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Abstract: Training of neural networks requires large amounts of data. Simulated data sets can be
helpful if the data required for the training is not available. However, the applicability of simulated
data sets for training neuronal networks depends on the quality of the simulation model used.
A simple and fast approach for the simulation of ground and honed surfaces with predefined
properties is being presented. The approach is used to generate a diverse data set. This set is then
applied to train a neural convolution network for surface type recognition. The resulting classifier
is validated on the basis of a series of real measurement data and a classification rate of >85% is
achieved. A possible field of application of the presented procedure is the support of measurement
technicians in the standard-compliant evaluation of measurement data by suggestion of specific data
processing steps, depending on the recognized type of manufacturing process.

Keywords: technical surfaces; microstructured surfaces; grinding; honing; simulation of surfaces;
classification of surfaces; convolutional neuronal networks

1. Introduction

Production metrology deals with all of the measuring and inspection tasks that arise during
the creation of products. Usually, function-related characteristics of workpieces are measured. In
addition to the measurement, the procedure for evaluating surface roughness (e.g., 3D) as a quality
criterion includes the steps of data preprocessing (e.g., filtering [1]) and parameter calculation [2] (cf.
Figure 1). A large number of parameters exist for standard-compliant data preprocessing, as well as
for standard-compliant roughness parameters calculation [2–4]. The selection of standard-compliant
parameters has to be done manually and can be a challenge. In the case of recurring, identical
measurement tasks, an expert defines the data processing steps once for all similar measurements.
However, since a measuring device is usually used for a large number of different and changing
measuring tasks, the parameterization of the measurement data processing steps must be adapted
by the operator repeatedly. In the case of unknown or incorrectly assumed boundary conditions
(e.g., due to communication errors, when measurements and evaluations are carried out by different
persons), there is a risk that steps of the measurement data processing will be changed or incorrectly
parameterized, and that the determined parameters are thus incorrect or no longer comparable.

Assistance software, developed for example in the project “OptAssyst—User-oriented assistance
systems for the safe use of optical distance sensors” funded by the German Federal Ministry of
Education and Research (BMBF) [5] supports the user in the selection of the measuring principle, as well
as in the parameterization of the data processing [6,7]. However, for the standard-compliant evaluation
of surface roughness, the complete measuring task must be known, which includes knowledge of
the manufacturing process. As an example, the surface filter must be selected in such a way that the
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surface details like e.g., grooves are not distorted—i.e., linear filters [3] for ground surfaces and robust
filters for plateau-honed surfaces [4].
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signal processing and the process. Another challenge is the extension of pre-selected 
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Artificial neural networks (ANN) are an approach to the implementation of classifiers based 
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Specifically convolutional neural networks (CNN) are successfully used to classify images, for 
example for the recognition of handwriting [10] or for recognizing objects in images [11]. On the one 
hand, this success leads to further research and new discoveries, such as Generative Adversarial 
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networks [13]. On the other hand, the success results in tools that make the application of CNN easier. 
Since surfaces measured with topography measuring instruments (such as Confocal microscopy, 
Coherence scanning interferometry), which deliver 2.5D elevation maps can be interpreted as 
grayscale images, the transfer of these techniques is evident. However, since the training of CNN 
requires a large amount of data (>1000 measurements), which is not always available, artificially 
generated measurement data sets with specific properties of technical surfaces are of interest. 
Therefore, an approach for generating two different classes of technical surfaces with predefined 
properties is presented (ground and honed surfaces). This artificial data is then used to train a simple 
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In order to support the user, it is therefore useful to automatically classify the measurement
object and the related manufacturing process in order to suggest a standard-compliant procedure for
measurement data processing and evaluation.

Signal processing approaches, which are usually used for the characterization of technical surfaces,
such as radon transformation [8] or the watershed transformation [9], offer a solution for realizing
classifiers. Parameters derived from these transformations, such as the number and location of peaks
in the radon transformation, can be used for classification. However, the implementation of such
approaches can be impractical for a non-expert user, as it requires extensive knowledge of both signal
processing and the process. Another challenge is the extension of pre-selected transformational-based
classifiers to other surface types.

Artificial neural networks (ANN) are an approach to the implementation of classifiers based only
on measurement data sets and are therefore an alternative to signal processing approaches. Specifically
convolutional neural networks (CNN) are successfully used to classify images, for example for the
recognition of handwriting [10] or for recognizing objects in images [11]. On the one hand, this success
leads to further research and new discoveries, such as Generative Adversarial Networks [12], for
manipulating neuronal networks or the “deconvnet” for visualizing neuronal networks [13]. On
the other hand, the success results in tools that make the application of CNN easier. Since surfaces
measured with topography measuring instruments (such as Confocal microscopy, Coherence scanning
interferometry), which deliver 2.5D elevation maps can be interpreted as grayscale images, the transfer
of these techniques is evident. However, since the training of CNN requires a large amount of data
(>1000 measurements), which is not always available, artificially generated measurement data sets
with specific properties of technical surfaces are of interest. Therefore, an approach for generating
two different classes of technical surfaces with predefined properties is presented (ground and honed
surfaces). This artificial data is then used to train a simple convolutional neuronal network for surface
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classification. In the next step, the classifier that was trained with artificial data is verified by means of
real measurement data sets (honed cylinder liners of different car manufacturers and a selection of
ground surfaces).

The classification task with only two classes was deliberately chosen in such a way that the
proposed procedure can be tested easily. Future work, which is excluded from this paper, focuses
on the generation of optimal input data for artificial surface models based on time series models
estimation from small sets of actual measurement data, and the application of more advanced or
complex neuronal networks.

2. Approach for the Generation of Artificial Ground and Honed Surfaces

Real technical surfaces often have stochastically distributed features. The structure of those
features depends on the chosen manufacturing process. In grinding or honing processes, geometrically
indefinite cutting edges are used. Plasma-coated surfaces contain stochastically distributed pores.
In many different applications, mathematical models for the simulation of such surfaces already exist.

The probability distribution of the topography heights is often assumed as Gaussian [14–16].
For honed surfaces, this assumption is invalid. Their probability distribution is often strongly
asymmetric [17–23]. Existing models for the simulation of honed surfaces aim to produce surfaces
with identical properties (e.g., roughness parameters) as given real surfaces. For the approach chosen
in this paper, the objective is different: The aim is to simulate many different surfaces with the same
(default) character, but the exact properties should be distributed stochastically.

A honing process can be seen as a modification of a grinding process. The movement of the
honing stones relative to the surface leads to the characteristic cross-structure with the honing angle
α. The probability distribution of the topography heights in a grinding process can be assumed as
Gaussian. With multi-step honing processes (e.g., plateau honing), surfaces with a shallow peak
area and a distinct valley area can be created. Hence, the different honing steps can be simulated as
Gaussian topographies [24,25]. The combination of those topographies results in the final surface. A
comparable approach was chosen in [21]. The model for the simulation of the Gaussian topographies
is based on the approaches of [18,26]. The 2.5D topographies can be described as matrices of the form:

zi,j = z
(

xi, yj
)
, i = 0, . . . , M− 1, j = 0, . . . , N − 1, (1)

The point distance in direction of the x-axis is referred to as ∆x and in y as ∆y. The lateral
properties of the surface are described with the circular autocorrelation function:

R∗k,l =
1

MN

M−1

∑
m=0

N−1

∑
n=0

zm,nzm+k,n+l , 0 ≤ k ≤ M− 1, 0 ≤ l ≤ N − 1, (2)

With zm+k,n+l = zm+k−M,n+l for m + k > M – 1 ∧ n + l ≤ N – 1, analogous for n + l > N – 1 and
combinations. The discrete power spectral density is the Fourier transform of the autocorrelation
function:

S∗p,q =
1

MN

M−1

∑
m=0

N−1

∑
n=0

R∗m,n exp
(
−i · 2π

[mp
M

+
nq
N

])
, (3)

The aim is to generate a discrete 3D-Topography of the form:

z = (zk,l) = (z(xk, yl)), 0 ≤ k ≤ M− 1, 0 ≤ l ≤ N − 1, (4)

With xk = k · ∆x, 0 ≤ k ≤ M− 1, yl = l · ∆y, 0 ≤ l ≤ N − 1. The input data for the simulation
is: A circular autocorrelation function R∗k,l , 0 ≤ k ≤ M− 1, 0 ≤ l ≤ N − 1, respectively its Fourier
transform (the discrete power spectral density) S∗p,q, 0 ≤ p ≤ M − 1, 0 ≤ q ≤ N − 1, a matrix
g = (gk,l) = (g(xk, yl)) with standard normal distributed entries and the variance σ2

tar(z) of the target
surface. The given autocorrelation function must not contain phases; the corresponding discrete power
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spectral density must be real. Otherwise, S∗p,q =
∣∣∣S∗p,q

∣∣∣ is set for the simulation. This changes the shape
of the autocorrelation function. The Fourier transform of the matrix g is G = F(g), so that:

Gp,q =
1

MN

M−1

∑
m=0

N−1

∑
n=0

gm,n exp
(
−i× 2π

[mp
M

+
nq
N

])
, (5)

The 2.5D-topography z = (zk,l) is generated from the input data with:

zk,l =
M−1

∑
r=0

N−1

∑
s=0

√
S∗r,sGr,s exp

(
−i× 2π

[
rk
M

+
sl
N

])
, (6)

The Fourier transform of g is convoluted with the square root of the given power spectral density
in the frequency domain. To achieve the requested variance σ2

tar(z), the power spectral density has to
be normalized. The simulation method used here is similar to the one presented by Wu [26]. Wu uses
a complex vector with uniformly distributed phases and constant amplitude instead of the Fourier
transform G of a normal distributed matrix g. With such an approach, the given autocorrelation
function is exactly mapped into the simulated topographies e.g., it does not contain any stochastic
variations as in the approach chosen for this paper (cf. Figure 2b,d)). The difference in the generated
artificial surfaces is subtle (cf. Figure 2a,c).
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Figure 2. (a,b): ground surface and its corresponding autocorrelation function simulated with the
method of Wu (c,d): ground surface and corresponding autocorrelation function simulated with the
proposed method.

However, since the model presented here is intended to simulate the stochastic properties of
real surface topographies, this aspect should also be taken into account. In order to illustrate the
difference between the two methods, definitions from the next paragraph are already used here. The
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autocorrelation function used in this example is the function R(x,y), defined in the next paragraph with
parameters l1 = 100 µm, l2 = 5 µm, a = 2, and σ2 = 1 µm. ∆x and ∆y are chosen as 0.5 µm, the size of the
simulated surface is 1000 × 1000 points.

3. Simulation of Directional Structures (Grinding Surfaces)

The autocorrelation function of real technical surfaces is approximately an exponential function [6].
A more general model is chosen for the simulation:

R̃(x, y) = e−(|
cos (ϕ)·x+sin(ϕ)·y

l1
|
a
+| sin(ϕ)·x+cos (ϕ)·y

l2
|
a
)
, (7)

Here, the exponent a determines the character of the autocorrelation function. For a = 1, its
shape is exponential and for a = 2 it is Gaussian. The autocorrelation function is not necessarily
orthogonal to the axes of coordinates, therefore the angle ϕ is introduced. It specifies the rotation of
the autocorrelation function around the origin and corresponds to the main direction of the structures
respectively. the honing angle. The parameters l1 and l2 are the correlation lengths in direction ϕ and
ϕ + 90◦. The correlation length describes the distance, where the standardized autocorrelation function
falls to h = e−1. In literature, other definitions for h exist, e.g., h = 0.2 [1]. The continuous autocorrelation
function R̃(x, y) is discretized and used as a circular autocorrelation function. Depending on the
parameter selection, non-differentiable points and discontinuities might occur, and the associated
power spectral density may not be real. In the simulation, this leads to deviations from the requested
autocorrelation function. Those deviations become smaller, as the simulated topography becomes
larger in relation to the chosen autocorrelation length. The parameters for the simulation of a Gaussian
distributed surface are the expectation value µ, the variance σ2, the correlation lengths l1 and l2, the
exponent a and the angle ϕ (cf. Figure 3).
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Figure 3. Simulation of a grinding surface. Parameters: ∆x = ∆y = 0.5 µm; l1 = 500 µm; l2 = 5 µm;
ϕ = 25◦; σ = 5.68 µm; µ = 3.2 µm; Measurement field: 4000 × 4000 points; Field of view: 1000 ×
1000 points.

4. Simulation of Honed Structures in Multiple Steps

4.1. One-Step Honing Process

A one-step honing process can be seen as a combination of two grinding processes. The up- and
downward movement of the honing tool generates directional structures with an angle ϕ and −ϕ.
Together they generate the characteristic cross-structure. Both processes remove material, so the result
for a one-step honing process is:

zh
(

x, y, lx, ly, ϕ, σ, u
)
= min(zs+, zs−), (8)



Technologies 2017, 5, 66 6 of 12

where zs+ and zs− are two simulated, Gaussian distributed topographies with the same simulation
parameters. The angles are ϕ for zs+ and −ϕ for zs−. The exponent, a, is chosen as 2 (Gaussian), if
not marked otherwise (see Figure 4a). It should be considered that µ and σ are parameters of the
two Gaussian distributed topographies and do not represent the expectation value and the standard
distribution of the simulated honing process. The probability distribution of the honing process is the
probability distribution of the minimum of two Gaussian distributed random variables and therefore
not a Gaussian distribution.
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Figure 4. (a) Simulation of a one-step honed surface as the minimum of two simulated grinding
surfaces. Parameters: As in Figure 3; (b) Simulation of a plateau honed surface (∆x = ∆y = 0.5 µm).
Parameters step 1: l1 = 500 µm; l2 = 5 µm; ϕ = 25◦; σ = 5.68 µm; µ = 3.2 µm. Parameters step 2: l1 =
20 µm; l2 = 2 µm; ϕ = 25◦; σ = 1.8 µm; µ = 2.01 µm.

4.2. Multi-Step Honing Processes

For the simulation of a multi-step honing process, multiple simulated one-step honing processes
are combined. One process virtually removes material from the topography resulting from the
previous steps. Mathematically, the resulting topography is the minimum of multiple one-step
honing topographies

zn
h = min(zh,1, zh,2, . . . , zh,n), (9)

The different processes zh,i are differently parameterized. In general, two simulated honing
processes are sufficient to reproduce the structure of a plateau honed surface (cf. Figure 4b).

5. Approach for the Classification of Simulated Ground and Honed Surfaces Using
Machine Learning

The techniques described above can be used for the fast generation of artificial data sets with
defined characteristics. Here, a total of 2000 ground and honed surfaces were simulated, of which
1000 were selected for training the network and 1000 as test data sets. The parameters used for
generation are given in Table 1. The measurement field size (500 × 500 pixels) was selected in
such a way that it is in the range of typical confocal microscopes (e.g., NanoFocus µSurf explorer:
measurement field 512 × 512 pixels). For the grinding structures, the lateral point distances ∆x and ∆y,
and the autocorrelation lengths l1 and l2 were selected in order to create the process-specific directed
structures. The angle, ϕ, varies freely. For honed structures, the correlation lengths l1 and l2 and
variances σ2

1 and σ2
2 were chosen in such a way that they correspond to a coarse and a fine process step,

similar to plateau honing. The honing angle ϕ was varied in a wide range. The simulated data was
converted into grayscale images and compressed to 50 × 50 pixels to reduce the computational effort.
Examples of the simulated ground and honed surfaces used for training can be found in Figure 5.
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Table 1. Selected parameters for generating the training and test data. For parameters with a range, a
uniform distribution over the range is assumed.

Parameter Value

General parameters

∆x 0.5 µm
∆y 0.5 µm
nx 500
ny 500
a 2

Parameters for ground surfaces simulation

l1 400 ± 100 µm
l2 5 ± 0.8 µm
σ2 22 ± 3
ϕ 90 ± 90◦ (integer steps)

Parameters for honed surfaces simulation

l1 (first processing step) 500 ± 200 µm
l2 (first processing step) 30 ± 10 µm
l1 (2nd processing step) 5 ± 1 µm
l2 (2nd processing step) 3 ± 1 µm

µ1 0 µm
µ2 0 µm
σ2

1 45 ± 5
σ2

2 0.2 ± 0.1
ϕ1, ϕ2 45 ± 25◦ (integer steps)
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The Convolutional Neural Networks (CNNs) were implemented with The Mathworks’ Neural
Network Toolbox to classify the simulated test data [27–29]. Two architectures, each with two different
configurations were tested:

1. A two-layer CNN with 8 filters of the size 5 × 5 in the first layer and 4 filters of the size 10 × 10.
2. A two-layer CNN with 6 filters of the size 5 × 5 in the first layer and 6 filters of the size 5 × 5.
3. A three-layer CNN with 8 filters of the size 5 × 5 in the first layer and 4 filters of the size 5 × 5 in

the 2nd and third layer.
4. A three-layer CNN with 6 filters of size 5 × 5 in the first, second and third layer.

The convolutional filters that form the core in the CNNs are convolutional operators of a given
size (5 × 5 or 10 × 10) similar to edge detectors in image processing. Their weights are initialized
randomly and iteratively changed (trained) over multiple epochs. The filter sizes are chosen small,
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since the structures to be learned by the CNN are expected to be small and primitive (straight lines or
edges). The low number of layers (two or three) is due to the fact that the structures occurring in the
data are of a periodic nature and do not have to be assembled into more complex structures.

The overall architecture of the investigated neural networks is as follows: An image input layer is
used as the first layer to map the input data to the following neurons, followed by the convolutional
layers, which consist of the convolution filters, followed by a ReLU layer (rectified linear unit, threshold
value operator that assumes the function of an activation function), and a pooling layer, which folds
the image with a maximum filter. The combination of convolution, ReLU layer and pooling is expected
to preserve important information while reducing the overall data volume, resulting in a reduction of
computation time [30]. Following the convolutional layers, a fully connected layer, a softmax layer,
and a classification layer is selected (Figure 6).
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Figure 6. Architecture of the considered Convolutional Neural Networks (CNNs).

To train the CNN, the Stochastic Gradient Descend with Momentum [31] is selected. The learning
rate is chosen to be 0.01 for the first four epochs and then reduced by 1/10 for every four epochs.
For each iteration, 100 simulated surfaces are entered and the maximum number of epochs is limited
to eight.

The accuracy of the classification (detection rate) is calculated with:

R =
N+

N
, (10)

With N+ being the number of correct classified data and N = 2000 the overall data set size.
Both the two-layer CNNs, as well as both three-layer CNNs, are able to distinguish grinded from

honed surfaces with decent accuracy after training. For CNN number 1, the accuracy of classification
with the artificially generated test set is 96.32%, for case 2 92.55%, for case 3 99.15%, and 99.05% for
case 4. Thus, the two three-layer CNNs show a slightly higher classification rate for the artificially
generated test data than the two-layer CNNs (see Table 2).
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Table 2. Comparison of the classification performance of the different CNN architectures.

CNN Number
Detection Rate in %

Simulated Test Data Real Test Data

1. 96.32 64.88
2. 92.55 84.50
3. 99.15 86.88
4. 99.05 86.88

Looking at the weights for the two-layer CNN in the first layer, it is noticeable that edge
detection-like structures are visible in the first layer, but they are not directly interpretable (cf. Figure 7,
left, 1st row, green). Some of the weights in the first layer, and multiple weights in the 2nd layer
appear to be untrained, hence containing noise (cf. Figure 7, left, red). For the three-layer CNN, all
of the neurons in the first layer appear to be trained. Three filters appear to have a similar structure
(cf. Figure 7, right, 1st row, green). The interpretation of the weights in the 2nd layer is more difficult.
Again, some filters appear to be untrained (cf. Figure 7, right, red), while others appear to have a
structure. (cf. Figure 5, right, 2nd row, green) The third layer seems to contain mostly trained filters
(Figure 7, right, 3rd row, green). A generally visual interpretation of the filter weights is hardly possible.

Generally speaking, the number of untrained filters in CNN structures 1. to 4. indicates that
the CNN structure may have been selected too complex for the simple classification task. By adding
further surface-types and extending the training set, it can be assumed that these filters will be trained
for future characteristics.
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6. Verification of the Classifier Using Real Ground and Honed Surfaces

All measurement data used for the verification was acquired as 2.5D-topographies (height maps)
during the course of several completed projects not related to this work, using a confocal microscope as
measurement device (Nanofocus µSurf explorer, NanoFocus AG, Oberhausen, Germany). This ensures
that the existing data is independent of the methodology proposed in the Sections 2–4. A selection of
honed samples of differently manufactured cylinder liners from various automotive manufacturers
from the truck and car sector is used (in total 50 different surfaces, measured in each case at up
to 11 different locations, in total 400 records). These are kindly provided by the members of the
working group “Arbeitskreis 3D-Rauheitsmesstechnik”. Measured data from real ground surfaces is
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obtained from the institute’s data archive (in total 400 different measurement data sets) from completed
measurement tasks. The real ground surfaces contain data sets with grinding defects.

Measurements of the classification performance according to formula 10 of the four different CNN
architectures used to distinguish ground and honed surfaces are given in Table 2. The 3-layer CNNs
showed better results than the 2-layer CNNs. Both 3-layer CNN architectures classified the same 31
grinding and 74 honing samples incorrectly. What is striking about the incorrectly classified grinding
samples is the fact that all of the grinding structures run at an angle of 90◦, which hints at a difficulty
in learning this specific feature for the classification (cf. Figure 8, top). The wrongly classified honed
samples differ in part largely from the average honed surface. Generally, they differ in appearance.
There is no obviously visible systematics (cf. Figure 8, bottom). One possible explanation for part of
the incorrectly classified data sets is the fact that structures such as pores, which are not considered for
the model, occur in the real data sets.
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In summary, it can be concluded that the classification rates of over 85% for real measured surfaces
are satisfactory as a first result (see Table 2), especially since the verification set contained unmodelled
characteristics. However, the detection rate is far from the performance of modern neural networks for
more complex tasks [10,30]. Further work is therefore required.

7. Summary and Outlook

A simple approach to the simulation of artificial topographies with the characteristics of ground
and honed surfaces was presented. In a second step, the two classes of artificially created surfaces
were used to train CNNs in order to recognize the type of surface. It has been shown that simple,
modern CNN architectures are suitable for classifying the two simulated surface types. In a third step,
the CNNs were used to classify real ground and honed surfaces. The three-layer CNNs showed better
results than the two-layer CNNs with a classification rate of above 85%. However, the performance is
still below that of state-of-the-art CNNs. The classification task with only two recognizable classes
was deliberately chosen as simple in order to test how well neural networks can be implemented
and trained.

For the upcoming steps, both the approach to artificial creation of structured surfaces and the
CNN for classification will be extended: the input data for the surface creation can be generated from
actual measurement data based on stochastic time series models. Based on an optimization approach,
ideal models can be chosen that provide the best possible stochastic description of surface properties.
The suitability and versatility of this approach will be examined in further studies. It is intended
that the resulting CNN can be used to support users in the standard-compliant characterization of
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technical surfaces through proposals for standard-compliant data processing steps, for example in the
calculation of roughness parameters.
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