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Abstract: This research proposes implementing a system to recognize the static signs of the Mexican
Sign Language (MSL) dactylological alphabet using the MediaPipe frame and Convolutional Neural
Network (CNN) models to correctly interpret the letters that represent the manual signals coming
from a camera. The development of these types of studies allows the implementation of technological
advances in artificial intelligence and computer vision in teaching Mexican Sign Language (MSL).
The best CNN model achieved an accuracy of 83.63% over the sets of 336 test images. In addition,
considering samples of each letter, the following results are obtained: an accuracy of 84.57%, a
sensitivity of 83.33%, and a specificity of 99.17%. The advantage of this system is that it could be
implemented on low-consumption equipment, carrying out the classification in real-time, contributing
to the accessibility of its use.

Keywords: Mexican sign language; sign language recognition; convolutional neural network;
computer vision; machine learning; dactylology; fingerspelling

1. Introduction

Communication is essential for the social development of the human being. In an
environment where oral languages predominate, the deaf community has developed
different communication systems based on body movements, usually arms, and hands,
including facial expressions. These communication systems are what are known as sign
languages [1]. The variations in grammar worldwide are often influenced by the oral
languages with which they coexist geographically and historically. This influence can
be seen in manual alphabets, also called dactylological alphabets [2], which are a signed
representation of the alphabet of oral languages that seek to expand the capabilities of
sign language. Mexico has developed its dactylological alphabet of 27 signs, 21 static and
the rest dynamic [3]. Static signs are defined by the orientation and position of the hand
for some time without moving it, but if the hand varies its position during that time, it
is called dynamic [4]. Depending on the country or region, there are also other versions,
such as American (American Sign Language), Brazilian (Lingua Brasileira de Sinais), and
French (Langue des Signes Frangaise) among others. So, there has been a wide variety of
studies on developing hardware and software to facilitate communication between deaf
and non-deaf people. There are two main types of solutions: those based on sensors to
measure the positions of arms, hands, and wrists, and those based on image processing,
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mainly using artificial intelligence algorithms for pattern recognition. Among some recent
works, ref. [5] has developed a portable device based on an array of sensors attached to
fingers and wrist, and the signals have also been trained with machine learning (support
vector machine classifier) for hand gesture recognition patterns, and up to 98.63% accuracy
is obtained. Artificial vision and machine learning techniques have made significant strides
in recent years, particularly with the emergence of deep learning and convolutional neural
networks (CNNs).

CNNs have shown remarkable performance in sign language recognition. Using
CNN:s for sign language recognition involves training the network to recognize patterns
in a dataset of sign language gestures. This dataset typically comprises videos or images
of people performing the signs, annotated with labels indicating the corresponding signs.
During training, the CNN learns to identify the unique features of each sign and uses
these features to recognize signs it has not seen before. For example, in [6], a dataset of
28,800 images of ArSLA (Arabic Sign Language Alphabets) is used to train and test a deep
learning model. They used a convolutional neural network (CNN) with three layers and
achieved an accuracy of 94.3% on their test set. In [6], a dataset of 8000 ASL (American
Sign Language) images was used to train and test a deep-learning model. They used a
CNN with five layers and achieved an accuracy of 98.2% on their test set. In [7] a dataset
of 7800 Chinese fingerspelling gesture images was used to train and test a deep learning
model. They used a CNN with nine layers and achieved an accuracy of 96.56% on their
test set. In [8], they used a dataset of 2000 American Sign Language gesture videos;
they used a 3D CNN architecture and achieved an accuracy of 92.8% on their test set.
These studies demonstrated the effectiveness of deep learning models for sign language
recognition, achieving high levels of accuracy on their respective test sets. The use of
various deep learning architectures, including CNNs, LSTMs, and 3D CNNs, highlights
the flexibility and adaptability of these models for different sign language recognition
tasks [9,10]. One of the advantages of using CNNs for sign language recognition is
that they can learn to recognize signs in different lighting conditions, backgrounds, and
camera angles, making them more versatile than traditional computer vision techniques.
Moreover, deep learning allows CNN to learn from a large amount of data, resulting in
higher accuracy and robustness.

To improve the detection of different sign languages, the MediaPipe library has been
integrated into recent studies. For example, some studies employ traditional machine
learning techniques [11,12], others use 3D information and the coordinates obtained from
MediaPipe [13], and some utilize recurrent neural networks (RNNs) [14]. Additionally,
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks [15], as
well as convolutional neural networks (CNNs) [16], have also been explored in conjunction
with MediaPipe.

Related to Mexican Sign Language (MSL), there are two studies [12,17] where machine
learning techniques, including multilayer neural networks and SVM classifiers, have
been successfully applied to LSM recognition, utilizing features such as Hu moments,
Zernike moments, and Histogram of Oriented Gradients (HOG). Notably, Zernike moments
combined with LDA yielded the highest classification accuracy.

This study presents a recognition system for MSL using CNNs and utilizes the Me-
diaPipe [18] module to support recognizing finger and wrist positions. The method used
in this study aims to obtain a database that can be used with other sign languages. The
system can run in real-time with the help of a webcam and can be implemented in portable
systems such as Raspberry Pi.

2. Methodology
The stages in which this process was carried out were as follows:

¢  Obtaining training data.
e Data Preparation
*  Design of neural network architectures, training, and implementation of the models.
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- Early models
—  Corrected models

Implementation in real-time

A scheme of the process is shown in Figure 1.

Stage 1. Imaging
methodology

Methodology
Stage 2. Data
preparation

Handtracking *  Numerical arrays
algorithm design * | + Dataset
Data obtention segmentation

Dataset creation

Stage 3. Design of CNN architectures, training and

implementation

Early models + Corrected models

3 architectures + 2 architectures

4 models + 2 models

Implementation on test * Implementation on test
dataset and analysis

dataset and analysis

l

best model

Stage 4. Real time
implementation

Selectionofthe =+ Final model *+ Implementation

characterization with GPU

Implementationon
Raspberry Pi 4

Figure 1. Research methodology.

2.1. Stage 1. Imaging Methodology

The training data for the CNN models consisted of 3822 images, 182 for each of the 21

LSM hand alphabet static signs. All images were of the hands of a single individual. The
following considerations were taken into account for the images:

The signaling hand must be wholly contained within the image. MediaPipe is capable
of inferring the positions of the wrist and all fingers, even when they are partially
obscured or not fully visible, providing additional information that enhances the
accuracy of hand landmark detection. With this, the minimum classification region
was defined as the area that completely frames the hand, starting from the wrist
towards the distal phalanges of all the fingers.
The photographs must be in color, and their lighting must be such that it allows
distinguishing the fingers and the hand’s position. In this way, it is favored that the
model retains the position of the fingers as a characteristic to be taken into account
and that it not only classifies based on the contour of the hand and the shapes of the
region it delimits.
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*  The photograph must contain points and lines that outline the structure of the hand.
The objective is to provide the algorithm with images that capture the entire gesturing
hand, pose, and structural parts highlighted.

e The image must be equivalent to a photograph of a right hand. This statement is true if
the hand used is the right hand or reflecting on an axis the capture of the signal when
conducted with the left hand. This condition prevents the model from distinguishing
between two cases of the same sign, reducing the number of images for training.

*  The hand must cover the maximum possible region of the image without leaving this
area. In other words, the hand should not look small relative to the photo and should
be positioned in the center of the picture.

Figure 2 shows an example of a photograph of a hand sign that meets the considera-
tions above.

Figure 2. An example of the image obtained for creating its own database is the Letter V of the
dactylographic alphabet of LSM.

2.1.1. Hand Detection Algorithm

A hand detection algorithm based on MediaPipe and OpenCV functionalities was
created to ensure the photographs met the above conditions. This algorithm extracted
photographs that met the conditions described above from video frames from a webcam.
Thanks to MediaPipe, this algorithm framed the area occupied by the hand in the image
and identified its structural parts, which were schematized by points and lines drawn on
the image. In addition, it had the task of identifying if the detected hand was right or left
and reflecting it as required. The size of the photographs obtained was 200 x 200 pixels,
one color and with a blue frame generated by the algorithm to reduce the presence of back-
ground elements in the final image. The set of images used in this study was formed only
with photographs of the hands of an individual. Figure 3 shows examples of photographs
obtained at this stage of all the letters.
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Figure 3. Static signs of the finger alphabet with structural marks. Each image shows a static sign
and below it is shown the letter it represents.

2.1.2. External Database

A similar database from a similar investigation was used ([17]) to verify if the consid-
erations for the images positively impacted the final performance of models. These met all
the considerations raised in this work except for the 1, 3, and 5:

* Insome images, the wrist was not visible.

*  Absence of structural marks.

¢  The hand’s position in the image is not centered, and there is no proportional relation-
ship between the hand and the image.

This database was modified to the images containing the structural marks created by
MediaPipe. However, the other two still needed to be fulfilled. With these data, a CNN
model was compared with a similar one trained with our database. This external database
is comprised of 4347 images of 200 x 200 pixels with three color channels; there are exactly
207 images for each of the 21 signs. In Figure 4, you can see an image of this base after
being processed with MediaPipe.

Figure 4. Example of an image from an external database [17]. In this case, the wrist is not detected
before and after processing the image with MediaPipe.

2.2. Stage 2. Data Preparation

The images were converted to numerical arrays to train CNN'’s architectural proposals.
In the case of our database, this resulted in a numerical arrangement of 3822 x 200 x 200
x 3 elements. For the external one, it was 4347 x 200 x 200 x 3 elements. In both, the first
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factor represents the total number of images, the following two the image size in pixels, and
the latter is associated with RGB channels. A vector of labels useful for the learning process
was created for each set. Each letter corresponds to a number, from 1 to 21, depending on
its position in the alphabet.

No extra filters were applied since the goal was to minimize computational processing
to favor the implementation in real time.

The initial data set was segmented into two samples: training and validation, the same
ones used in the proposed architectures’ training process. The own and external databases
were segmented into 80% for training and 20% for validation.

2.3. Stage 3. Design of Neural Network Architectures, Training, and Implementation of the Models

First, three architectures were proposed, from which four models were obtained. After
analyzing them, two other architectures were proposed.
Features that were used for all architectures:

*  ReLu activation function in all hidden layers

¢ softmax function for the output layer to have a probability vector as an output of
the model

*  Two-dimensional kernels of 3 x 3and 5 x 5

*  Pooling with Max Pooling function and 2 x 2 windows

* No padding

e 1 x1Stride

¢ Dropout ratio equal to 0.2

¢  Categorical Cross Entropy as a Loss Function

¢  Optimizer: ADAM

e  Training with 40 epochs for the first models

¢  Training with 15 epochs for the second models

*  Performance metrics: precision and loss

Early Models

Tables 1-3 show the principle proposed CNN architectures.
The proposed architectures are similar in the following;:

*  In their feature extraction stage, all of them implement at least two convolution stages,
two pooling stages, and exactly one flattening stage where the data transitions from
multidimensional arrays to linear arrays.

*  The output layers have 21 neurons corresponding to each of the 21 signs.

Table 1. The architecture of Network 1.

Layer Features Activation Function = Output

2D Convolution 16 filters of 3 x 3 Relu (198, 198, 16)
Pooling 2 x 2 window Max Pooling (99, 99, 16)
2D Convolution 32 filters of 3 x 3 Relu (97,97, 32)
Pooling 2 x 2 window Max Pooling (48, 48, 32)
2D Convolution 64 filters of 3 x 3 Relu (46, 46, 64)
Pooling 2 x 2 window Max Pooling (23,23, 64)
Flatten Linear concatenation of data — (33,856)
Fully connected 128 neurons Relu (128)

Fully connected 21 neurons Softmax (21)
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Table 2. The architecture of Network 2.
Layer Features Activation Function = Output
2D Convolution 16 filters of 3 x 3 Relu (198, 198, 16)
Pooling 2 x 2 window Max Pooling (99, 99, 16)
Dropout Ratio of 0.2 — (99, 99, 16)
2D Convolution 32 filters of 3 x 3 Relu (97,97, 32)
Pooling 2 x 2 window Max Pooling (48, 48, 32)
Dropout Ratio of 0.2 — (48, 48, 32)
ine 2D Convolution 64 filters of 3 x 3 Relu (46, 46, 64)
Pooling 2 x 2 window Max Pooling (23,23, 64)
Flattening Linear concatenation of data  — (33,856)
Fully connected 128 neurons Relu (128)
Fully connected 21 neurons Softmax (21)

Table 3. The architecture of Network 3.
Layer Features Activation Function = Output
2D Convolution 50 filters of 5 x 5 Relu (196, 196, 50)
Pooling 2 x 2 window Max Pooling (98, 98, 50)
2D Convolution 32 filters of 3 x 3 Relu (96, 96, 32)
Pooling 2 x 2 window Max Pooling (48, 48, 32)
Flatten Linear concatenation of data — (73,728)
Dropout Dropout rate of 0.2 — (73,728)
Fully connected 256 neurons Relu (256)
Dropout Dropout rate of 0.2 — (256)
Fully connected 128 neurons Relu (128)
Fully connected 21 neurons Softmax (21)

The main differences between the architectures are as follows:

¢  Differences in dropout:

—  Architecture 1 does not implement dropout.

—  Architectures 1 and 2 are identical in every way except that Architecture 2 imple-
ments dropout, exactly twice, after the first two pooling stages.
—  Architecture 3 implements dropout in different layers than Architecture 2.

*  Architecture 3 has a less deep feature extraction stage than Architectures 1 and 2, as it
has one fewer convolution.

*  Architecture 3 has an additional layer of neurons, and this layer is wider: it has
three layers of neurons, while Architectures 1 and 2 have only two. This extra layer
has 256 neurons, whereas in Architectures 1 and 2, the layer with the most neurons
has 128.

A model was created with Architecture 1 based on external database images previously
modified with MediaPipe. The training was carried out with data, and model 1 was
generated. It was then compared with model 2, of the same architecture but trained with a
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different database, to verify if the considerations for the images had a positive impact on
the performance of the final models.

The evaluation of the performance of the models with a sample other than the one
used for their training was carried out with a set of images from 4 individuals (none of them
participating in obtaining the training data). In total, 336 images were obtained, four for
each letter for each individual, with the help of the detection algorithm and hand tracking.
With the test results, the confusion matrices of each model for the test set were generated,
and the models were concluded.

3. Results

This section presents the results of the proposed method and its comparison with
other models.

3.1. First Models and Their Results

Table 4 summarizes the main characteristics of the first trained models, presenting
values related to the training process and referring to the training and validation samples.
The training and validation values of loss and accuracy presented in Table 4 correspond to
those obtained in the last epoch of the training process.

Table 4. Characteristics of the generated models.

Characteristic Model 1 Model 2 Model 3 Model 4

Architecture Table 1 Table 1 Table 2 Table 3

Training data External dataset Own dataset ~Own dataset ~Own dataset

Number of network

parameters 4,359,989 4,359,989 4,359,989 18,928,461
Training data loss 0.000090 0.000061 0.000125 0.003309
Validation data loss 0.843211 0.068153 0.071045 0.099641
Training data accuracy (%) 100.00 100.00 100.00 99.90
Validation data accuracy (%) 88.16 98.56 98.04 97.65

Figure 5 depicts the learning curves of each of the models.

Model 1 Model 2

—— Training Loss —— Training Loss
—— Validation Loss —— Validation Loss

1 4 7 10 13 16 19 22 25 28 31 34 37 40 1 4 7 10 13 16 19 22 25 28 31 34 37 40
Epochs Epochs

Model 1 Model 2

Accuracy
o
S

Accuracy

03 —— Training Accuracy —— Training Accuracy
—— Validation Accuracy —— Validation Accuracy

1 4 7 10 13 16 19 22 25 28 31 34 37 40 1 4 7 10 13 16 19 22 25 28 31 34 37 40
Epochs Epochs

Figure 5. Cont.
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Model 3 Model 4

—— Training Loss 25 —— Training Loss
—— Validation Loss —— Validation Loss

1 4 7 10 13 16 19 22 25 28 31 34 37 40 1 4 7 10 13 16 19 22 25 28 31 34 37 40
Epochs Epochs

Model 3 Model 4

a
o

Accuracy
Accuracy

Training Accuracy Training Accuracy
—— Validation Accuracy —— Validation Accuracy

1 4 7 10 13 16 19 22 25 28 31 34 37 40 1 4 7 10 13 16 19 22 25 28 31 34 37 40
Epochs Epochs

Figure 5. Learning curves of the first four models.

3.2. Comparison between Model 1 and 2

The validation loss curve of Model 1 decreases to a minimum after epoch 5 and
then tends to increase, slightly deviating from the training curve. This behavior indicates
overfitting, as the loss in the training data remains stable within a specific range for the last
epochs. However, the validation loss slightly increases, meaning that the model loses some
of its generalization capability in the last epochs.

The comparison between Models 1 and 2 shows that the accuracy achieved by Model
1, 88.16%, on its validation set is considerably lower than that achieved by Model 2, which
was 98.56%. The same behavior occurs with their losses on the validation set, with Model 1
having a higher loss than Model 2.

Since Model 1 and Model 2 have the same architecture but use different datasets for
training and validation, the difference in their performance is attributed to the specific
characteristics of the datasets used in their learning: the external dataset and the in-house
dataset. These differences resulted from the data obtained and the considerations of
the requirements that the images had to meet, aspects that were covered by the hand
detection algorithm.

3.3. Models 2 to 3

Based on the information in Table 4 and the learning curves shown in Figure 5, the
following observations can be made for models 2 to 3:

1. There are no signs of underfitting.

e  From the tenth epoch, both validation and training losses are below 0.5 and
the accuracies are above 90%. In later epochs, there is some stabilization of the
curves within a range of 90 to 100% for accuracy and 0 to 0.5 for loss.

e  The final accuracy values for the training data are more significant than 99.00%,
while those for the validation data are greater than 97.50%.

*  The validation curves do not show a decreasing trend as the number of epochs
increases.

2. There are indications of overfitting. The training and validation curves, for both
loss and accuracy, do not converge after the first intersection between them. This
observation could be because:

¢ The models do not generalize well, but the training and validation data do not
show significant differences, allowing for the stabilization of the curves.
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*  The models generalize well, but there are significant differences between the two
datasets (validation and training).

The second cause is ruled out since the data belongs to the same sample and was
obtained using the hand detection algorithm, which, after the comparison between
models 1 and 2, showed a positive impact on the data collection process.

The first observation (1) indicates that the models adjusted correctly to the training
data, so there is no evidence of underfitting. The last observation (2) does not rule out the
presence of overfitting since it provides evidence of its presence.

To confirm the presence of overfitting, these models were tested on the test set. The
results are shown in Table 5.

Table 5. Performance of the models on test data.

Value Model 1 Model 2 Model 3 Model 4
Architecture Table 1 Table 1 Table 2 Table 3
Training data External dataset Own dataset Own dataset Own dataset
Loss on test data 8.5517 2.7093 2.1647 1.6859

Test accuracy (%) 11.01 67.56 59.82 72.32

Based on the observations made for the models regarding their performance obtained
in the learning process and the results of this test, it was concluded that all models suffered
from overfitting.

3.4. Results of the New Models
Two architectures were proposed to solve the overfitting with specific considerations:
*  Decrease the number of epochs

*  Reduce the capacity of the models
*  Decrease the number of fully connected layers to 2

Increasing the number of training data was not considered due to time constraints,
but all other considerations were applied to the new architectures. In each architecture, the
capacity was reduced in two ways:

*  Architecture 4
The convolutional layers were reduced, and the number of neurons in the fully con-
nected layer decreased; see Table 6.

Table 6. The architecture of Network 4.

Layer Features Activation Function = Output

2D Convolution 16 filters of 3 x 3 Relu (198, 198, 16)
Pooling 2 x 2 window Max Pooling (99, 99, 16)
2D Convolution 32 filters of 3 x 3 Relu (97,97, 32)
Pooling 2 x 2 window Max Pooling (48, 48, 32)
Flatten Linear concatenation of data  — (73,728)
Fully connected 64 neurons Relu (64)

Fully connected 21 neurons Softmax (21)

e Architecture 5
The depth of the model was increased by adding more convolutional layers. Addition-
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ally, the number of neurons was kept the same, but a dropout layer was added as a
regularization process before the convolutional layers, as shown in Table 7.

Table 7. The architecture of Network 5.

Layer Features Activation Function = Output
2D Convolution 8 filters of 3 x 3 Relu (198, 198, 8)
Pooling 2 x 2 window Max Pooling (99, 99, 8)
2D Convolution 16 filters of 3 x 3 Relu (97,97, 16)
Pooling 2 x 2 window Max Pooling (48, 48, 16)
2D Convolution 32 filters of 3 x 3 Relu (46, 46, 32)
Pooling 2 x 2 window Max Pooling (23, 23, 32)
2D Convolution 64 filters of 3 x 3 Relu (21, 21, 64)
Pooling 2 x 2 window Max Pooling (10, 10, 64)
2D Convolution 128 filters of 3 x 3 Relu (8, 8,128)
Pooling 2 x 2 window Max Pooling (4, 4,128)
Flatten Linear concatenation of data — (2048)
Dropout Rate of 0.2 — (2048)
Fully connected 128 neurons Relu (128)
Fully connected 21 neurons Softmax (21)

Table 8 summarizes the characteristics of the two models obtained with these architec-
tures.

Table 8. Characteristics of models 9 and 10.

Characteristic Model 9 Model 10

Architecture Table 6 Table 7

Training data Own dataset Own dataset

Number of network parameters 4,725,109 363,365
Training data loss 0.00296 0.004337
Validation data loss 0.130424 0.082889
Training data accuracy (%) 100.00 99.93
Validation data accuracy (%) 96.60 98.43

Model 9 has more parameters than 2 and 3, its losses are higher than those of the
previous models, and its accuracy achieved on the validation set is lower than in past
models. On the other hand, model 10 has fewer parameters than all other models; its
accuracy on the training data is within the range achieved by models 2 to 4, while its
training loss is higher than the others. However, model 10 achieved better results on the
validation data than models 2 to 4, as its validation loss was lower than theirs and its
accuracy was higher.

Figures 6 and 7 show the learning curves for these two new models.
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Model 9
3.5 —— Training Loss
—— Validation Loss
3.0
25
2.0
a
S
15
1.0
0.5
0.0
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Epochs
Model 9

1.0

0.8

o
o

Accuracy

o
~

0.2

—— Training Accuracy
—— Validation Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epochs

Figure 6. Learning curves of model 9.

From the learning curves (Figure 6), it can be observed that Model 9 performs similarly
to its predecessors. For Model 10, the curves (Figure 7) cut off at several points after
stabilizing their values within the range of 90 to 100% accuracy after epoch 4; the same
happens with the loss curves in the range of 0 to 0.5. This result indicates that the model
generalizes its learning enough to correctly predict 98.43% on the validation set, appearing
to have no overfitting. To confirm this observation, both models were implemented on the
test set. Table 9 shows the performance of the models on this dataset.

Model 10

——— Training Loss
25 —— Validation Loss

2.0

Loss

1.0

0.5

0.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epochs

Model 10

Accuracy
o
=)

~—— Training Accuracy
—— Validation Accuracy

0.2

1 2 3 4 5 6 7 8 9 0 1 12 13 14 15
Epochs

Figure 7. Learning curves of model 10.
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Table 9. Performance of Models 9 and 10 on Test Data.

Value Model 9 Model 10
Architecture Table 6 Table 7
Training Data Own dataset Own dataset
Test Data Loss 2.9042 0.8664

Test Data Accuracy (%) 54.76 83.63

Table 9 shows that model 10 performs better in predicting the test dataset than models
2 to 4 and 9, achieving lower loss and higher accuracy. On the other hand, the performance
of model 9 is comparable to that of models 2 to 4, as its values are within the range achieved
by the previous ones.

It is concluded that:

*  Model 9 has overfitting.
*  Model 10 does not have overfitting.

From the observations made on its training and the results of its test, it is confirmed that
model 10 has the best performance in terms of its generalization ability.

3.5. Selection and Characterization of the Final Model

Since model 10 does not exhibit overfitting and achieved accuracy values of 99.93%,
98.43%, and 83.63% on the training, validation, and test datasets, respectively, it was chosen
as the final model. Figure 8 shows the confusion matrix for the final model.

Model 10

-16

14

12

| L
Predicted

Figure 8. Confusion matrix for model 10.
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It is possible to calculate the following metrics that measure classification performance
using the information from the confusion matrix:
*  true positive (TP): is an outcome where the model correctly predicts the positive class.
*  true negative (TN): is an outcome where the model correctly predicts the negative class.
* false positive (FP): is an outcome where the model incorrectly predicts the positive class.
e false negative (FN): is an outcome where the model incorrectly predicts the negative class
*  precision or positive predictive value (PPV).

TP

PPV = ——
TP+ FP

*  sensitivity, recall, hit rate, or true positive rate (TPR)

TP

TPR= 757 EN

*  specificity, selectivity or true negative rate (TNR)

TN

TNR = 7N Fp

These metrics are summarized in Table 10 and presented in the graphs of Figure 9.

Table 10. PPV, TPR and TNR, by letter, obtained by model 10.

Precision (PPV)  Sensitivity (TPR) Specificity (TNR)

1 A 0.6667 1.0000 0.9750
2 B 0.7778 0.4375 0.9938
3 C 1.0000 0.8750 1.0000
4 D 1.0000 1.0000 1.0000
5 E 0.8462 0.6875 0.9938
6 F 0.6667 0.8750 0.9781
7 G 0.6923 0.5625 0.9875
8 H 0.6667 0.5000 0.9875
9 I 0.9412 1.0000 0.9969
10 L 0.8824 0.9375 0.9938
11 M 0.6000 0.5625 0.9812
12 N 0.7857 0.6875 0.9906
13 (@) 0.9412 1.0000 0.9969
14 P 0.6154 1.0000 0.9688
15 R 1.0000 0.9375 1.0000
16 S 1.0000 0.8125 1.0000
17 T 0.9412 1.0000 0.9969
18 U 0.9375 0.9375 0.9969
19 \% 0.8000 1.0000 0.9875
20 \ 1.0000 0.6875 1.0000
21 Y 1.0000 1.0000 1.0000

Average (X) 0.8457 0.8333 0.9917

Variance (s2) 0.0212 0.0368 0.0001

Standard deviation (s) 0.1455 0.1920 0.0092
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Figure 9. Graphs of the precision, sensitivity, and specificity, by letter, obtained by model 10 on the
test data.

From the graphs (Figure 9) and Table 10, it can be observed that:

The letters N, B, G, A, H, F, P, and M have precision values lower than 0.8000, indicating
that the final model was correct in classifying a sign as belonging to one of these
classes less than 80.00% of the time. In the case of the letter M, its precision was 0.6000,
meaning that of all the times a sign was classified as M, only 60.00% were correct.
For two-thirds of the letters, the achieved sensitivity was higher than 0.8000. The
remaining 7 letters were N, E, W, G, M, H, and B. The model correctly recognized and
classified less than 80.00% of the examples for each letter.

The obtained specificity values were higher than 0.9600, as can be seen in the corre-
sponding graph, indicating that for each class, the model did not classify examples
that did not belong to that class in more than 95.00% of the cases.

The letters N, M, G, B, and H had precision and sensitivity values lower than 0.8000,
making them the worst-classified letters by the model, as less than 80.00% of the
classified examples in these letters actually belonged to them. The model detected less
than 80.00% of the examples that actually belonged to these letters. For example, in
the case of the letter H, only 66.67% of the classified examples were correct, and the
model only detected half of the test set examples corresponding to that letter.

The best-classified letters were D and Y, as their precision and sensitivity values were
both equal to 1.000.
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*  The average of the values in the table, as reported in the same, keeps all values
above 0.80.

3.6. Real-Time Implementation

The final system consisted of real-time implementation of the final model, the hand
detection algorithm, and some OpenCV functionalities. Figure 10 shows the functioning of
the final system and Figure 11 shows the system in operation.

Image obtention

l Image classification
200 pixels RGB K
Processing Inputimage
- ¢ Escalationand '
Hand tr.acklng resizing CNN model * Probability
algorithm

* Drawinghand vector

sjaxid 007

. Feature Neural
* Detection Using | e sc.hematlcs extraction Network o Letter
Mediapipe * Right hand detected
image

+

]

1

i

]

1

[ v

1

| Display window

1

Real time implementation Dputlinags L w
Classified image as Bounding box
was sent it to the Original Letter detected
model frame with? Probability
Hand schematics
Type of hand

Figure 10. Functioning scheme of the final system.

Real Time Implementation
Hand detected I Letter detected I

Letter \
U 'S

98.03

Image used
by the model

Probability

Bounding box

Figure 11. Real-time testing.

The system was run on a computer with a GPU, and on one without a GPU; in
both cases, the fluency of the operation was such that it can be considered that real-time
classification of manual signs was achieved. The final system used functionalities from
Keras for its execution on computers with a GPU. In the case of computers without a GPU,
TFLite was used to run the model, eliminating the need for a GPU and thus guaranteeing the
accessibility of the final system implementation. As a result, it was possible to implement it
on a computer with a GPU as well as on a Raspberry Pi 4 - 2G (see Figure 12) using TFLite,
in this case, the delay between the gestured sign and the one displayed on the screen was
noticeable, with an average delay of 0.58s obtained after testing.
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Figure 12. Implementation of the final system on the Raspberry Pi 4, with an average response time
of 0.58 s.

3.7. Technical Limitations and Improvement Proposals

Based on the technical limitations observed during the real-time testing, some propos-

als for improvement are as follows:

The input images to the models must comply with the specifications outlined previously.
The machine learning model’s performance depends on the hand detection and track-
ing algorithm to obtain and process images. If this algorithm fails, then the classifica-
tion is defective.

The lighting on the hand and the color of the image background. The hand detection
algorithm fails when the background color resembles the color of the hand or when
the hand is not visible. In these cases, the hand’s position that is schematized with
lines and points may not correspond to the real position of the hand.

Sign classification depends on the view from which they are shown to the camera. The
origin of this limitation arises from the training dataset, whose views for each sign are
limited. By views, we mean lateral, frontal, superior, and posterior. For the views used
in the training process, certain variations in their perspective were considered, but not
enough to be considered as a different view. An example of this occurs with the letter
D; a lateral view was used for its training, and the model predicts another letter when
a frontal view is used. In Figure 13, it can be seen how the letter D is confused with
the letter I when changing the view.

Figure 13. Confusion between the letters D and I due to the difference in appearance.

The letters worst classified by the final model were N, M, B, G, and H because they had

values less than 0.80 in precision and sensitivity (see Table 10). From the confusion

matrix of model 10 (see Figure 8), it is highlighted that the letters G and H were
confused with one another. This situation is attributed to the multiple convolution
stages, which condensed the characteristics of the index and middle fingers, making
it difficult for the model to distinguish between the case where only the index finger

was extended and the case when the middle finger accompanied it. Something

similar happened with the letters W and V. It is important to highlight that the letters’
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precision, sensitivity, and specificity estimates were obtained with the test dataset,
which was limited to only four individuals. Expanding the test dataset to consider
hands into a broader spectrum of physical complexions is necessary to obtain more
representative population values. As the test dataset is expanded, the degree of
generalization achieved by the final model over the population in general can be
determined more accurately.

Even when the input image to the classifier model is a hand that does not represent
any sign in the finger alphabet, the model will classify it within one of the 21 classes
associated with the letters. An example of this is presented in Figure 14.

Figure 14. Classification of a sign that does not belong to the finger alphabet.

To address the dependence on the distance between the hand and the camera. The
structural points of the hand that are drawn on it are not scaled to maintain a propor-
tion with respect to the pixel size of the area on which the hand is framed, causing the
schematic points to overlap at specific distances between the hand and the camera,
hindering the classification task of the models. For example, in Figure 15, the sign
of the letter C is classified as O when the hand moves away from the camera. This
condition is not a significant problem, as it can be solved by modifying MediaPipe to
maintain proportionality between points and the captured hand.

Figure 15. Confusion between the letter C and O due to the distance.

4. Discussion

Similar works have focused on American Sign Language (ASL) signs, which present

similarities to those of Mexican Sign Language (LSM) covered here. The 21 static signs
of the LSM manual alphabet have slight differences from their counterparts in ASL; in
addition, the latter has static signs for the letters K, Q, and X. These investigations use
various methodologies, two of which are highlighted for their similarity to this work:

Methodologies are based on classifying and recognizing images of hands gesturing a
sign. The images are sent to Al models trained for recognition and classification.
Methodologies are based on the classification of 2D spatial coordinate values asso-
ciated with structural points of the hands. Currently, Mediapipe predominates for
these, as it allows the generating coordinates of structural points of the hands, which
Al models process for their classification and interpretation.

Regarding the methodology of this research, the following is highlighted:

Classification based on enriched images.
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e Use Mediapipe to enrich hand images by tracing points and lines that schematize the
hand’s structure.
¢ Use of convolutional neural networks for the classification process of photographs.

Regarding the classification of coordinates, it is noteworthy that Masanao Yasumuro
and Kenya Jin'no’s research [19] achieved 100% accuracy on their validation set. In that
project, the 24 static letters of ASL were covered, and more than 1200 example samples
were obtained for each one, segmented into 80% for training and 20% for validation. The
classification was conducted with a LinearSVM and used 2D data of hand point coordinates
obtained with MediaPipe. From Table 8, it can be seen that the accuracy of model 10 in this
project was 98.43%, using six times fewer training examples for each sign. The work of
Sundar B, Bagyammal T [20] achieved 99% accuracy on a validation set in the recognition
of 36 ASL signs, using MediaPipe and LSTM. On the other hand, Arpita Haldera and
Akshit Tayade [11] achieved 99.15% accuracy using an SVM, 98.21% with a KNN, 98.57%
with a random forest and a decision tree, 97.12% with an ANN, and 94.69% using an
MLP. The accuracy achieved here (98.43%) with a CNN is within the range obtained in
all previous investigations. Unlike this work, the previous methodologies were oriented
towards classifying the coordinates of the 21 points generated by MediaPipe when detecting
a hand; it is worth noting.

Regarding image classification, Prangon Das, Tanvir Ahmed, and Md. Firoj Ali [21]
developed a methodology for recognizing static ASL signs using Deep CNN, achieving
a validation accuracy of 94.34%. This accuracy value was higher than several existing
examples up until that year that employed methodologies based on the use of Kinect or
an AlexNet configuration ([22]). MediaPipe was not used in this study, and fewer training
data were employed in the current research than those used for Model 10.

Murat Taskiran, Mehmet Killioglu, and Nihan Kahraman [23] achieved an accuracy of
98.05% using a CNN operated in real time. The classification system required determining
skin color and the shape and location within the frame. These last two steps were achieved
using the convex hull algorithm, which generated images sent to the model for classification.
This detection-classification hand methodology is similar to the one addressed in this study,
except that MediaPipe was used to handle hand color, detection, and location. Nevertheless,
the accuracy value results are similar. Therefore, MediaPipe allowed for the elimination of
certain pre-processing stages.

After comparing the performance of models 1 and 2 regarding the hand detection
algorithm, it was observed that both models had overfitting, but it was more pronounced in
model 1. The images generated by the hand-tracking algorithm helped prevent overfitting.
The generated images allowed for a lower error and higher accuracy in the validation data.
This observation is attributed to the fact that the algorithm ensured that the generated
images correctly framed the hand without losing any of its areas of interest and maintained
a relationship between the image and the captured hand. As a result, the CNN did not
need to learn to identify manual alphabet signs whose presence in images needs to include
specific data, such as a missing finger or wrist location. In this way, the algorithm reduced
the workload of the neural network, which contributed to requiring less complexity to fit
the training data. Equivalently, it reduced the amount of training information required for
the trained models to achieve a certain level of performance in their tests.

Architectures 1, 2, 3, and 4 had more capacity than required for the problem, which
resulted in overfitting for the models generated from these architectures: 2, 3, 4, and 9,
respectively. The CNN architecture best adapted to the sign classification was architecture
5, which had more convolution and pooling stages, fewer hidden layers, applied dropout
for regularization, and fewer parameters (see Table 7). The best-performing model in the
tests was obtained with architecture 5, and overfitting was avoided. The architecture alone
was not solely responsible for its performance in the tests; the hand detection algorithm also
had an influence. Model 10 was selected as the final model due to its good performance.

The final CNN model accomplished an accuracy of 83.63% on the test set, which was
achieved due to the absence of signs of underfitting and overfitting in the final model,
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indicating good generalization capacity. This behavior corresponds to the fact that the
capacity of the final model is suitable for the training sample. However, the model’s
generalization was also conditioned by how representative various users concerning the
population, which in this case consists of manual signs of the dactylological alphabet of
LSM gesture the training sample with a great variety of differences in the shape and size of
their hands and components.

Within the context above, the final system of this research presents an alternative
methodology to existing ones. It achieves similar results in classifying static signs of a
manual alphabet, in this case, the LSM. The advantages of this methodology over existing
ones are the use of a smaller amount of training data, the absence of image pre-processing
stages based on filters, and the use of small CNN architectures. These advantages were
made possible using MediaPipe, allowing for real-time implementation.

5. Conclusions

When applied to images and video frames, the hand detection algorithm accomplished
its task. It obtained images containing graphical information about the hand structure
drawn on it and other considerations related to the type of hand and the proportionality
between the hand and the image. The proper functioning of this algorithm was influ-
enced by the lighting conditions of the environment and background, with this influence
accentuating when the background color was similar to the skin color of the hand.

The training set was composed solely of photographs of one person; however, the
hand detection algorithm was used to abstract the characteristics of the photographed hand
through its schematic representation with points and lines to reduce the dependence of the
trained models on data such as skin color, specific finger shapes, and finger size. The final
model achieved a level of precision in the test data of 83.63%, which corresponded to a
different type of hands. Therefore, it can be said that enriching the images with schematic
drawings proved to be beneficial for the performance of the models, as this provided
them with extra information about the hand’s position, which is more abstract than just
having the image of the hand itself. As a result, the final model can generalize with a
reasonable degree of precision on a test data set different from its training data. This result
is noteworthy, given that only 166 images per letter were used for training, and these were
taken from the hands of only one individual. Increasing the number of training samples
and making them more diverse is recommended to increase their representativeness.

Since real-time classification consisted of implementing the final model together with
the hand detection algorithm, its operation was conditioned to the operation of both.
The fluency in implementing the final system was achieved by avoiding previous filters
on the input images and keeping the final CNN model with few parameters (363, 365),
compared to the other models obtained in this study. With this, it was possible to make the
implementation computationally accessible for devices with limited resources, such as a
Raspberry Pi 4 or laptops without a GPU and few processing cores.

The average, per letter, of precision, sensitivity, and specificity obtained by the final
model were, respectively, 84.57% with a standard deviation of 14.55%, 83.33% with a
standard deviation of 19.20%, and 99.17% with a standard deviation of 0.92%. The letters
best classified by the final model were D and Y, with a precision and sensitivity of 100%
during testing. The worst classified letters were N, M, B, G, and H. In the case of the
last letters, the model confused them. It is believed that due to multiple convolutions,
the model found it challenging to distinguish between the case when only the index
finger was extended and the case when the middle finger accompanied it, as convolutions
contributed to mixing and condensing the features of these fingers, negatively impacting
the classification. Something similar happened with the letters W and V.

This project can serve as a didactic tool aimed at introducing and training new users of
sign language, which is efficient in its work and, above all, accessible for its implementation,
meaning that it requires few computational and economic resources, thus presenting itself
as a viable solution for implementation.
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