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Abstract: Aircraft maintenance is a complex process that requires a highly trained, qualified, and
experienced team. The most frequent task in this process is the visual inspection of the airframe
structure and engine for surface and sub-surface cracks, impact damage, corrosion, and other irregu-
larities. Automated defect detection is a valuable tool for maintenance engineers to ensure safety and
condition monitoring. The proposed approach is to process the captured feedback using various deep
learning architectures to achieve the highest performance defect detections. Additionally, an algo-
rithm is proposed to estimate the size of the detected defect. The team collaborated with TUI’s Airline
Maintenance Team at Luton Airport, allowing us to fly a drone inside the hangar and use handheld
cameras to collect representative data from their aircraft fleet. After a comprehensive dataset was
constructed, multiple deep-learning architectures were developed and evaluated. The models were
optimized for detecting various aircraft skin defects, with a focus on the challenging task of dent
detection. The size estimation approach was evaluated in both controlled laboratory conditions and
real-world hangar environments, providing insights into practical implementation challenges.

Keywords: defect detection; defect estimation; aircraft inspection; unmanned aerial vehicles; deep
learning; UAV; visual checks; aircraft maintenance

1. Introduction

Aviation is considered the safest mode of transportation, and there are various reasons
for that. The most relevant to the present research is the strict maintenance standards that
are enforced by stringent regulations. A vital part of every maintenance schedule is the
inspection procedure to enforce airworthiness as the aircraft manufacturers and relevant
organisations define it, e.g., the Civil Aviation Authority (CAA), European Union Aviation
Safety Agency (EASA) and Federal Aviation Administration (FAA). At the same time, the
airline industry finds its pace recovering from the COVID-19 period, having matched in
2023 the market size of 2019, which was the last known year of growth [1], starting again to
fund and explore smart and sustainable technologies in manufacturing and maintenance.

The most common and frequent method of inspection is visual inspection. For large
aircraft, visual inspections constitute over 80% of the inspection procedures and 60% of the
Airworthiness Directives issued by the FAA for the duration of 5 years during the 1990s [2,3].
It is evident that visual inspection is an essential approach to avoid safety-related failures
in aircraft, offering a suitable and cost-effective tool for evaluating the overall condition of
the aircraft and its components. Consequently, the precision and proficiency in conducting
visual inspections emerge as pivotal elements in ensuring the ongoing safe operation of the
air fleet. Certified maintenance engineers or technicians carry out visual inspections, and
they can range from a casual walk around to a detailed examination of a specific area or
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system. Human inspectors use various tools and equipment, such as flashlights, magnifying
glasses, and mirrors. When the region of interest is not within touching distance, they
use cherry pickers, scissor lifters, ladders, or scaffolding [4]. The most common targets of
visual inspections include damage from impact, friction, fatigue, cracks, dents, scratches,
leaks, loose or missing parts, lighting strikes and any other case that requires maintenance
interventions [5].

Even if a visual inspection is the most frequently used approach, it has specific weak-
nesses affecting its reliability and accuracy. The common issues influencing the result
are ease of access to the part under inspection, environmental conditions (e.g., weather,
lighting), poor reporting, and human factors. It is not uncommon that the related personnel
sometimes may overlook minor damages, not pay sufficient attention to critical areas, or
neglect proper documentation of inspection findings because of time pressure, anxiety,
fatigue, or poor training [3].

The visual inspection consists of several stages, which can be summarised as a series
of the following tasks, including search, detection, judgment, and final decision [6]. There
is a lot of research and industrial development activity to replace a few or, ultimately, all of
them with automated procedures. There are efforts to automate the inspection procedure
using either ground or aerial robotic platforms, but also to automate the detect the issue,
characterise the type, measure the size, and report it [7,8]. The final decision, though, is still
in the hands of the certified and experienced maintenance technician, which is appropriate,
adhering to the paradigm of developing smart tools for humans and not replacing them. In
parallel to using mobile platforms, hangars outfitted with sensors (often called “Hangar
of the Future”) provide fixed camera networks that aim to identify defects using visual
feedback [9].

Unmanned Aerial Vehicles (UAVs) attract interest in introducing automation in visual
aircraft inspection. They show benefits like safety enhancement, avoiding personnel work-
ing at heights, cost efficiency, time savings, and consistent data collection and accuracy.
However, there are also limitations, such as personnel not being allowed to work simulta-
neously during the inspections, being weather-sensitive if flying outdoors, and creating
potential damage if there is human error (in remote-controlled UAVs) or technical glitch
(in autonomous UAVs). In addition, regulatory compliance and certification are always
necessary for aviation-related tasks and are still in progress for the final adoption. The
potential benefits outnumber the weaknesses, and research on using UAVs to capture visual
feedback and perform artefact detection tasks is very popular. One of the first reported
attempts to perform inspection checks using UAVs was made by EasyJet in collaboration
with Coptercraft, Measurement Solutions and Bristol Robotics Laboratory in 2014. The
UAV was teleoperated, and the focus was on the lightning-damaged sites [10].

The advantages of visual inspection can be significantly enhanced by developing algo-
rithms to identify the defects and notify the maintenance personnel with a well-formatted
report. The outcome can be classification, detection, or defect segmentation, depending
on the sophistication of the approach. The techniques utilised were based primarily on
Convolutional Neural Networks (CNN) following the ground-breaking performance of
AlexNet in the 2012 ILSVRC competition [11]. In 2017, one of the first attempts at applying
Deep Neural Networks (DNNs) in defect detection was presented by Malekzadeh et al [12].
Their approach also involves the Speeded Up Robust Features (SURF) method to locate the
regions of interest candidates, which become the patches where the DNN will focus, giving
a considerable boost in performance. Bouarfa et al. utilised Mask Region-based Convo-
lutional Neural Network (Mask R-CNN) to perform defect detection only for dents [13],
which admittedly is one of the most important artefacts that maintenance personnel want to
detect. The dataset was limited to 100 images, and they applied augmentation techniques to
improve previous efforts [14] that reported lower accuracy and recall. A similar work [15],
as presented by Yasuda et al., applied a Mask R-CNN approach to identify various types
of aircraft skin defects, using 200 annotations on 13 images. Avdelidis et al. presented a
study [16] classifying seven common types of defects using CNNs. Although the dataset
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was relatively small and unbalanced to the extent of the defects they were targeting, the
accuracy level was promising. A slightly different approach presented by Ren et al [17].
was to use ensembles of CNNs instead of single CNNs to combine the inferences of multiple
classifiers through a higher-level function. They used a specific dataset from a borescope
inspection of aircraft propeller bores, including 600 images (half with defects and half
defect-free). The interesting point that they share, apart from the improved performance
compared to the single CNN, is that ensembles eliminate false negatives, which is a criti-
cal aspect of the performance of defect detectors in visual inspection concepts. Another
interesting approach was presented by Miranda et al. in [18]. Their work was focused on
inspecting the state of aircraft exterior screws. They combine CNN to detect screws and
Generative Adversarial Network (GAN) to generate screw patterns that are compared to
detect missing or loose screws on the actual aircraft.

A more recent and advanced approach is presented by Ding et al [19]. where in
addition to identifying the defects, they performed instance segmentation. Using this
technique, the algorithm outputs the defect regions at a pixel level. To achieve that, they
utilised a Mask Scoring R-CNN modified by adding an attention mechanism, a feature
fusion module and a custom classifier head. In addition to the suggested architecture,
the authors offered to publicise the dataset containing 276 images of aircraft skin defects.
Using the custom topology, they claim they improve the defect detection and segmentation
performance compared to a vanilla implementation using the original methods, such as
Mask R-CNN. Although the study shows promising results, the defects included in the
dataset are either paint detachments or scratches, which are the most noticeable and salient
issues that can be found on the skin, boosting performance at high levels.

In deep learning-based approaches, researchers have also tried one-stage (proposal-
free) object detection algorithms, such as You Only Look Once (YOLO) algorithms [20].
Apart from not having one more stage to generate the region proposals, compared to Mask
R-CNNs [21], they are faster and more suitable for real-time applications. However, in
general, they are less accurate and struggle with small objects. In [22] Qu et al. described an
approach to detect surface defects on aircraft engine components based on YOLOv5. To in-
crease its performance, they utilised a dual-path routing attention mechanism, replaced the
C3 module with C3-Faster, used normalised Wasserstein distance, and added a lightweight
up-sampling module. They used a dataset of 1200 images in a very controlled environment
since they placed an industrial camera perpendicularly 200 mm above the test samples.
Their defect classes were pits, cracks, scratches, and roughness. They presented the results
by comparing plain YOLOv5 with improved implementation. The suggested solution
enhanced the recognition of small targets and showed better performance in detecting
scratches among all targeted classes.

In parallel with the deep learning-based methods, some researchers explore defect
detection using classic image processing techniques. While deep learning offers significant
advantages in terms of automation and handling complex patterns, classic image processing
techniques remain valuable due to their lower computational requirements, transparency,
faster deployment, flexibility, cost-effectiveness, robustness with small datasets, and the
ability to leverage domain expertise. These benefits make them particularly suitable for
certain applications in aircraft defect detection. Jovancevic et al. presented in [23] an
approach using a pan–tilt–zoom (PTZ) camera mounted on a ground robotic platform.
The aim was to identify issues ranging from unlatched oxygen bay doors to engine fan
blades. Their approaches are based on regular shape detection, using tools like the Hough
transform, Fourier transform, and logical assumptions of the component under inspection
regarding its normal and faulty outlook. Their test results were outstanding, reporting
a worst-case accuracy of 96% and no false negatives. Similarly, Aust et al [24]. went
one step further. In a strictly bounded problem, such as defects on the edges of engine
blades (nicks, dents and tears), they managed to identify and measure them using only
image processing techniques. They also added a decision support module, which helps
the inspector determine the blade’s serviceability. They achieved good detection and
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measurement results, proving that image processing could become a valuable tool for a
small dataset and well-defined geometrical anomalies.

Researchers generally use machine learning to detect various types of defects, such as
missing paint, scratches, peeling, and open latches. This research focuses explicitly on dents,
which are the most demanded type of defect in the industry and also the most challenging
to detect. Based on discussions with maintenance professionals, the dents are the category
in which visual inspection faces the most significant challenges, as it is hard to spot them on
the surface (there is no colour differentiation). To explore the benefits of utilising different
architectures, various approaches were assessed from the TensorFlow 2 Detection Model
Zoo, and the five most promising ones were selected for more detailed assessment. In an
effort to experiment with different real-life cases and prove that the experiment is close to a
realistic case study, a dataset was built, consisting of 1518 images with 6816 annotations,
including dents, screws, missing paint, repairs and scratches. To the best of our knowledge,
this is the most extensive dataset mentioned in a research paper addressing one of the
significant problems of aircraft visual inspections, which is poor testing and validation [25].
The industry currently demands more quantitative approaches over qualitative ones. It
will be very beneficial not only to spot defects in an image frame but also to estimate their
size. The second part of this work introduces a potential methodology for calculating defect
dimensions by utilising the inference bounding box size as the region of interest.

2. Data Acquisition and Methods
2.1. Dataset

Collecting enough representative data for training, validating, and testing the de-
veloped models is one of the most challenging tasks in any data-related research project.
There are two primary difficulties with that: finding related images with defects and an-
notating each image manually. An alternative approach often used to overcome these
challenges is to use open-source data to train and evaluate the performance of the devel-
oped models. However, in this instance, there is no dataset available due to privacy and
confidentiality concerns, which are obstacles that need to be addressed in order to proceed
with this research.

The development of the dataset was a pivotal aspect of the project and could not have
been achieved without the support of the project partner, TUI’s Group Base maintenance
hangar in Luton airport. The requirement was to find images of aircraft skin, including
various types of defects, focusing on dents. The only way to access these sources was
through a maintenance, repair, and overhaul (MRO) facility, which the partner facilitated.
Cranfield University researchers frequently visited the hangar during the project, capturing
different yearly maintenance cycles (Figure 1). On every visit, the team was flying inside the
hangar a Commercial-Off-The-Shelf (COTS) drone, Parrot Anafi (Parrot Drones S.A.S., Paris,
France), outfitted with a camera on an integrated gimbal capturing 4 K footage and 21 MP
stills. To complement the procedure in places underneath the fuselage or in dangerous
and crowded places (e.g., close to scaffolds), a handheld camera was used, GoPro Hero 11
(GoPro, Inc., San Mateo, CA, USA), with the ability to capture 27.6 MP still photos in linear
mode to eliminate barrel distortion. Complementary, whenever there was a good reason for
that, and a team member was unavailable to capture it, maintenance engineers used their
mobile phones and shared the images on the next visit. These images were also included, as
they do not negatively affect the consistency of the image acquisition source; instead, they
will increase the versatility of the suggested solution. The suggested solution targets indoor
environments such as hangars, where factors such as different illumination conditions due
to the time of the day and weather do not affect the performance of the solution.
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Figure 1. Data collection: (a) the Parrot Anafi drone (yellow frame) is flying inside TUI’s Group
Hangar at Luton airport; (b) Boeing 737-400 ground demonstrator in Cranfield’s University DARTeC
Smart Hangar.

The UAV flights were performed inside the hangar, so there were no disturbances
due to wind, which usually happens when flying in outdoor environments. The drone
was teleoperated by a certified pilot, covering the entire aircraft. Maintenance personnel
also guided the pilot to focus more on problematic areas illustrated on the aircraft’s Dents
and Buckles charts. During the data acquisition, hours of video flights and images were
captured from the drone and handheld camera. The distance from the aircraft and the zoom
level were experimented with. The visibility of the defects, particularly for dents, was not
noticeable. Compared to the raw live flight video, the still photos were an easier option for
locating the dents and working comfortably in the annotation phase. The frames of interest
were manually cropped as snapshots for the video footage and treated as image frames
in the remaining workflow. The handheld camera was also very convenient for capturing
dents from different points of view until an angle that clearly revealed the artefact on the
surface was found. The screening process for compiling the data was to identify images
with defects. In a few aircraft, the MRO operator also provided the Dents and Buckles
charts to facilitate the team’s effort to locate defects in the aircraft skin. A decision was
made not to crop the images to focus on the defects by removing the (often complicated)
background, which would be advantageous for detection performance but somewhat
unrealistic in the online automated defect detection system. Image acquisition systems do
not focus on defects; they aim to cover the entire aircraft surface from a predefined distance.
The initial raw images were resized to a lower resolution. For every image, the size was
reduced by 80% of the initial dimensions; for instance, original photos sized at 5184 pixels
by 3888 pixels were resized to 1036 pixels by 777 pixels.

Annotating the image is a laborious task that must be completed diligently to lead to
promising results. The selected annotation tool was LabelImg which is fully compatible
with the workflow and widely used in the research community. In the working scenario,
five different classes of artefacts were decided to work with (Figure 2). The selection of
these classes is not random, as the primary objective of the trained model was to detect
surface aircraft defects and, more specifically, dents. However, the dataset lacks balance
due to a scarcity of collected images containing dents.
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Figure 2. These are the five different classes that are considered in the approach: (a) dent; (b) missing
paint; (c) screw; (d) repair, and (e) scratch.

The dataset was split into three parts to form the required three individual sets: the
training set, the validation set and the testing set.

A stratified approach was implemented in the dataset splits to achieve balance across
selected classes within each subset, as depicted in Table 1. This stratification ensures
that each subset maintains a similar distribution of target variables, a practice commonly
employed to mitigate potential biases and ensure the robustness of the results.

Table 1. Different types of defect allocations for training, validation, and testing datasets.

Class Validation
Annotations (%)

Testing
Annotations (%)

Training
Annotations (%)

Total
Annotations (%)

Dents 80 (11.2%) 131 (14.2%) 365 (6.9%) 567 (8.3%)

Missing paint 236 (33%) 334 (36.1%) 1723 (33.3%) 2293 (33.6%)

Screw 230 (32.2%) 257 (29.8%) 1724 (33.3%) 2229 (32.7%)

Repair 112 (15.7%) 125 (13.5%) 811 (15.7%) 1048 (15.4%)

Scratch 57 (8%) 59 (6.4%) 563 (10.9%) 679 (10%)

Total
Annotations 715 924 5177 6816

Percentage 10.5% 13.6% 76.0% 100%

2.2. Defect Detection

Object detection is an emerging method that addresses challenges across various
domains, including medical imaging, autonomous driving, and security. Employing object
detection techniques for aircraft structure inspection to identify artefacts (e.g., scratches,
dents) is a promising method to enhance manual inspection. In computer vision, object
detection is a method that can be used in both images and video media. This involves
utilising a trained model capable of detecting, locating, and characterising objects by
drawing bounding boxes around them.

As data play a significant role in building a model, selecting a machine learning frame-
work that can support experimentation, customisation, and insightful metrics is equally
essential. Among the most common in the research community, the TensorFlow Object
Detection API (Application Programming Interface) was selected. This well-documented
framework offers an open-source ecosystem for constructing, training, and deploying
detection models. It supports pre-trained models from the TensorFlow 2 Detection Model
Zoo and custom model development.

2.2.1. Pre-Trained Models

One of the most beneficial techniques in using deep learning frameworks in computer
vision tasks is to use a pre-trained model that is being trained for general object recognition
using a vast dataset with many classes and apply the knowledge of this pre-trained model
to a new dataset. Central to TensorFlow 2’s ecosystem is the “Detection Model Zoo”,
a repository of pre-trained models that serve as powerful tools for various computer
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vision tasks. TensorFlow provides a collection of 43 detection models pre-trained on the
COCO 2017 dataset (Common Objects in Context). These models serve as a foundational
framework for general object recognition. With additional training on a customised dataset,
they can be tailored to detect specific objects of interest.

Initially, 11 of the 43 pre-trained models underwent an initial evaluation. This as-
sessment selected the top 5 performing models for further analysis. Table 2 presents
essential information for each pre-trained model selected, including speed (measured as
the processing time for an input image) COCO mAP (mean Average Precision metric).

Table 2. The five top-performing models that were selected for the experiments.

Model Speed (ms) COCO (mAP)

SSD MobileNet V1 FPN 640 × 640 48 29.1

Faster R-CNN ResNet50 V1 640 × 640 53 29.3

EfficientDet D0 512 × 512 39 33.6

SSD ResNet50 V1 FPN 640 × 640 (RetinaNet50) 46 34.3

EfficientDet D1 640 × 640 54 38.4

Since the downloaded models were trained on different datasets and parameters, it
was crucial to fine-tune them according to application-specific requirements. Throughout
that process, there are three main configurations: the model configuration (Table 3), the
training configuration (Table 4), and the evaluation.

Table 3. The model configuration specifications 1.

Model
Configuration

Object
Detection Model

CNN Feature
Extraction

CNN Feature
Fusion

SSD MobileNet V1 FPN
640 × 640

SSD with a Mobilenet v1 + FPN
feature extractor MobileNet V1 backbone Feature Pyramid Network

(FPN) architecture

Faster R-CNN ResNet50 V1
640 × 640 Faster R-CNN with ResNet-50 (v1) ResNet-50 (v1) backbone ResNet-50 (v1) backbone

EfficientDet D0 512 × 512 SSD with an EfficientNet-b0 +
BiFPN feature extractor EfficientNet-b0 backbone BiFPN (Bidirectional Feature

Pyramid Network)

SSD ResNet50 V1 FPN
640 × 640 (RetinaNet50)

SSD with Resnet 50 v1 FPN
feature extractor ResNet-50 (v1) backbone Feature Pyramid Network

(FPN) architecture

EfficientDet D1 640 × 640
SSD with an EfficientNet-b1

backbone and BiFPN
feature extractor

EfficientNet-b1 backbone BiFPN (Bidirectional Feature
Pyramid Network)

1 In the model’s configuration, the image resizer reduces the images to 640 × 640.

Table 4. The training configuration specifications 1.

Training Configuration Data Augmentation Options

SSD MobileNet V1 FPN 640 × 640 Horizontal flipping and random scale crop

Faster R-CNN ResNet50 V1 640 × 640 Random horizontal flip

EfficientDet D0 512 × 512 Horizontal flipping and random scale crop

SSD ResNet50 V1 FPN 640 × 640 (RetinaNet50) Horizontal flipping and random scale crop

EfficientDet D1 640 × 640 Horizontal flipping and random scale crop
1 In the training configuration, the momentum optimizer was used, the batch size was 32 images, the number of
steps 300,000, the warmup steps 2500, the learning rate base 0.08, and the warmup learning rate 0.001.

During the evaluation stage, all architectures were evaluated using the same con-
figuration. Specifically, a batch size of 1 was used without enabling shuffling, and the
number of epochs was set to 10. The evaluation metrics used were coco_detection_metrics,
pascal_voc_detection_metrics, and oid_V2_detection_metrics.
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2.2.2. Loss Functions and Evaluation Protocols

After training the model, it has to be ensured that it generalises correctly in unseen
examples. The weaknesses are identified by assessing performance the performance of
the model, and their treatment will lead to optimisation. The functions that quantify
the disparity between predicted outputs and the actual target values are known as loss
functions. In this context, the focus will be primarily on the following loss functions:

• Classification Loss: measures the difference between predicted class probabilities
and the actual class labels and quantifies how well the predictions match the true
class labels.

• Localization Loss: measures the discrepancy between the predicted bounding box
coordinates and the ground truth bounding box coordinates.

• Regularization Loss: This term is added to the total loss function to prevent overfitting
by penalising large weights or complex models and imposes constraints on model
parameters to encourage the model to generalise unseen data better.

• Total Loss: represents the overall error, which typically combines various individual
loss terms, such as classification, localisation, and regularisation loss, into a single
scalar value.

Furthermore, as part of model evaluation, the selected framework provides various
evaluation protocols as part of its Object Detection API. These protocols, including COCO
Detection Metrics, PASCAL VOC 2010 detection metrics, and Open Images V2 Detection
Metrics, provide detailed insights into a model’s performance in object detection tasks.
Metrics such as Precision (mAP), Recall, and Average Precision (AP) are crucial in assessing
the ability to localise and classify objects accurately across different datasets.

• The COCO detection metrics include:

• Detection Boxes—Precision (mAP). It measures the average precision of object
detection across multiple object categories. It evaluates how accurately the model
localises and classifies objects within detected bounding boxes.

• Detection Boxes—Recall. It evaluates the model’s ability to detect all relevant
objects within an image. It measures the proportion of true positive detections
out of all actual positive instances in the dataset.

• Losses (classification, localisation, regularisation and total).

• The PASCAL VOC 2010 detection metrics include:

• Performance per class—Average Precision (AP) is calculated individually for
each object class present in the dataset. It provides insights into the model’s
performance in detecting and classifying objects of specific categories.

• Precision (mAP)—Mean Average Precision (mAP) evaluates the overall precision
of object detection across all object classes. It computes the average AP scores for
each class, providing a comprehensive measure of the model’s detection accuracy.

• Open Images V2 Detection

• This metric includes the same metrics (AP and mAP) as the PASCAL VOC 2010
metric. However, the primary distinction lies in the criteria used to classify
detected boxes as TP, FP or ignored.

2.2.3. Model Testing

Evaluating the performance of a model involves predicting new datasets and using
specific metrics focusing on various behaviours. This section presents the methods used
for evaluation tailored explicitly for multi-class classification scenarios [26], which differ
from binary classification approaches.

• Confusion Matrix
The Confusion Matrix displays predicted versus expected information, revealing
where and how the model becomes confused. This analysis focuses solely on the
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multiclass classification scenario (Table 5). Before delving into further details, the
following terms need to be defined:

• True Positive (TP) refers to instances where the model correctly detects the target
object and the predicted class matches the ground truth class e.g., in the A class,
TPA = AA;

• False Positives (FPs) refer to instances where the model correctly detects the target
object; however, misclassification occurs e.g., in the A class, FPA = BA + CA +
DA + EA;

• False Negative (FN) refers to instances where the model fails to detect the target
object (red) or is incorrectly classified e.g., in the A class, FNA = !A + AB + AC +
AD + AE;

• True Negative (TN) in multiclass classification is a complex case, and it is com-
puted by summing all instances where the model correctly predicts classes other
than the true positive class e.g., in the A class, TNA = BB + CB + DB + EB + BC +
CC + DC + EC + BD + CD + DD + ED + BE + CE + DE + EE.

Table 5. Multi-class confusion matrix 1.

Predicted
Expected

A B C D E Not Detected

A AA BA CA DA EA !A
B AB BB CB DB EB !B
C AC BC CC DC EC !C
D AD BD CD DD ED !D
E AE BE CE DE EE !E

1 The ! symbol in the “Not Detected” column represents the Boolean NOT operator.

The confusion matrix should be transformed into a one-versus-all matrix for each
class, also known as a binary-class confusion matrix (Table 6). This matrix is utilised to
compute class-wise metrics such as precision, recall, and accuracy.

Table 6. Binary-class confusion matrix.

Predicted
Expected

Positive Negative

Positive TP FP
Negative FN TN

• Receiver Operating Characteristics (ROC) Curve and Area Under the Curve (AUC)

The performance of a model can be evaluated using the ROC curve. This graphical
representation plots the true positive rate (TPR), also known as Recall or Sensitivity, on the
y-axis and the false positive rate (FPR) on the x-axis at different Intersections over Union
(IoU) thresholds. These rates are calculated based on the Equations (1) and (2). The ROC
curve is a valuable tool in assessing the trade-off between TPR and FPR and is commonly
used to evaluate classification models’ performance.

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

The ROC graph, as depicted in Figure 3, serves as a standard tool for assessing the
performance of the models. In every ROC graph, the reference point is the random diagonal
ROC line, representing a model that predicts classes with equal probability. Anything
below this line signifies inefficiency in classification. In an ideal scenario where the model
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makes all predictions correctly, the ROC curve resembles the one depicted in green. In this
case, the FPR consistently remains at 0, while the TPR remains at 1.0. However, the ROC
curve typically falls between these two extreme cases, as represented by the blue curve.
The AUC of the ROC curve is a single value used to evaluate the model’s performance. It
quantifies the model’s ability to distinguish between classes across all possible thresholds.
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• Intersection over Union

The Intersection over Union (IoU) is a fundamental evaluation metric in object de-
tection tasks. It quantifies the accuracy of an object detection model by comparing the
coordinates of both the ground-truth bounding box and the predicted bounding box
(Figure 4). The IoU algorithm computes the ratio of the intersection area between these
two bounding boxes to the area of their union. This resulting value measures how well the
predicted bounding box aligns with the ground truth. IoU is commonly used as a threshold
in determining whether a detected object is considered a true positive or a false positive,
thus playing a crucial role in assessing the performance of object detection models.
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• Precision–Recall (PR)

The PR metric is another critical tool for evaluating model performance, particularly
in scenarios characterised by class imbalance. Precision is a measure of result relevancy,
thereby emphasising the accuracy of the model’s predictions. In contrast, recall measures
the ability of the model to capture all relevant instances, reflecting the completeness of the



Technologies 2024, 12, 158 11 of 25

retrieval process. Together, precision and recall offer valuable insights into the effectiveness
of predictive models. These metrics are calculated based on the Equations (3) and (4):

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

The PR curve aligns with the rationale of the ROC Curve. However, recall is plotted
on the x-axis in the PR curve, while precision is on the y-axis. Unlike the ROC curve,
which accounts for TN values, the PR curve focuses solely on TP, FP, and FN values. This
distinction renders the PR curve particularly valuable in scenarios with class imbalances,
offering insights into precision–recall trade-offs across various IoU thresholds. Figure 5
shows an illustrative example of a PR curve. It often presents as a zigzag pattern and
may intersect itself. The green line denotes ideal classification performance, achieving
100% precision and recall, while the purple line represents the baseline. Any points below
the baseline signify inefficiency in classification.
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• F1 score

The F1 score combines precision and recall into a single value, providing a balanced
measure of a model’s performance. It is calculated based on Equation (5) as the harmonic
mean of precision and recall. The F1 score ranges from 0 to 1, with higher values indicating
better model performance. It is particularly useful in scenarios where precision and recall
are essential and must be balanced.

F1 =
2TP

2TP + FP + FN
(5)

2.3. Defect Size Estimation

The scope of the proposed solution was to provide a more helpful tool to the main-
tenance personnel. In this context, a method was developed to estimate the size of the
identified defects. The final goal is not only to calculate the size of the defect but also to
monitor the degradation to see if it is something that dynamically evolves over time. The
size estimation of the defect should be regarded as an indicative number as the procedure
of measuring an artefact like a dent is a pedantic methodology that follows specific rules,
and only trained maintenance engineers have the skills to accomplish that. However, the
quantitative approach has its value since it can add to the data available for the maintenance
personnel to assess the severity of the situation and its progression.
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The developed approach takes into account specific considerations that need to be
met in order to estimate the size of the defect. The still photos must be assumed to have
been taken by a known camera and a drone equipped with a Light Detection and Ranging
device (LIDAR). Regarding the first requirement, it is straightforward to believe that the
camera characteristics are known, such as the height and width of the sensor and the focal
length. The second requirement is the trickiest point since the distance definition cannot be
defined accurately. In the working scenario, the assumption is that the distance between
the drone and the aircraft’s surface is known but not between the drone and the specific
artefact. However, it is still a good approximation since the flight path is a predefined
perimetric trajectory that ensures that the drone always faces the surface perpendicularly
and not at arbitrary angles. The industrial inspection drones employed for these tasks are
equipped with 3D lidars that report back the distances as point clouds. The distance in
the front direction that coincides with the visual camera is known and can be recorded as
metadata of the still photo. Overall, it is apparent that the primary source of uncertainty is
the distance estimation that affects the defect’s size calculation.

In the suggested approach, the workflow generates a bounding box after the defect
detection, which becomes the region of interest. With the specific image section and the
camera parameters (focal length, distance from camera, sensor height and width), the
image is further processed to detect and analyse any defects present. The method first
converts the image to grayscale and applies Gaussian blurring to smooth out noise. It then
uses Canny edge detection to identify the edges in the image section, followed by dilation
and erosion operations to clean up the edges.

The method finds all the contours in the processed image section and iterates through
them. The contours detected within the input image section are indicative of potential
defects. The dominant one is the defect candidate, which has an oval-like shape that is the
most likely for the dents. For each contour with a sufficiently large area (greater than 10
pixels), the sizing method is used to measure the dimensions of the detected defect. It first
orders the points of the contour to ensure they are in the correct order (top-left, top-right,
bottom-right, bottom-left). It then calculates the midpoints between these points and uses
the Euclidean distance between them to determine the width and height of the defect.

In calculating, the actual physical dimensions of the defect, the method uses the
provided camera parameters (focal length, distance from camera, sensor height and width)
along with the image dimensions to convert the pixel-based measurements to real-world
units (millimetres). The calculation is straightforward using similar triangles as depicted
in Figure 6, simplified for one dimension (vertical height). Equation (6) illustrates the
calculation for the width.

de f ectw =
D·dA·sensorw

f ·imagew
=

D·dA
EFL

(6)
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In Equation (6), the defect width (defectw) is given by the division of the product of
the distance from the camera (D), the Euclidean distance between the midpoints for the
width of the defect contour (dA), and the sensor’s width (sensorw) divided by the product
of the focal length (f ) and the image’s width in pixels (imagew). By analysing this equation
further, the Effective Focal Length (EFL) concept was identified. In computer vision, the
EFL is crucial for understanding how a camera maps 3D scenes to 2D images. To map
pixels to real-world distances, the relationship (Equation (7)) between the image size in
pixels and the sensor’s physical size is crucial to allow us to relate pixel distances to
real-world distances.

EFL =
f ·imagew
sensorw

(7)

The distance from the object is estimated using feedback from the lidar. The height of
the sensor is determined by the contour pixels distance, and the focal length is reported
in the metadata. Finally, the image displays the calculated dimensions using OpenCV’s
text rendering capabilities. Overall, this approach provides a promising tool for analysing
and measuring defects in images, leveraging computer vision techniques and camera
parameters to provide representative size estimations.

3. Discussion
3.1. Defect Detection Results

This section analyses the model development procedure, providing insights into
their performance and associated results. As previously outlined, the annotated dataset
underwent testing against 11 pre-trained TensorFlow object detection models. Following
an initial assessment, only the top five best-performing models were selected for further
analysis. This chapter is structured into three sections: training, validation, and testing
results. In the training and validation analysis, the focus is on the best-performing model.
The same methodology was followed for the remaining four models but is not presented
because of space considerations.

3.1.1. Training Analysis

The critical training metrics for evaluating the training process include classification,
localisation, regularisation, total loss, as well as learning rate. Throughout the training
process, the main goal was to maintain a balance between overfitting and underfitting.
Monitoring the losses during training is essential to ensure they follow a descending trend,
indicating that the model continues learning. If the training metrics stabilise or show
an ascending trend, it indicates overfitting, and the training process should be stopped.
Fluctuations are normal, signifying the model’s ongoing learning efforts, especially when a
descending trend is observed.

Figure 7 illustrates the training performance of the SSD Efficientdet D1 model. The
left Y-axis represents the loss metrics, while the right Y-axis denotes the learning rate.
The X-axis spans from 0 to 100,000 steps, covering the training duration. Initially, the
learning rate was set at a conservative value of 0.001 and gradually increased (warm-up
phase) to the target value of 0.08. This technique of gradual adjustment aids in smoother
optimisation, which is advantageous for complex datasets. As the training proceeds, the
learning rate stabilises briefly before entering the descending phase, a common strategy
to fine-tune model parameters and enhance convergence. At the same time, it can be
noticed that the classification loss, localisation loss, and total loss exhibit a descending
trend with fluctuations of up to 50,000 steps, indicative of the model’s learning process. The
stabilisation, after that, signifies the optimisation and attainment of its potential capabilities.
Regularization Loss, which is crucial for understanding generalisation, initially increased
as the model learns from data, promoting better generalisation and mitigating overfitting.
Following the same logic, it was stabilised as the model optimised its parameters and
gradually decreased towards the training’s conclusion, reflecting convergence. Figure 7
shows that the SSD Efficientdet D1 model demonstrates a solid generalisation ability.
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3.1.2. Validation Results

The models were trained using batches of images. The step, or iteration, refers to
one update of the model’s parameters based on a batch of data. To fine-tune the training,
100 checkpoints were created for every 1000 steps. A validation check was performed at
each checkpoint, leading us to create the comprehensive Figure 8. This graph showcases
various metrics such as precision, recall, and losses, providing a clear picture of the trained
model’s performance at each checkpoint. The left Y-axis represents precision and recall
values, while the right Y-axis highlights the loss values. The X-axis, spanning from 0 to
100,000 steps, covers the entire training process.

Among the 100 checkpoints, fourteen specific sample points were selected and ex-
ported for further analysis to evaluate the model’s performance. The selection of these
sample points was not random but based on the validation metrics mentioned earlier. In
general, the criterion for selection involved identifying sample points with the lowest loss
values and the highest precision and recall values, as this combination represents the ideal
sample point.

In order to facilitate the checkpoint selection, the Precision/Recall Curve and ROC
Curve were generated (Figure 9) to compare the model’s performance at each sample
point. Analysis of the Precision/Recall curve reveals that step 47,000 exhibits the best
performance, with an Average Precision of 0.28. Similarly, the ROC curve validates these
findings, with an AUC of 0.66, indicating that step 47,000 achieves the best performance.
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3.1.3. Testing Results

During the testing phase, the performance of each model was assessed using metrics
such as the confusion matrix, precision, recall, F1 score, and AUC score. The top five
models competed against each other to identify the best-performing model. A ROC
curve and a Precision–Recall curve were computed for this process. After identifying the
best-performing model, a detailed analysis was followed. It is worth mentioning that
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the same approach was applied across all five models, but it will not be presented to
avoid redundancy.

A total of 150 images were allocated for the testing phase assessing the performance
in new unseen images and understanding each model’s strengths and weaknesses was
straightforward. Compiling the testing metrics into a single table allowed for a clear
comparison of the performance, ensuring fairness in assessing them based on the specific
conditions outlined in the methodology section. Table 7 presents the dent’s precision,
recall, and F1 score alongside the average AUC score, precision score, and F1 score. Apart
from the dent-recall metric, ssd_efficientdet_d1 consistently outperformed the other mod-
els across all test metrics. The ssd_efficientdet_d0 model closely follows, demonstrating
significant performance over the remaining three models. This finding suggests that the
ssd_efficientdet dataset was better suited to the dataset, and the optimisation of model
training contributed to its superior performance compared to the other models. Addition-
ally, the ssd_efficientdet architecture, combining SSD with an EfficientNet-b1 backbone and
BiFPN feature extractor, proved highly adaptable to the dataset.

Table 7. The metrics related to dent class detection for the fivetop-performing models.

Model Dent
Precision

Dent
Recall

Dent
F1

Average
AUC

Average
Precision

Average
F1

EfficientDet D1 0.712 0.439 0.543 0.657 0.279 0.526

EfficientDet D0 0.652 0.450 0.533 0.641 0.261 0.473

Faster R-CNN ResNet50 V1 0.565 0.357 0.438 0.608 0.229 0.444

SSD ResNet50 V1 FPN 0.710 0.407 0.518 0.590 0.214 0.411

Faster R-CNN ResNet50 V1 0.500 0.290 0.367 0.607 0.228 0.407

A better visualisation to compare the performance of all models is the utilisation of
the ROC and PR curves (Figure 10). These graphs further support the conclusions drawn
from the comparison table, highlighting the superior performance of ssd_efficientdet d1
and d0 over the other three models. Unlike the tabulated results, which were derived using
mathematical formulas, these curves offer a graphical representation of model performance.
Additionally, the consistency between manually calculated AUC scores and AP scores and
those generated computationally confirms the accuracy of the findings.

The previous section’s comparison analysis shows that the best-performing model
is the Efficientdet d1. For this model, the resolution of the presented analysis will be
increased, going deeper and understanding the behaviour of the model for the different
types of artefacts. A precision–recall curve was generated using a stringent IOU threshold
set at 0.9 to achieve this. As depicted in Figure 11, both the precision and recall axes range
from 0 to 1. Notably, the class exhibiting the best performance is missing paint and repair,
with an average precision (AP) of 0.49, while dent ranks fourth, boasting an AP of 0.44.
This performance discrepancy can be attributed to missing paint and screws, which are
classes with a higher number of annotations compared to dents, repairs, and scratches. To
enhance precision and recall scores, augmenting the sample size for the underrepresented
classes is imperative. An additional reason that justifies this behaviour is that repairs and
screws carry significantly more visual information compared to a dent (e.g., a screw has
the characteristic shape of a circle with a cross in the centre).

The ROC curve and its associated AUC score offer an alternative method to assess
the performance of the model for each class. Similar to the precision–recall curve, the
IOU threshold remained fixed at 0.9, indicating a strict requirement for proximity between
the ground-truth bounding box and the predicted bounding box to validate a prediction.
In contrast to the PR curve, the ROC curve displays slight variations in the performance
of each class. This discrepancy arises from consideration of both negative and positive
instances, unlike the PR curve, which solely focuses on positive instances. Consequently,
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the PR curve proves more suitable for evaluating an imbalanced dataset, such as the one
utilised in our experiment.
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Figure 11. The precision–recall graph illustrates the model’s performance for the different types
of artefacts.

When analysing Figure 12, it is evident that the class for the repairs attains the highest
AUC score of 0.78, followed by the dent class with an AUC score of 0.69, and the screw
class ranks third with a score of 0.68. Comparing the ROC curves of all five classes with the
baseline, it becomes apparent that the model’s performance is notably robust, showcasing
high TPRs coupled with low FPRs.
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The Confusion Matrix is an essential quantitative method for analysing the perfor-
mance of the model. The analysis focuses on dent detection; consequently, the description
presented below is specific to dents, accompanied by some average metrics (Tables 8–10).
The model successfully identified 47 out of 116 dents, with 50 cases being missed and 19 in-
stances of misclassification. Furthermore, the precision level stood at 0.71, while the recall
was 0.44, indicating that nearly half of the cases were accurately detected and classified.
Another significant metric is the confidence level (CL), averaging 59%, with a minimum of
20% and a maximum of 98%. On average, the model exhibited a precision of 0.28, an AUC
level of 0.66, and an F1 score of 0.53. Considering the dataset’s complexity, the physical
attributes of the dent class, and the environmental conditions during image capture, the
model’s performance can be characterised as a high-precision model with moderate recall
levels, capable of detecting various object sizes across diverse environmental conditions.

Table 8. Multiclass confusion matrix.

Predicted
Expected

Dent Missing Paint Screw Repair Scratch Not Detected

Dent 47 5 3 8 3 50
Missing

paint 4 81 11 3 13 93

Screw 1 10 79 10 4 86
Repair 5 4 8 62 0 25
Scratch 0 6 4 3 17 23

Table 9. The binary confusion matrix focused on the dents.

Predicted Dent
Expected Dent

Positive Negative

Positive 47 19
Negative 60 542

Table 10. The performance metrics focused on the dents.

Class Name TRP FPR Precision Recall AP F1 AUC CL-Min CL-Avg CL-Max

Dent 0.44 0.03 0.71 0.44 0.44 0.54 0.69 20 59 98
Average 0.28 0.53 0.66
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Another metric calculated for the best-performing model was the average precision–
recall curve and the ROC curve (Figure 13). This is useful because it can be used to compare
the performance of each model against one another using single scores like AP and AUC
instead of per class. In this case, to compute the average in both instances, we utilised the
macro method, where all the scores for each class were summed and then divided by the
total number of classes. Regarding Average Precision (AP), the average score was 0.42, and
the Area Under the Curve (AUC) score was 0.69.
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Another observation is related to the shape of the two lines: the precision–recall curve
forms almost a straight line, indicating a stable model that makes consistent predictions
regardless of the chosen threshold. Additionally, a ROC curve, exhibiting an initial sharp
increase followed by a relatively constant rise for the remaining thresholds, suggests a
model with discriminatory solid power across a range of thresholds, making it effective at
distinguishing between positive and negative instances.

3.1.4. Limitations and Possible Improvements in Defect Detection

The results achieved using the developed models are not indicative of the success rate
of a potential product-grade solution. However, during the testing phase, the performance
metrics achieved are promising, prompting consideration of necessary improvements to
enhance the quality of the results. As previously mentioned, the focus of the tests was to
identify dents, which are the most challenging yet one of the most wanted in the industry.
In testing results, the performance was compared with the baseline. In this case, the
baseline can be regarded as a human’s ability to identify dents. In [27], See suggested
in their research that the error level in manual aircraft visual inspection is 32%. From
discussions with TUI’s experienced technicians, this is a very challenging task carried
out by certified personnel and often involves using torches or changing the angle of view
to identify discontinuities in the reflections. In addition, the decision to move closer to
real-world applications rather than taking focused pictures without background makes the
operational scenario more challenging but equally more convincing for the credibility of
the solution. The straightforward, immediate actions that can be implemented to improve
the results are the following:

• Increase the number of annotations: This is important for creating a more robust and
balanced dataset. Ensuring enough examples of each class helps prevent bias and
improves the model’s generalisation ability.
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• Consistent image capture: Using the same sensor and shooting conditions helps
maintain consistency across the dataset. This reduces variability and ensures the
model learns features relevant to the objects rather than environmental factors.

• Capture variations: Taking images of the same object from different angles and under
different environmental conditions helps the model learn to recognise objects in
various contexts, improving its robustness.

• Image processing: Adjusting exposure levels can help enhance features and remove
unnecessary information, making detecting objects more accessible for the model.
However, it is essential to ensure that these modifications do not distort the objects or
introduce artefacts that could confuse the model.

• Oriented bounding boxes: Oriented bounding boxes can improve localisation accuracy,
especially for objects with non-standard orientations. This helps the model better
understand the spatial layout of objects in the image.

3.2. Defect Size Estimation Results
3.2.1. Lab Tests

Having theatrically formed a procedure that estimates the dimensions of an object,
in this case, a defect, validation tests were performed in a lab environment. A standard
DSLR camera and a compact optical distance measurement sensor (LIDAR-Lite) were
used. In the lab, the experiment setup focused on validating the concept. In the lab, the
experiment setup focused on validating the concept. A Python script was developed using
the OpenCV library and a minimal graphical user interface to draw the bounding box
instead of connecting an object detector. The tests reported encouraging results using
different objects or drawings and taking photos in perpendicular positions (Figure 14).
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curve; (c) medium-sized curve; (d) large-sized curve.

The experiment flow was to select a camera, where characteristics such as the focal
length and sensors’ dimensions were hard coded, upload the image, draw a bounding
box with the mouse, and press the size estimation button. The achieved results showed
a minor deviation from the expected ones (Table 11). The ground truth of the dimension
was measured using a ruler, which is also an error-prone manual method. The results were
encouraging, although the hangar test was expected to be much more challenging.

Table 11. Sample width and height measurements for objects in the lab.

Object Actual (mm) Measured (mm) Abs Difference (mm)

object 1 width 88.5 88.5 0.0
object 1 height 53.5 53.6 0.1
object 2 width 150.0 147.9 2.1
object 2 height 70.0 72.7 2.7
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Table 11. Cont.

Object Actual (mm) Measured (mm) Abs Difference (mm)

object 3 width 150.0 149.2 0.8
object 3 height 62.0 62.2 0.2
object 4 width 8.0 8.2 0.2
object 4 height 7.4 8.1 0.7
object 5 width 23.6 21.1 2.5
object 5 height 23.1 21.0 2.1
object 6 width 79.5 79.0 0.5
object 6 height 76.2 79.0 2.8

3.2.2. Hangar Tests

With the lab tests completed, the focus was moved to the hangar tests regarding the
assessment of the size estimation procedure. It was impossible to carry out those tests
using the COTS drone in TUI’s hangar because there was no suitable sensor to measure
the distance from the aircraft. The experiments took place in the DARTeC smart hangar
using our ground demonstrator Boeing 737-400. The replication of the size estimation
of the defect was not straightforward. A tripod was used to mount the camera and a
handheld laser sensor to imitate the concept of a lidar-equipped UAV. The laser sensor was
the weakest link in the suggested work assumption since it was unreliable, introducing
error-prone distance estimations.

Figure 15 illustrates a couple of application examples. In the first one, a potential point
of failure was identified. As described in the methodology, the defect is approximated
by fitting a contour, and then its width and height are estimated. In this case, the colour
transition (spatial frequency) of the area of interest was low, and the algorithm mistakenly
focused on a false artefact, conveying incorrect feedback. In the second example, that
algorithm worked as expected. In all cases where the artefact was clearly visible, the contour
approximation was correct. In terms of accuracy, Table 12 illustrates a few examples of
defect size estimations and the absolute difference compared to the estimated dimensions.
It was noticed that even a slight movement of the measuring device changes the distance
of the recorded error non-linearly. The same thing applies also by changing the angle
at which the laser device is placed in reference to the defect. Additionally, it worked
better when the image was focused perpendicularly to the defect resembling the lab tests.
Unfortunately, estimating a solid and consistent error deviation of the procedure since
the error fluctuated heavily and was affected by the error-prone distance estimation, the
position of capture, and additional factors addressed in the discussion of limitations and
possible improvements section.

Table 12. Defect width and height measurements for dents in the hangar. ADDED.

Object Actual (mm) Measured (mm) Abs Difference (mm)

defect 1 width 73 60.5 12.5
defect 1 height 94 74.1 19.9
defect 2 width 130 113.9 16.1
defect 2 height 90 74.7 15.3
defect 3 width 110 143.9 33.9
defect 3 height 75 95.9 20.9
defect 4 width 65 80.1 15.1
defect 4 height 75 106.7 31.7
defect 5 width 190 145.5 44.5
defect 5 height 65 94.3 29.3
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Figure 15. Examples of defect detection and size estimation: (a) the contours-based approximation
algorithm failed to capture the dent; (b) the contours-based approximation algorithm correctly
identified the dent.

In the hangar experiments, it was realised that the distance measurement was the
primary source of instability. Therefore, it would be enlightening to perform some tests
and identify the behaviour of the point laser device in a representative environment. The
aim of the tests was to assess the accuracy of the device at different distances, angles, and
materials (reflective and non-reflective). In the first experiment (Figure 16a), the device was
tried in vertical mode, targeting non-reflective surfaces (Table 13).
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Table 13. Laser device pointing perpendicular to a non-reflective surface.

Distance (cm) Distance Measured (cm) Difference (cm)

30 34 4 (close to dead zone)
60 60 0

100 100 0
250 250 0
400 402 2
500 501 1

In the next experiment, the device was placed at different angles with reference to
the surface where the target exists. The first choice was perpendicular to the surface
(90 degrees), and the second was at a 45-degree angle (Figure 16b,c). The experiment was
repeated twice for reflective and non-reflective surfaces (Table 14).

Table 14. Laser device experiments pointing reflective and non-reflective surfaces, targeting the
surface at 45 and 90 degrees.

Distance (cm) Angle
(Degrees) Material Distance

Measured (cm) Difference (cm)

100 90 non-reflective 100 0
100 45 non-reflective 101 1
100 90 reflective 101 1
100 45 reflective 135 35

The results illustrated that the reported value was volatile when used on reflective
surfaces like the aircraft’s skin and when the device and the artefact were not in a per-
pendicular direction. This behaviour justifies the erratic estimations recorded during the
hangar experiments targeting a reflective surface at various angles.

3.2.3. Limitations and Possible Improvements in Size Estimation

The size estimation procedure proved effective in the lab experiments but exhibited
instability in the hangar. The following list sheds light on the factors affecting the proposed
approach, and by addressing them, the reliability of the solution will be enhanced.

• In some cases, the contour approximation used in the sizing estimation fails to identify
dents that are not clearly visible in the photo. If there is a visible colour change that
creates an edge, it gives promising results.

• The suggested area of interest (bounding box), which comes from the defect detector,
sometimes crops out part of the dent, directly affecting the size estimation. The defect
detector works in a stringent IOU (0.9), which is advantageous for the sizing algorithm.
The introduction of oriented rounded boxes could further improve the situation.

• There is no solid reference to compare. Trained maintenance engineers perform dent
sizing, but the research team lacks this expertise. The manual measurement was not
industry-accepted at this stage and introduced uncertainty as it cannot be considered
a solid ground truth.

• The distance in the experiments was measured by a laser distance measurer, which,
most of the time, did not work because of the reflection on the aircraft’s skin, so
instead, a tape measure was used. This procedure is far from perfect. However, in
the actual scenario, the UAV has a lidar and flies in a predefined path, maintaining a
fixed distance from the aircraft. In addition, since the lidar emits beams on the surface
(32 to 128, depending on the model). In this case, an area average can be used, rather
than only one measurement utilised in the current experiment.

• If the photo capture is not perpendicular to the defect, perspective distortion may
affect the size estimation.
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• Lens distortion or image sensor characteristics introduce errors that need to be vali-
dated in the representative environment with the camera onboard the UAV.

4. Conclusions

The aviation industry is highly regulated, focusing on ensuring aircraft airworthi-
ness and minimising the possibility of undetected defects. The first line of defence in
maintenance is detailed inspection, with visual inspection accounting for nearly 80% of
all inspections. The industry progresses towards MRO 4.0, which adopts machine learn-
ing, IoT sensors, and data analytics technologies, showing an increasing interest in using
robotics and AI-based methods for defect detection. The research focused on detecting the
location of defects on aircraft skin and estimating their size. The performance of various
pre-trained CNN-based models was evaluated, focusing on the most challenging type of
defect, dents. The best-performing model achieved 71% precision, with an area under
the ROC curve of 0.69. In addition, the suggested size estimation approach was tested in
the lab to prove the feasibility of the concept and then in the hangar. In the real-world
environment, many factors were identified that influenced the estimation and made the
estimation unreliable. Addressing these limitations following the suggested improvements
will improve the overall estimation reliability.
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