
Citation: Meghraoui, K.; Sebari, I.;

Pilz, J.; Ait El Kadi, K.; Bensiali, S.

Applied Deep Learning-Based Crop

Yield Prediction: A Systematic

Analysis of Current Developments

and Potential Challenges. Technologies

2024, 12, 43. https://doi.org/

10.3390/technologies12040043

Academic Editor: Juan Gabriel

Avina-Cervantes

Received: 9 February 2024

Revised: 7 March 2024

Accepted: 20 March 2024

Published: 24 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Review

Applied Deep Learning-Based Crop Yield Prediction:
A Systematic Analysis of Current Developments and
Potential Challenges
Khadija Meghraoui 1,* , Imane Sebari 1,2,* , Juergen Pilz 3 , Kenza Ait El Kadi 1,2 and Saloua Bensiali 4

1 Research Unit of Geospatial Technologies for a Smart Decision, IAV Hassan II, Rabat 10101, Morocco;
k.aitelkadi@iav.ac.ma

2 Department of Photogrammetry and Cartography, IAV Hassan II, Rabat 10101, Morocco
3 Department of Statistics, Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, Austria; juergen.pilz@aau.at
4 Department of Applied Statistics and Computer Science, IAV Hassan II, Rabat 10101, Morocco;

s.bensiali@iav.ac.ma
* Correspondence: k.meghraoui@iav.ac.ma (K.M.); i.sebari@iav.ac.ma (I.S.)

Abstract: Agriculture is essential for global income, poverty reduction, and food security, with crop
yield being a crucial measure in this field. Traditional crop yield prediction methods, reliant on
subjective assessments such as farmers’ experiences, tend to be error-prone and lack precision across
vast farming areas, especially in data-scarce regions. Recent advancements in data collection, notably
through high-resolution sensors and the use of deep learning (DL), have significantly increased the
accuracy and breadth of agricultural data, providing better support for policymakers and adminis-
trators. In our study, we conduct a systematic literature review to explore the application of DL in
crop yield forecasting, underscoring its growing significance in enhancing yield predictions. Our
approach enabled us to identify 92 relevant studies across four major scientific databases: the Direc-
tory of Open Access Journals (DOAJ), the Institute of Electrical and Electronics Engineers (IEEE), the
Multidisciplinary Digital Publishing Institute (MDPI), and ScienceDirect. These studies, all empirical
research published in the last eight years, met stringent selection criteria, including empirical validity,
methodological clarity, and a minimum quality score, ensuring their rigorous research standards
and relevance. Our in-depth analysis of these papers aimed to synthesize insights on the crops
studied, DL models utilized, key input data types, and the specific challenges and prerequisites for
accurate DL-based yield forecasting. Our findings reveal that convolutional neural networks and
Long Short-Term Memory are the dominant deep learning architectures in crop yield prediction,
with a focus on cereals like wheat (Triticum aestivum) and corn (Zea mays). Many studies leverage
satellite imagery, but there is a growing trend towards using Unmanned Aerial Vehicles (UAVs) for
data collection. Our review synthesizes global research, suggests future directions, and highlights
key studies, acknowledging that results may vary across different databases and emphasizing the
need for continual updates due to the evolving nature of the field.

Keywords: agriculture; crop yield; deep learning; prediction; systematic literature review

1. Introduction

Food security is a global challenge, and intelligent agriculture plays a crucial role in
enhancing social and economic development while ensuring a stable food supply [1]. The
Food and Agriculture Organization (FAO) has projected a 60% increase in food demand
to meet the needs of the global population, which is expected to reach 9.3 billion by the
year 2050 [2]. Hence, accurately predicting crop yields can provide vital information
necessary for devising effective strategies to meet objectives and eliminate hunger, and
this is accomplished by managing the agricultural production chain effectively, balancing
import and export needs to satisfy food requirements [3].Traditional yield determination

Technologies 2024, 12, 43. https://doi.org/10.3390/technologies12040043 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies12040043
https://doi.org/10.3390/technologies12040043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0003-3925-0691
https://orcid.org/0000-0002-6754-8404
https://orcid.org/0000-0001-9365-4916
https://orcid.org/0000-0002-4233-1292
https://orcid.org/0000-0003-1753-2209
https://doi.org/10.3390/technologies12040043
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies12040043?type=check_update&version=2


Technologies 2024, 12, 43 2 of 30

methods, which are straightforward [4], often involve expert evaluation of small sample
areas. These areas, known as yield squares, are typically no larger than 1 m2 [5]. The
results from these samples are then extrapolated to determine the total yield. While these
methods provide a direct approach to yield prediction, they are time-consuming and
labor-intensive, and they lack the precision necessary for applications where accurate
yield data are required. Furthermore, the precision of these techniques is fundamentally
constrained by their dependence on limited sample areas and the presumption that these
areas accurately reflect the conditions across the entire field or farm. Such assumptions may
introduce errors stemming from the uneven distribution of soil nutrients, water availability,
pest infestations, and various other agricultural variables that influence crop development
and yields. Therefore, despite the useful perspectives provided by these conventional
methods of yield estimation, particularly in settings with scarce technological support,
their practicality is limited by the extensive resources they demand and the likelihood of
discrepancies and inaccuracies in their outcomes.

Crop simulation models, also referred to as crop development models, predict yields
by simulating the entire growth period of crops. These models incorporate physiological
data and environmental factors, including climate and soil conditions [6]. Prominent
examples in this category are the AFRCWHEAT2 and CERES models [7]. However, despite
their ability to establish accurate simulations of crop growth and make reasonable yield
determinations [8], these models are considered expensive since they require extensive data
related to climatic conditions, soil characteristics, crop varieties, and farming techniques,
which are not always accessible. Moreover, these models also present a level of difficulty
that necessitates a thorough comprehension of both the model and the simulated system,
which could thus limit their use. Furthermore, it is difficult to project a model developed
for a specific field onto larger regions, thus implying special calibrations if the studied area
changes or even if the crop under study has changed.

Empirical methods, which establish relationships between independent variables and
a dependent variable, often require less data than physical models, providing a simpler
alternative [9]. These methods generally use historical data and statistical techniques to fore-
cast future crop yields, with a particular focus on environmental variables. A widely used
strategy involves developing simple regression models based on variables obtained from
remote sensing, such as the Normalized Difference Vegetation Index (NDVI). Nonetheless,
the utility of these models typically is confined to specific crop types and scales. Expanding
their application to larger areas or different time periods poses challenges due to issues with
model extrapolation. As such, modifications in the study’s geographical, environmental, or
crop conditions mandate the creation of a new model. Moreover, agricultural yield results
from a multitude of interrelated factors, and the inherent simplicity of statistical models
might not adequately grasp the complex dynamics between these factors and the expected
yield, potentially diminishing their efficacy [7].

Given these challenges, the agricultural sector is progressively shifting its focus to
more advanced and sophisticated solutions, namely, by integrating artificial intelligence,
which is a technology aimed at emulating human cognitive functions and relies on devel-
oping applications and algorithms that operate within computers and adaptive contexts,
especially for decision making [10]. With its capacity to analyze extensive datasets and
process complex inputs, AI offers a viable path forward [11], especially in agricultural appli-
cations [12]. AI techniques, particularly deep learning (DL), represent a major advancement
in multiple domains and areas. It indicates a specialized sub-branch of machine learning
derived from artificial neural network architectures, distinguished by their hierarchical
learning structures, with a variety of interconnected layers. Each layer in this structure is
responsible for extracting various pieces of information from the data it analyzes. These
layers can directly handle raw or slightly processed inputs, autonomously identifying the
necessary features for the tasks developed. This ability removes the necessity for manually
extracting features, a step that is commonly needed in conventional machine learning meth-
ods, thus streamlining the data processing workflow and boosting the model’s proficiency
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in recognizing intricate patterns. DL is capable of processing complex relationships between
inputs and outputs in various fields, including the processing of high-resolution remote
sensing data, especially drone imagery, to determine forest attributes [13], studying the
crop water requirements considering different environments [14], and also the automatic
detection of weeds, particularly through using a convolutional neural network to process
Unmanned Aerial Vehicle (UAV) imagery [15], and intelligent agriculture [16], particularly
for predicting agricultural yield. This advanced technology has improved the capabilities
of statistical techniques for predicting and estimating agricultural yields [17] and can thus
surmount numerous limitations inherent in traditional and simple approaches. Through
the utilization of DL, we can create predictive models that are not just more precise but also
adaptable to the ever-changing agricultural landscape.

The critical need for precise agricultural yield predictions, coupled with the evolving
landscape of deep learning applications in this domain, underscores the importance of a
comprehensive review of existing research. Despite advancements in deep learning for
agricultural purposes, gaps remain in synthesizing findings across diverse crop varieties,
understanding the efficacy of various deep learning architectures, and consolidating the
types of input data crucial for accurate predictions. Our systematic survey study is designed
to fill these points by thoroughly examining these facets using a structured methodological
approach. We aim not only to provide a state-of-the-art analysis of deep learning techniques
in crop yield forecasting but also to highlight the specific contributions of different studies
in advancing this field. By identifying the most influential research and addressing critical
open questions, our work offers a unique contribution by guiding future research directions
and assisting researchers in exploring the recent literature. This study, therefore, acts
as a pivotal resource for established research in the field, shedding light on successful
methodologies and pinpointing areas that are primed for innovative breakthroughs.

This systematic review is thoughtfully structured to explore the field of crop yield
prediction using deep learning by centering on a series of pivotal research questions. Firstly,
we explore the range of crops that have garnered attention in existing studies. Secondly,
we delve into the deep learning architectures that have been evaluated in the literature
specifically for crop yield prediction, assessing their effectiveness and application. Thirdly,
we examine the main categories of input data employed in prior research to understand
the data foundations that underpin successful yield prediction models. Lastly, we address
the challenges and prerequisites necessary for accurate crop yield forecasting using deep
learning techniques. By articulating these research questions, our study aims to provide a
clear, structured investigation into the current state of the field, offering insights into both
the achievements and the areas ripe for further exploration.

This manuscript is organized into several distinct sections, beginning with an intro-
duction that outlines existing approaches to crop yield determination, emphasizes the need
for precise predictions, and elucidates the purpose of our review. This is followed by a
comparison of our study with related works and existing literature reviews. We then detail
our systematic methodology, which encompasses the formulation of research questions, the
definition of keywords, and criteria for inclusion and exclusion. Afterward, we present our
principal findings, address the research questions while highlighting potential solutions to
the challenges encountered, and present notable contributions to the field. We also propose
directions for future investigation and conclude by summarizing the study’s key points.

2. Comparison of Related Works and Existing Surveys with the Present Review Study

Systematic literature reviews focusing on agricultural yield prediction through deep
learning are scarce, prompting us to undertake an in-depth exploration of this applica-
tion. While numerous authors have conducted survey studies reviewing the literature in
this domain, our study distinguishes itself by employing a rigorous and methodological
approach. Nevertheless, it aligns with both traditional and narrative literature reviews
in terms of its comprehensive scope. The authors of Ref. [18] conducted a survey study
on the use of artificial intelligence for predicting agricultural yields, specifically focusing
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on deep learning and its various architectures. Their research highlighted a range of agri-
cultural tasks that can be addressed using deep learning and identified a growing trend
in the application of recurrent neural networks within the agriculture sector, especially
for yield prediction. Ref. [19] presented a comprehensive review by studying scientific
articles related to yield prediction using machine learning algorithms, while also discussing
the various advantages and challenges associated with them. Their results highlighted
deep learning as an advanced and essential development in machine learning architectures,
particularly deep neural networks and convolutional neural network architectures. The
authors of Ref. [3] developed a systematic literature review on the application of machine
learning to agricultural yield prediction, finding a significant trend toward the use of
deep learning algorithms. These algorithms are particularly noted for their increasing
application in agriculture to predict dynamic variables such as crop yields. The authors of
Ref. [20] conducted a study on machine learning and deep learning algorithms for crop
yield prediction. However, their analysis was based on a limited selection of publica-
tions and research questions, focusing on the prediction algorithms without discussing
potential future directions or developments. Notably, the study treated the NDVI as a
performance parameter like R-squared, which is typically a feature used in such models.
Furthermore, the emerging trends and algorithms discussed, including CNNs and DNNs,
are not particularly new to the field. In their study, the authors of [21] discussed various
deep learning techniques for crop yield prediction. However, they did not present all the
papers considered in their review and included a large number of research questions that
contained redundant information.

In our study, we establish a set of important research questions within the field and
develop a detailed protocol and methodology to address them, as will be outlined in
Section 3. Our primary contribution is the methodology we adopt, which we anticipate
will provide distinctive insights in response to the specific research questions we have
formulated. A particular focus of our contribution will be the comparative analysis of the
studies included in our survey. Consequently, we will recommend the most noteworthy
papers, helping readers efficiently select relevant articles. Identifying open issues and
presenting a future research roadmap constitute additional specific contributions of this
systematic literature review.

3. Methodology
3.1. Review Protocol

In our research on crop yield prediction, we selected a systematic review method,
aiming for a comprehensive and objective compilation of pertinent academic research in
this field. The broad and diverse assortment of studies related to crop yield prediction
underscores the suitability of this method for our research objectives. This methodology
enables an in-depth review, critique, and synthesis of all studies that align with our specific
research questions, encompassing the analysis of different crop types addressed, the various
deep learning frameworks used, the key types of data employed, and the challenges and
prerequisites essential for precise yield prediction. The adoption of a systematic approach
is vital in diminishing bias and ensuring a clear, repeatable framework for analysis. This
precision is essential for our research objectives, aiming not only to summarize the current
findings within the realm of crop yield prediction but also to uncover gaps and emerging
trends that can guide future studies. To accomplish this, we adhered to the methodology
proposed by the authors of [22], who highlighted that a systematic literature review (SLR)
is an approach initially developed for the medical sector in the United Kingdom, and its
goal is to achieve transparency of the methodologies carried out and to obtain collective
peer approval of the adopted approach. According to [23], the core features of an SLR
include well-defined objectives, predefined eligibility criteria, an explicit and reproducible
method, an exhaustive search strategy, a thorough evaluation of the included studies, and
a systematic synthesis and presentation of the characteristics and findings of these studies.
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The present research study details the results from a rigorously structured scientific ap-
proach, as illustrated in Figure 1, comprising a sequence of well-defined procedural phases.
These phases range from developing specific research questions pertinent to the topic,
establishing detailed inclusion and exclusion criteria, to the careful selection of databases
and conducting an in-depth evaluation of relevant studies. The purpose of formulating
research questions is to provide a clear direction for the review, guiding the selection of
relevant literature while ensuring the review’s focus aligns with its thematic core. This
process helps delineate the scope of the review, covering both the breadth and depth of
the literature to be included, thereby ensuring the review’s feasibility and adherence to
predefined boundaries. The inclusion and exclusion criteria serve as essential guidelines
for identifying which studies to include or exclude, ensuring the review incorporates only
the literature that directly addresses the specified questions. The study culminates in high-
lighting the most critical findings for the readers and suggesting future research avenues
that could enhance the precision of crop yield predictions using deep learning techniques.

Figure 1. The methodological protocol of our systematic literature review.

3.2. Practical Approach

In conducting our literature review, our aim was to offer an in-depth analysis of the
research carried out in the realm of deep learning and its application to predicting crop
yields. To achieve this, we examined studies from various perspectives. In this section, we
will consolidate and highlight the essential aspects of the methodology we employed.



Technologies 2024, 12, 43 6 of 30

3.2.1. Formulation of the Research Questions

The main characteristic of a systematic literature review is that it generally begins with
thorough bibliographic research on the topic under consideration, which helps to clarify
the research concept [24]. The purpose of this step is to facilitate a better understanding of
what has been previously published within the research area. For this literature review, the
following research questions were identified:

• Q1. What types of crops have been treated by previous studies to predict yield using
deep learning?

• Q2. Which deep learning architectures have been tested in the literature for crop
yield prediction?

• Q3. What are the main categories of input data used in previous studies for crop yield
prediction using deep learning?

• Q4. What are the challenges and the requirements for predicting crop yield using
deep learning?

We formulated these research questions considering their importance. The first one
aims to accurately identify which crops are under study for precise yield predictions
using deep learning, shedding light on the focal areas and key crops that are attracting
attention due to their significance. The selection of an appropriate architecture is pivotal,
as the success of deep learning methods is significantly influenced by this crucial decision.
Regarding input data, the performance and accuracy of deep learning models vary based on
the specific data utilized, making it essential to examine the types of input data researchers
have used. Moreover, a comprehensive discussion on deep learning must include its
limitations and the prevailing challenges, alongside strategies for addressing these issues.
Through these detailed points, our goal is to extensively investigate the use of deep learning
for crop yield prediction.

3.2.2. Search Strategy for Relevant Studies

In our research methodology, we carefully selected a range of keywords to ensure
comprehensive coverage of the literature related to deep learning applications in crop
yield prediction. Our chosen keywords included ‘Deep Learning’, ‘Crop Yield Prediction’,
‘Neural Network’, ‘Agriculture’, ‘Computer Vision’, and ‘Artificial Intelligence’. These
terms were selected for their direct relevance to the core aspects of our study, encompassing
both the technological approaches and the agricultural context of the research. To conduct a
thorough search, we utilized these keywords in various combinations across several scien-
tific databases known for their extensive repositories of high-quality academic articles. The
databases included the Directory of Open Access Journals (DOAJ), the Institute of Electrical
and Electronics Engineers (IEEE), the Multidisciplinary Digital Publishing Institute (MDPI),
and ScienceDirect. For each database, we used specific search equations, aiming to balance
comprehensiveness with specificity. For instance, some search equations combined ‘Deep
Learning’ AND ‘Crop Yield Estimation’ to capture relevant studies at the intersection of
these fields. By employing these targeted search strategies, we ensured the inclusion of
pertinent studies, thereby laying a solid foundation for our literature review.

3.2.3. Definition of Criteria for Inclusion and Exclusion

Inclusion and exclusion criteria are crucial for ensuring that only studies relevant to the
topic are kept. Hence, we defined the inclusion and exclusion parameters as outlined in Table 1.

Certain articles, although survey studies, were excluded from the analysis due to their
nature. However, they were not omitted from consideration during the reading phase.
Their significant contributions to our topic were utilized to enrich the discussed points
within our paper.
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Table 1. Inclusion and exclusion criteria used.

Inclusion Criteria Exclusion Criteria

The study must be empirical research that
includes a methodology and results section The paper is a survey or a review article

The study must have been published within Articles published before 2015

the last eight years The considered paper has already been
included from another database search

The paper discusses the application of deep
learning to crop yield prediction

The publication does not deal with the
application of deep learning to agricultural

yield prediction
The article does not meet the quality standards
required for inclusion in our systematic review

The article is written in English The article is written in a language other
than English

3.2.4. Quality Assessment

To assess the selected articles for our review, we focused on key factors such as the
relevance of each study and its research questions, the clarity and comprehensiveness of
the methodology, the technical specifications of the deep learning architectures, and the
thoroughness of the results discussion. To quantitatively evaluate these aspects, we devised
a scoring system with a maximum of 20 points, distributed across the following criteria:

• Relevance of Research Questions: Studies were evaluated on how directly they
addressed the proposed questions, with a scoring range from 0 to 5 (highly relevant).

• Methodological Clarity and Detail: The clarity and depth of the described method-
ology, including any technical details, were scored from 0 (unclear or insufficiently
detailed) to 5 (exceptionally clear and detailed).

• Technical Specifications: The detail with which the deep learning architecture was
described was scored from 0 (no specifications provided) to 5 (comprehensive specifications).

• Results and Discussion: The presentation and discussion of the study’s findings were
evaluated, with scores ranging from 0 (lacking discussion) to 5 (comprehensive and
insightful discussion).

3.2.5. Data Extraction

We utilized Zotero, a bibliographic management software, for data extraction from
the selected studies. This free tool streamlined our literature review by enabling the
direct import of manuscripts from their respective databases, allowing us to efficiently
organize the literature by capturing essential details like publication titles, authors, and
other relevant information. We further categorized the imported articles according to their
source databases for enhanced organization. Subsequently, we employed Excel to develop
a spreadsheet, which facilitated the systematic extraction and analysis of responses to our
research questions from these articles. By predefining these questions as columns in the
spreadsheet, we established a structured framework that enabled us to directly associate
our findings with the specific inquiries driving our review.

4. Results

We followed an analytical process for our critical review, initially focusing on identify-
ing answers to our research questions and conducting a critical evaluation of each article
analyzed. Utilizing Zotero, we efficiently organized the extracted articles, which facilitated
a streamlined review process. Additionally, we employed Excel to further structure our
analysis; this spreadsheet was instrumental in categorizing the data. Specifically, columns
were dedicated to each of our research questions, allowing for a direct comparison and
synthesis of findings. Moreover, a crucial column was allocated for the critical evaluation
of each study, where we noted significant observations and assessments. This combination
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of tools and methodical analysis ensured a comprehensive and organized review, enabling
us to derive insightful results from the literature. This section details our analyses and the
answers derived from our studied research articles.

4.1. Selected Studies

The number of articles identified and selected for further review are detailed in Table 2.
These articles offer valuable insights and findings essential to our research, particularly
in applying advanced deep learning techniques for predicting crop yields, which aligns
with our primary research question about the specific crops targeted in yield forecasting.
The recurrence of this theme across the included studies underscores the growing trend of
integrating deep learning into agricultural practices. Our analysis also revealed significant
findings regarding the variety of data used in deep learning models for agricultural fore-
casting, emphasizing the need for standardized data collection and processing methods
to improve model accuracy and consistency. Furthermore, these studies offer detailed
insights into the diverse architectures chosen by researchers and their impact on model
outcomes. Additionally, these papers address our fourth research question, shedding light
on the challenges and constraints of current deep learning applications in agriculture. The
92 studies that were retained are listed in Table 3. This table provides details including the
agricultural crop addressed, the main inputs of the learning model, and the deep learning
architecture selected by the authors.

Table 2. Distribution of articles and databases used.

Database Number of Articles Remaining after Application of Inclusion and
Exclusion Criteria

DOAJ 30
IEEE 15
MDPI 15

ScienceDirect 32
Total 92

4.2. Statistical Analysis

We conducted a meta-analysis of the selected scientific articles, as illustrated by Table 2.
The majority of the examined articles were sourced from the DOAJ or the ScienceDirect
database, with roughly twice the number coming from these sources compared to those
from IEEE and MDPI. Among these, most were published in journals (81), with only a
few from conferences (11), indicating that our literature review primarily focused on more
detailed research papers.

Further examination of the annual distribution of papers, as depicted in Figure 2,
reveals a pronounced upward trajectory in research within this domain, marked by a
significant increase in publications in recent years. This surge highlights the growing
interest and significant advancements in the field, largely driven by breakthroughs in
deep learning technology and a broader recognition of AI’s potential in addressing key
agricultural challenges, such as food security. As a result, there has been a marked increase
in the adoption of sophisticated AI tools and computational techniques. Especially in
the last few years, the field has seen a rapid rise in the number of publications, reflecting
the adoption of innovative deep learning methods that are transforming agricultural
practices. The increasing number of academic papers not only illustrates the dynamic
nature of research, continuously integrating practical insights, but also underscores the
need for review studies to thoroughly evaluate these contributions, identifying areas
for future research or innovative strategies to enhance crop yield predictions with these
advanced technologies.
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Table 3. Details of selected publications.

Deep Learning Architecture Main Input Crop References

1D CNN Markers, UAV data, satellite data, environmental data Wheat, corn, barley, rice [9,25–31]

2D CNN

Hand-held devices, UAV data, RGB ground imagery, ground
agricultural stations data, satellite data, web crawling (Google
Web) data, satellite data, environmental data, in-field images

(Canon camera)

Wheat, rapeseed, rice, tiger nuts, sunflower, sorghum, apple,
pear, chives, onion, soybean, tomato, potato, corn, barley, wild

blueberries, almond
[4,8,29,32–54]

3D CNN UAV data, satellite data Rice, maize, soybean, wheat, barley, oats [36,44,45,55–59]

DNN Environmental data, UAV data, spectrometers, satellite data,
web crawling (Google Web) data

Corn, tea, soybean, wheat, lettuce, cotton, apple, pear, chives,
onion, coffee, rice [5–7,9,17,28,31,41,45,60–70]

R-CNN UAV data, land-based vehicle, hand-held camera,
Cloud platform Apple, wheat, spinach, citrus, rice [71–76]

LSTM Satellite data, environmental data, UAV data Cotton, wheat, soybean, maize, tomato, potato, rice, rapeseed
mustard, barley, bajra, jowar, onion [8,31,42,47,49,77–93]

DBN Environmental data

Apple, banana, castor oil seed, cherries, chick peas, chili, cocoa,
beans, coconuts, coffee, green, ginger, maize, onion, orange,

papaya, pepper, potato, rice, sunflower, tea, tomato,
wheat, olicrop

[94]

DANN Satellite data Corn [95]

ConvLSTM UAV data, satellite data, environmental data Wheat, barley, oats, rice, soybean [43,44,58,59,93]

GRU Environmental data, satellite data Tomato, potato, cereal, wheat [42,96,97]

LSTM-DNN Environmental data, satellite data Soybean, corn, rice, sugarcane, cotton [98,99]

Transformer Satellite data, environmental data Rice [85]

TCN Satellite data Winter wheat, spring wheat, rye, feed barley, malting
barley, oats [100]

SSAE Satellite data Rice, corn, soybean [47]
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Table 3. Cont.

Deep Learning Architecture Main Input Crop References

CNN-LSTM Environmental data, satellite data, UAV data Cocoa, maize, soybean, wheat, barley, oats,
rice, beans, potatoes [8,43,44,52,55,58,93,101–103]

1D CNN-2D CNN UAV data Corn [29]

1D CNN-LSTM Satellite data, environmental data Rice [31]

DFNNGRU-DeepGRUs Satellite data Strawberry [104]

2D CNN-GAN Satellite data, environmental data Wheat [105]

3D CNN-2D CNN Satellite data Wheat [106]

3DCNN +LSTM Satellite data Wheat, corn [49]

3DCNN-ConvLSTM Satellite data Soybean [44]

Autoencoders Spectrometry techniques Sugarcane [107]

CNN-attention-LSTM LiDAR, UAV data, environmental data Maize [108]

CNN-GRU Satellite data Wheat [97]

CNN-LSTM-GRU Satellite data, environmental data Wheat [27]

LSTM-1D CNN Satellite data, environmental data Rice [31]

LSTM-CNN Satellite data Wheat [109]

SAE-CNNLSTM Satellite data Strawberry [104]
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Figure 2. Distribution of studies per year of publication.

4.3. Crops Examined in Studies Using Deep Learning Models

To address the first research question (Q1) and facilitate the interpretation of Table 3,
we classified the agricultural crops that were the focus of deep learning models in the
selected studies. As depicted in Figure 3, a majority of these studies focused on predicting
yields for staple crops such as wheat, maize, and rice. This emphasis not only underscores
the pivotal role these crops play in ensuring global food security but also demonstrates
the significant potential of deep learning technologies to enhance yield predictions for
these vital crops. Such advancements could greatly contribute to improving agricultural
sustainability and operational efficiency, potentially having a profound impact on feeding
the growing global population. Conversely, our review identified a notable point in the
research landscape concerning other agricultural categories, particularly fruit trees, for
which we found, at most, one study dedicated to each type of crop. This scarcity highlights
the imperative to extend deep learning applications to a broader array of crops, aiming
to optimize diverse agricultural practices, especially in sectors that have not yet fully
capitalized on these technological advancements.

Figure 3. Distribution of agricultural crops used by authors.

4.4. Deep Learning Architectures Used in Crop Yield Prediction
4.4.1. A Brief Overview of Deep Learning

The popularity of deep neural networks surged in 2012 following the victory of the
AlexNet architecture in the ImageNet challenge [110]. Subsequently, it became standard
practice to assess neural network accuracy using large-scale datasets. As a result, numerous
neural networks were released by their developers, complete with the weights acquired
during model training using these data [111]. The architecture of a deep neural network
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draws inspiration from the human brain’s configuration, where artificial neurons are
connected in sequence and structured into layers, forming a synthetic framework. The
primary elements of a deep learning network consist of neurons, layers, and activation
functions [112]. In the context of a basic deep learning model, the output from one layer
serves as the input for the next, illustrating the layer-by-layer progression of data processing.
The significance of the weight matrices is underscored as they modify and scale the input
data throughout the network. Additionally, the incorporation of a bias term at each
layer enhances the model’s adaptability, allowing for adjustments to the output that are
independent of the weighted sum of the inputs. The introduction of nonlinearity into the
system through a nonlinear activation function, applied to the combined result of the linear
transformation and bias, is essential. This nonlinearity is what permits the network to learn
and represent complex, nonlinear patterns within the dataset. Equation (1) presents the
mathematical details of such a network.

L(l) = ϕ(M(l)L(l−1) + bi(l)) (1)

where L(l) represents the output of layer l, M(l) and bi(l) denote the weight matrix and
bias vector for layer l, respectively, and ϕ is the nonlinear activation function. The initial
input L(0) corresponds to the input to the network.

4.4.2. Deep Learning Models Applied for Forecasting Agricultural Yields

To provide an overview of the deep learning architectures used for yield prediction
in agriculture and to address research question two (Q.2), we developed Figure 4. This
illustration shows the number of articles that employed each model, indicating that two-
dimensional convolutional neural networks (2D CNNs) and LSTM (Long Short-Term
Memory) from recurrent neural networks are the predominant techniques. These results
are in alignment with the findings presented in the study by Mohammadi et al. (as cited
in reference [113]). It should be noted that the widespread adoption of 2D CNNs is
largely attributed to the architecture’s adeptness at processing spatial data, a key factor
in understanding agricultural yield and its variability. In contrast, LSTM networks are
favored for their proficiency in managing time-series data, reflecting the significant role of
temporal dynamics in agricultural yield predictions. The choice of these two architectures
highlights their effectiveness in navigating the intricate structures and the spatial and
temporal variability intrinsic to agricultural yields.

Figure 4. Distribution of deep learning architectures used by authors.
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Table 3 reveals that the total number of deep learning architectures utilized surpasses
92, exceeding the count of the studies reviewed. This discrepancy in numbers arises from
the common practice among researchers in this domain, where it is typical for a single
study to simultaneously explore and evaluate various deep learning frameworks. This
approach goes beyond mere experimentation with diverse techniques and algorithms; it
serves as a comprehensive method to assess and compare the effectiveness of different
architectures under the same conditions, using the same datasets. Through this comparative
examination, researchers aim to identify and highlight the strengths and weaknesses of
each framework, providing essential insights into their suitability and performance for
specific challenges in agricultural yield prediction. Consequently, the employment of
multiple architectures within individual studies underscores the complexity and diversity
of deep learning applications in agriculture, reflecting the ongoing effort to refine predictive
accuracy in tackling the spatial and temporal complexities of agricultural indicators.

Through our analysis of the various studies, the well-known deep learning architec-
tures used in crop yield prediction are as follows:

Deep Neural Network (DNN): It is comprised of various layer types, including input,
multiple hidden, and output layers, all interconnected as depicted in Figure 5, where the
first layer is designed to receive the values of the model’s variables. This architecture is
characterized by its weights, which allow the model to learn by being updated through a
specific learning algorithm [114]. In the study [17], the authors investigated this architecture.
Focusing on the mid-summer period, particularly July to August, they used data from the
Moderate Resolution Imaging Spectroradiometer (MODIS) to predict corn and soybean
yields. Their research included a comparative analysis of the performance of six artificial
intelligence models, including a DNN. Their findings suggested that the deep neural
network model was more accurate, improving yield prediction by 21 to 33% for corn
and 17 to 22% for soybean compared to the other artificial intelligence (AI) models tested.
However, it is crucial to point out that the research findings were expressed in terms of yield
using the metric tons per hectare, which is a unit of measurement more commonly applied
to fruit crops. This choice of unit is somewhat unconventional for studies focused on cereal
grains, where different metrics might be more standard or expected. This discrepancy in
the unit of measurement could influence the interpretation and comparison of the results
with other studies in the cereal grain domain.

Figure 5. Deep neural network architecture.

Deep Belief Network (DBN): This specific deep learning architecture has demon-
strated considerable performance across various applications. It incorporates both super-
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vised and unsupervised learning processes [115]. Specifically, a DBN is a generative model
composed of a stack of Restricted Boltzmann Machines (RBMs) as depicted in Figure 6
followed by a layer that can be trained with supervised methods, often referred to as a
Sigmoid Belief Network (SBN) [116]. Ref. [94] evaluated an Adaptive Lemuria algorithm,
which was based on a deep belief network, utilizing inputs such as rainfall data, tempera-
ture, soil, as well as fertilizer information. Their study encompassed several types of crops,
including banana (Musa), apple (Malus), orange (Citrus sinensis), and onion (Allium cepa).
The model achieved an accuracy rate of nearly 98.35% and reported an error rate of 0.031.

Figure 6. Deep belief network architecture [117].

Convolutional Neural Network (CNN): This algorithm is among the widely used
architectures in the field of deep learning. CNNs can be explored in several dimensions,
including one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) config-
urations, each serving different types of data inputs and applications.

• One-dimensional CNN: This architecture is characterized by an input layer with a one-
dimensional filter (Figure 7), typically utilized for processing 1D spectral data [118].

Figure 7. Architecture of 1D convolutional neural network [119].

• Two-dimensional CNN: This architecture performs convolution operations using spe-
cialized filters and possesses multiple layers similar to other CNN models
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(Figure 8). These include a convolutional layer, nonlinear layer, max-pooling layer,
and fully connected layers. Numerous studies have showcased the effectiveness of
this architecture, particularly for processing unstructured data such as images.

Figure 8. Architecture of 2D CNN [120].

• Three-dimensional CNN: The primary distinction between three-dimensional and
two-dimensional CNN is that 3D CNNs apply convolution across both spatial and
temporal dimensions [121]. Unlike 1D and 2D CNN, the inclusion of a third dimension
in 3D CNN allows for the creation of a complex feature cube as depicted in Figure 9
that captures more detailed information [122].

Figure 9. Comparison between two-dimensional and three-dimensional CNNs [123].

The authors of Ref. [25] indicated in their study that CNNs require fewer parameters to
train the models. They compared this algorithm with other architectures such as Multilayer
Perceptron (MLP) and ridge regression Best Linear Unbiased Prediction (rrBLUP) when
predicting spring wheat yield. Their results showed an increase in accuracy of up to
5% when comparing CNN to rrBLUP. Other researchers applied convolutional neural
networks to estimate winter wheat yield using MODIS products. For instance, the authors
of [40] demonstrated the effectiveness of CNN in estimating winter wheat yield, achieving
a Pearson correlation coefficient of up to 0.82 and a root mean square error of 724.72.
Although this study indicated that remote sensing data alone can be sufficient for yield
estimation, the accuracy of these predictions could potentially be enhanced by incorporating
additional data, such as agrometeorological information. Additionally, the authors of [9]
explored the use of 1D CNN for crop yield prediction and compared their performance
with DNN. Their findings indicated that DNNs performed better at the field level when
estimating winter wheat yield using data available from the Google Earth Engine (GEE)
platform. However, at the county level, the performance of the two models was nearly
equivalent. It is important to note that yield estimation at the field scale using MODIS
satellite imagery could encounter challenges due to atmospheric effects and limitations in



Technologies 2024, 12, 43 16 of 30

spatial resolution. Beyond CNNs with 1D and 2D, researchers also explored the capabilities
of 3D CNN in processing the temporal dimension of remote sensing data. For instance,
the authors of [57] utilized data spanning from 2003 to 2016 to train their model. Despite
the challenges associated with such an extended dataset, which may introduce greater
variability or outliers, they successfully predicted soybean yield using MODIS imagery.
Their results highlight the critical importance of selecting appropriate input data when
applying 3D CNN to such applications.

Region-based Convolutional Neural Network (R-CNN): It is an advanced deep
learning architecture that is used for object detection. It identifies objects and regions of
interest through selective search techniques and concludes with a CNN to classify the
objects. A notable improvement of R-CNN is Fast R-CNN, which employs Region of
Interest (RoI) Pooling to extract features from predetermined regions on feature maps
established by convolutional layers [72]. A further advancement is represented by Faster
R-CNN, which generates feature maps through a CNN and then feeds them to a Region
Proposal Network (RPN) that identifies potential object locations. As a practical example,
the authors of [71] created an apple yield map by counting fruits detected in images
captured by Unmanned Aerial Vehicles (UAVs) from a flight altitude of 15 m. A buffer area
of approximately 1 m around each tree served as the input for the Faster R-CNN model
to determine the number of fruits. This tree-level approach yielded an R2 of 0.86, with
MAE and RMSE values of 10.35 and 13.56, respectively. Despite these promising results,
the methodology presents a limitation by focusing on the number of fruits per tree rather
than the agricultural yield typically measured in tons per hectare, leading to a divergence
in the yield’s conventional definition and calculation. The authors of Ref. [72] developed
a methodology utilizing region-based convolutional neural networks, specifically Faster
R-CNN, to detect wheat spikes from images captured by a land-based vehicle at various
growth stages of wheat. Their technique focused on quantifying the number and density
of spikes. While this study suggested that wheat yield prediction could be based solely
on spike analysis, it underscored the significance of selecting the appropriate altitude for
image acquisition to ensure the images are usable for this purpose.

Region-based Fully Convolutional Network (R-FCN): It is a deep learning architec-
ture which also exploits the RPN found in Faster R-CNN (Figure 10). It aims to enhance
the efficiency of Faster R-CNN by incorporating a residual part for feature extraction and
by increasing the computational efficiency through applying a fully convolutional network
for object detection [124]. In their study, the authors of [76] utilized a region-based fully
convolutional network to identify rice panicles from UAV-RGB images taken at an altitude
of 17 m. Image acquisition was intentionally conducted between 10 a.m. and 12 p.m. to
optimize lighting conditions. The researchers indicated that rice yield could be estimated
by aggregating various factors, including panicle count per unit area, grains per panicle,
setting percentage, and grain weight. However, the latter may not be necessary for direct
yield estimation. The developed model achieved a precision value of 0.868, indicating a
high level of detection accuracy.

Figure 10. Region-based fully convolutional network architecture.
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Long Short-Term Memory (LSTM): The LSTM architecture is a subtype of recur-
rent neural network characterized by a structured diagram that includes several distinct
units designed to capture temporal dependencies. As depicted in Figure 11, an LSTM cell
comprises various components: the memory unit, which retains the state from time t − 1;
the input gate, which controls the flow of input information to update the memory cell;
the output gate, which determines the output based on information from the previous
two units; and the forget gate, which decides which information should be discarded [87].
Ref. [84] noted that machine learning techniques often provide better computation effi-
ciency and simplicity in calculation compared to deep learning methods. They employed
remote sensing data products, primarily Solar-Induced chlorophyll Fluorescence (SIF) and
Enhanced Vegetation Index (EVI) along with environmental data to predict large-scale
maize yield. They evaluated the LSTM architecture as a deep learning technique and
found that it did not significantly outperform machine learning techniques, specifically
the Random Forest (RF) algorithm, especially when considering the required processing
time and the limited generalization capabilities. Ref. [88] developed a model to predict
rice yield at the county level using data from the MODIS satellite, as well as climate, and
soil properties as inputs. Their results demonstrated that the LSTM model was highly
effective, achieving an R2 value of 0.87 and an RMSE value of 724 kg/ha, surpassing
the performance of the Least Absolute Shrinkage and Selection Operator (LASSO) model.
The study highlighted the utility of satellite data for the direct temporal monitoring of
agricultural crops. However, the temporal resolution of satellite imagery does not currently
allow users to choose specific times for data acquisition, leading to constraints associated
with the fixed operational schedules of the satellites.

Figure 11. Long Short-Term Memory architecture [87].

Gated Recurrent Units (GRUs): Gated Recurrent Units are a simplified variant of
LSTM, which is designed with two gates: an update gate and a reset gate, as depicted in
Figure 12. The first one is used for updating the state of hidden layers, while the reset
gate decides the amount of past information to forget [125]. Ref. [42] explored various
recurrent neural network architectures, including GRU, Bidirectional GRU, LSTM, and
Bidirectional LSTM, to predict tomato and potato yields by analyzing climate data, soil
conditions, and water. Their study reported that the bidirectional architecture of LSTM
demonstrated superior efficiency compared to other models, particularly the GRU, with an
R2 ranging from 0.97 to 0.99, indicating a very high level of predictive accuracy. Addition-
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ally, when compared with other deep learning architectures such as CNN, the bidirectional
LSTM again showed enhanced performance. However, the study provided a less detailed
examination of the bidirectional architectures and indicated that it is necessary to have a
significant number of images with labels to train a learning model, which requires more
time. Nevertheless, several techniques have made it possible today to remedy this problem,
as we will see in the following sections.

Figure 12. Gated Recurrent Units architecture [125].

Autoencoders and Stacked Sparse Autoencoders (SSAEs): Autoencoders are neural
network architectures primarily used to reduce dimensionality by compressing input data
into a lower-dimensional representation and then reconstructing it to preserve essential
information [107]. They consist of two main components: the encoder, which compresses
the input, and the decoder, which reconstructs the output using the compressed input.
Sparse autoencoders are a variant of autoencoders that incorporate a ‘sparse penalty’,
ensuring that only a limited number of neurons in the layers are activated during data
processing. This sparsity constraint allows for generating less complexity by decreasing
the number of parameters, which can improve feature learning capabilities [126]. The
authors of Ref. [47] conducted county-level predictions for rice, corn, and soybean yields by
utilizing data derived from vegetation indices. They employed SSAE which was compared
to other machine learning algorithms, including Support Vector Machine (SVM). Their
findings indicated that SVM outperformed the deep learning algorithms for this particular
application. The authors of Ref. [107] estimated the productivity of sugarcane crops using
hyperspectral data. Initially, they utilized an autoencoder neural network to reduce the
dimensionality of the data; subsequently, they applied a neural network to calculate the
productivity of the sugarcane.

Domain Adversarial Neural Network (DANN): This is a specialized neural network
architecture for domain adaptation that uses adversarial training to enhance the model’s
ability to generalize. This architecture allows a model trained on a source domain to perform
effectively on a different target domain by learning feature representations that predict labels
in the source domain while remaining invariant to shifts between the source and target
domains [127]. In their study, the authors of [95] indicated that a machine learning model
trained with extensive data from one particular area might encounter a decline in effectiveness
when applied to a different area. To address this, they developed a corn yield prediction
model at the county level using DANN, which they found to generally yield better results in
terms of prediction accuracy. However, the study did not explore the impact of factors other
than the size of the training data on the performance of the DANN model.
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Transformers: They have become a leading model in deep learning [128], gaining
an increased application across diverse domains. Ref. [85] proposed an informer-based
model to predict rice yield using satellite imagery and environmental characteristics. They
compared this architecture with various ML and well-known DL techniques, especially RF
and LSTM. Their results indicated that their model outperformed all the other architectures,
achieving an R2 value of 0.81, an RMSE of 0.41 tons per hectare, and an MAPE value of
15.47% over the period from 2009 to 2016.

Temporal Convolutional Networks (TCNs): This architecture applies causal con-
volutions adapting to the temporal data by considering their sequential nature [129]. In
their study, the authors of [100] developed a TCN-based prediction model using satellite
imagery, focusing on the prediction of various crops, such as wheat, barley, and oats. Their
findings indicate that the model based on TCN exceeds traditional machine learning meth-
ods and yields more precise values. They also observed that TCN demonstrates resilience
in handling cloudy pixels, suggesting its capability to learn and filter out this type of noise
directly from raw data. However, they also noted that integrating the temporal dimension
of information did not enhance the predictive accuracy. Nonetheless, the study should
present a more in-depth exploration of how well TCN adapts to the temporal aspects of
data and an assessment of its potential limitations in this context.

Hybrid architectures: Recently, scientific studies have increasingly focused on exploit-
ing hybrid models that combine two or more architectures within the same framework.
This approach is particularly prevalent in precision agriculture for predicting crop yields,
where such models are compared against simpler or non-hybrid architectures. For instance,
Ref. [55] highlighted the importance of data from April to September, a period correspond-
ing to the growth cycle of maize and soybean, explored the efficacy of a CNN-LSTM
architecture for county-level yield estimation, and found that it outperformed other models
with MAPE values of 10.3% for soybean and 13.2% for maize. In contrast, the authors
of [44] proposed a hybrid model combining ConvLSTM with 3D CNN. This model was
trained using county-level yield data and MODIS products to predict soybean yield. Their
results, when compared with other hybrid models like CNN-LSTM and ConvLSTM, as well
as simpler models such as 3D CNN, demonstrated the best performance. In their study, the
authors of [105] addressed the issue of small datasets by proposing a framework that com-
bines Generative Adversarial Networks (GANs) and CNNs to predict wheat yield in China
using remotely sensed and meteorological data. GANs, which represent a sophisticated
approach in the realm of semi-supervised and unsupervised learning techniques [130],
consist of a generator and a discriminator. Both components are developed through the
concept of adversarial training. The primary objective of GANs is to capture the data distri-
bution to create new instances [131]. The GAN architecture in the study conducted in [105]
was proposed to augment the original dataset. The results demonstrated that data aug-
mentation with GANs improved the performance of the CNN model for yield estimation,
particularly when the available samples were limited. The GAN was specifically employed
to produce high-level samples, which expanded the training and validation datasets. When
compared to a CNN model that utilized only the original dataset, the dataset augmented
with GANs significantly improved the performance. This improvement can be attributed
to the convolutional architecture’s need for more data to enhance predictions. However,
the study mainly focused on the benefits of using GANs for dataset augmentation without
discussing the optimal conditions required for utilizing this architecture to address other
potential limitations in similar predictive applications.

4.5. Main Input Data

For the third research question (Q.3), which aims to identify the primary input data
used to develop regression models, we categorize these data types and list the number of
articles utilizing each type in Table 4. It is evident that satellite imagery was employed by
nearly half of the studies, highlighting its significant role in such applications. Furthermore,
the expanding role of remote sensing is also evident in the evolving use of UAVs in precision
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agriculture, considering the increasing number of studies exploring their application. For
instance, the authors of [68] tested the use of UAVs equipped with RGB cameras for
predicting coffee crop yield. Ref. [46] developed yield prediction models for wheat and
barley using multispectral UAV data. Ref. [48] used high-resolution RGB and multispectral
images from UAVs to estimate rice yield, while [29] explored the use of hyperspectral
data from UAV imagery in a convolutional model to estimate corn yield. However, it is
important to mention that the latter study chose a relatively elevated altitude of 40 m for
image acquisition, which might not be the most suitable for analyzing corn crops.

Table 4. Frequency of main input data.

Data Type Number of Publications

UAV (RGB) 16
UAV (multispectral) 11
UAV (hyperspectral) 1

UAV (thermal) 2
Satellite 49

Hand-held device 4
Land-based vehicle 1

Ground agricultural stations 2
Markers 2

Environmental data 20
Spectrometry techniques 2

Web crawling 1
Light Detection And Ranging (LiDAR) 1

4.6. Requirements and Challenges in Predicting Crop Yield Using DL

Even though agricultural yield prediction can gain great advantages from deep learn-
ing, as discussed in the aforementioned sections, there are several challenges that users
and researchers should consider. These challenges can be categorized into various types,
depending on the specific component they are related to:

The quality of the training dataset: Obtaining high-quality agricultural datasets
presents a significant challenge due to the diverse features that need to be considered
and the specific precision required for each trait, including soil, climate, and phenotypic
characteristics. As a result, accurately collecting all this information is a complex task.

The size of the training dataset: Typically, deep learning models necessitate large
datasets for effective training. Nonetheless, acquiring such extensive data for crop yield
prediction can be challenging, especially on a smaller scale. Current studies often prepare
hundreds or even thousands of pre-processed data entries to achieve better results. An
insufficient quantity of input data can lead to problems, particularly overfitting, where
the algorithm only memorizes the characteristics of the input data. To overcome this
limit, several studies have turned to data augmentation techniques, which include, for
example, rotating raw images to provide more data and mitigate insufficiency issues [71].
Other studies have focused on using regularization techniques, like L1 and L2, to prevent
overfitting [17]; the dropout method, another approach, involves randomly disabling links
and nodes in the learning mechanism, making the DL model more robust. Some authors
prefer using transfer learning to avoid these problems. This method involves using existing
models and modifying their parameters through fine-tuning to enhance efficiency and
results [76]. Moreover, when dealing with a larger input dataset, it is beneficial to perform
feature selection to eliminate redundancy and reduce processing time. For instance, [68]
employed this strategy to predict coffee yield using UAV images. Specific issues arise with
well-known architectures like DNN. While they are efficient at prediction tasks, adding
more hidden layers to process a larger dataset may affect the quality of post-processing
regression and lead to vanishing gradient problems [60]. Finally, Active Learning (AL)
techniques might be used to extract the most informative training data to effectively learn
DNN models, thereby reducing the impacts of overfitting.
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The complexity of models: Developing a robust deep learning model requires se-
lecting an architecture that fits the specific data input and the unique characteristics of a
particular crop type, which can be a challenging task [132]. This process often demands a
high level of expertise in the field. Additionally, this point encompasses the complexity
related to the training time and computational demands of certain architectures.

The interpretability issue: DL can provide highly precise predictions, particularly
in the context of agricultural yields. However, comprehending exactly how the model
arrives at these specific values remains a challenge. This complexity in interpretation, often
referred to as the ’black box’ issue, can make it difficult for smallholders to understand the
crucial factors driving a specific prediction. These multiple challenges necessitate extensive
coordination among various participants in the agricultural sector, including data scientists
and farmers, to guarantee that the deep learning model is sufficiently effective and suitable
for its intended use.

4.7. Bayesian Approaches to the Challenges of Crop Yield Prediction

Regression techniques are often the method of choice for analyzing crop yield depen-
dency on a given number of covariates [133]. The application of regression models becomes
straightforward when there is a large number of observations compared to a relatively
small number of covariates. Ref. [134] proposed a general method for selecting a sparse
number of essential covariates in Bayes linear regression problems. Ref. [135] introduced
an efficient Bayesian method for feature selection in life science applications which allows
the inclusion of nonlinear interactions between the covariates as well as the incorporation
of user-guided domain knowledge via Dirichlet priors. In nonlinear settings, things are be-
coming more challenging and the danger of model overfitting increases. Gaussian process
regression (GPR), which represents a nonparametric Bayesian regression framework [136],
has gained increasing popularity. GPR models can be considered as an alternative to NNs,
since a large class of NN-based regression models converges to a GP in the limit (of infinite
networks) [137]. GPR models are also widely used in spatial and spatio-temporal statistics
and in the design and evaluation of computer experiments [138]. When the number of
covariates becomes large, we have to resort to feature selection methods such as LASSO and
Random Forests, the latter being random collections of regression trees. From a Bayesian
perspective, Bayesian additive regression trees (BART) have become popular. The recent
BART R package [139] implements a Bayesian (ML) ensemble predictive modeling method.
Scalable GP extensions are provided by so-called Nearest Neighbor Gaussian processes
(NNGPs) [140]. Very recently, Ref. [141] introduced a novel combination of NNGPs, robust
reference priors, and Bayesian variable selection, which achieves a superior performance
over well-established approaches including, e.g., the Adaptive LASSO (ALASSO) [142],
BART, and variational inference for Bayesian variable selection (VARBVS) [143]. Finally,
Deep GPs, as introduced in [144], combine non-stationary and global modeling; these
can be viewed as (deep and wide) limits of Deep NNs [145]. They come, however, at the
cost of additional computational expenses. Deep GP modeling had been applied to yield
prediction by [146]; since then, we have not observed, however, further extensions of their
methodology, with a notable exception of [147].

5. Discussion

Through our systematic literature review, we highlighted various aspects related to
crop yield prediction using deep learning techniques. Our analysis reveals that a commonly
used architecture might not be efficient for all studies and cases. This is particularly true
for 2D CNN, which is widely utilized in precision agriculture. However, several studies
have pointed out its limitations in exploring the three-dimensional aspect, a requirement
especially crucial when considering multi-temporal data. Currently, researchers are increas-
ingly adopting hybrid solutions as a technique to compensate for the limitations of simpler
architectures. In particular, a combination of CNN and LSTM is utilized to capture both
spatial and temporal information. This approach enables more realistic estimates that take
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into account various dimensions and facets of the dataset. Different studies employing
deep learning models have utilized satellite imagery for large-scale coverage, particularly
in county-level analysis. Meanwhile, many studies have preferred the use of UAVs to
circumvent atmospheric effect issues and to benefit from their adjustable, high-quality
spatial and temporal resolutions, particularly useful for field-scale yield determination.
Alternatively, some studies have relied solely on environmental data, focusing mainly
on climatic and soil characteristics. For example, [42,67] used these inputs to predict the
yields of tomato (Solanum lycopersicum), potato (Solanum tuberosum), and cotton (Gossypium),
achieving MSE values ranging from 0.017 to 0.039 for tomato and potato and an RMSE
value of 48.213 for cotton. Additionally, other researchers have combined meteorological
data with aerospace imagery to enhance their yield predictions. Conversely, other authors
have chosen to acquire images using manual or hand-held sensors to capture closer images
of the plants and the specific crops under study. In terms of the most frequently covered
agricultural crops by the reviewed articles, cereals, particularly wheat and maize, are
predominant. This emphasis highlights their importance, as they are fundamental to global
food security. In our review, we followed the methodology described above and selected
DOAJ, IEEE, MDPI, and ScienceDirect as the scientific sources for our data. However, it
is worth noting that other databases could provide additional literature articles. The key-
words we chose were diversified to capture a broad range of relevant articles. Nevertheless,
other keywords may be selected and thus might yield varying results. Despite this, the
number of scientific articles we found sufficiently addresses the purposes of this study and
its research questions.

Deep learning has revolutionized various fields including precision agriculture, partic-
ularly yield prediction. Our systematic literature review highlights the significant contri-
bution of this technique, especially in enhancing statistical estimation methods. However,
there are various issues and challenges that this sub-branch of machine learning must
overcome. These include the number of data required, the risk of overfitting, and the
selection of an appropriate architecture to develop an efficient model according to the
input data. Despite this remarkable progress, a significant issue often arises with these
algorithms: the ’black box’ problem. This term refers to the challenge many researchers face
in explaining the detailed workings of the algorithm, leading to concerns about trust in a
mechanism that is unknown and inaccessible to its users. Consequently, there is a growing
demand for the developers of these techniques to establish clear causal relationships in
their models, directly linking input data to the results.

6. Recommended Best Studies for Readers

After addressing the research questions outlined in our methodology and analyzing
various aspects of this research topic, we choose to present a comparison based on several
criteria. This aims to recommend the most noteworthy articles for consideration by future
readers. These criteria include the following:

• The study introduces novel and methodologically original approaches to predict
agricultural yield.

• The study defines agricultural yield in accordance with the established literature,
rather than using discontinuous or alternative measures.

• The data used as input reflect the exploitation of new geospatial technologies.
• The study focuses on yield prediction for major crops, particularly cereals.
• Finally, the selected article demonstrates significant quality.

Based on these comparison points, all the studies mentioned in Table 3 were compared,
and the best studies are the following:

1. The study conducted by the authors of [8], who developed a model based on deep
CNN-LSTM for in-season soybean prediction and accomplished this by exploiting
satellite imagery.

2. The study carried out in [58], which used high-resolution imagery acquired by a UAV
to predict cereal crops using a spatio-temporal DL model.
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3. The study conducted in [109], where the authors presented the prediction of winter
wheat yield using a hybrid deep learning model combining static features and remote
sensing data.

4. The study carried out in [29], in which the authors determined corn yield using high-
resolution hyperspectral data and combining different dimensions of a CNN as a
DL model.

5. The study presented in [44], in which authors developed various models combining
different DL architectures, namely, LSTM and CNN, and used satellite data to predict
soybean yield.

6. The research study carried out in [49], where the authors focused on predicting winter
wheat and corn yields, accomplished this by studying the effects of spatial, spectral, and
temporal data, and proposed a novel technique called SSTNN to establish their prediction.

7. Open Issues and Future Road Maps

Artificial intelligence, with its diverse subfields, is crucial in various sectors, especially
in the prediction of agricultural yields. The wide array of architectures and algorithm
parameters poses a challenge in identifying the optimal combination for accurate yield
predictions. A pressing concern is the ‘black box’ nature of deep learning models, which
conceals the decision-making process and casts doubt on the models’ reliability due to
the lack of transparency in their predictions. Although methods have been developed to
demystify AI decisions, there is a discernible lack of comprehensive reviews that delve
into the fusion of deep learning with Explainable Artificial Intelligence (XAI) specifically
in the context of agricultural yield predictions. Addressing the issues identified in our
research necessitates a detailed review that combines deep learning with XAI, supported by
a well-defined experimental framework. Moreover, integrating Knowledge Representation
(KR) with deep learning could offer sophisticated solutions for crop yield forecasting.
Additionally, exploring new deep learning architectures might yield further advancements
in this field, enhancing our ability to understand and improve yield prediction models,
particularly in the following ways:

• Using high-performance architectures based on transformers, as it was highlighted in
the study conducted in [148], and GANs, and examining the benefits of using a hybrid
solution based on efficient algorithms.

• Exploring other domain adaptation methods, as yield is sensitive from one area to another.

Moreover, we can investigate the advantages and benefits of probabilistic machine
learning frameworks [145], specifically the Probabilistic Neural Network (PNN), which
enhances deterministic models through the application of probability theories for artificial
neural networks. These probabilistic forecasting models contribute to precise decision
making. By accounting for uncertainty, probabilistic models also generate more realistic
predictions, especially when applied to complex datasets, including crop yield determina-
tion. Furthermore, considering that crop yield is a measure spread over multiple seasons,
its prediction can be improved by incorporating advanced spatio-temporal modeling, in-
cluding dynamic spatio-temporal architectures [149]. This involves using the distribution of
probabilities to model the progression of plots over time, predicting future states based on
past information. This modeling is based on modifying the configuration and structure of
objects at different times, capturing important dependencies of the considered phenomenon.
The reason for considering dynamic modeling is to discuss how a specific measure evolves
over time. In other terms, these are models built by understanding historical events and
subsequently creating statistical models that depict the progression from the past to the
present. Multiple dynamic models exist; one well-known example is the non-Gaussian and
nonlinear data model, allowing us to model much more complex phenomena. A perspec-
tive in this regard could be to model crop yield over time by leveraging high-performing
mathematical and statistical models and comparing the results against those obtained
through deep learning. This would enable the derivation of a conclusion regarding the
processing and consideration of the dynamic and spatio-temporal aspects of this measure.
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8. Conclusions

In this paper, we conduct a literature review to address four significant research
questions related to predicting crop yield using deep learning. This involves a systematic
methodology for reviewing the literature and extracting pertinent data. Our study reveals
that deep learning models, especially in specialized fields like intelligent agriculture, exhibit
unique characteristics. Firstly, there is the type of data to be utilized, including their format,
quantity, and adequacy. This necessitates the use of advanced processing techniques, such
as transfer learning or data augmentation. Additionally, the specific nature of the crop
and the chosen architecture play a crucial role in extracting comprehensive information
to enhance the model efficiency. Finally, a notable challenge is the ’black box’ nature of
these models, where the causal relationship between inputs and results remains unclear.
Our systematic review highlights that research articles vary in their use of deep learning
architectures, ranging from Long Short-Term Memory networks, convolutional neural
networks of various dimensions (from 1D to 3D), and the well-known DNN to other
recurrent models like Gated Recurrent Units and more advanced hybrid solutions that are
increasingly popular. Our review also indicates that the cereal sector is the primary focus
in crop yield prediction research, with aerospace imagery from satellites or drones being
the most utilized data source. Additionally, this study offers recommendations about the
best studies in this field and exposes unresolved and open issues, particularly those related
to the ‘black box’ problem in DL models. In our next work, we will delve into the detailed
use of high-resolution imagery for predicting cereal yield at very small scales. Furthermore,
we will employ specific techniques to tackle the ’black box’ challenge in this context.
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