finite element method
FRP Free rigid priors
GLSL OpenGL shading language
GMD-RDS Gaussian mixture distribution—random down-sampling
ICP Iterative closest point
IMU Inertial measurement unit
MSCKF Multi-state constraint Kalman filter
PEAC Plane extraction in organized point clouds using agglomerative hierarchical clustering
VIO Visual–inertial odometry
VR Virtual reality
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