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Abstract: Among the Statistical Process Control (SPC) techniques, control charts are considered to
be high weight-age due to their effectiveness in process variation. As the Shewhart’s charts are not
that active in monitoring small and moderate process variations, the statisticians have been making
efforts to improve the performance of the control chart by introducing several techniques within
the tool. These techniques consist of experimenting with different estimators, different sampling
selection techniques, and mixed methodologies. The proposed chart is one of the examples of a mixed
chart technique that has shown its efficiency in monitoring small variations better than any of the
existing techniques in the specific situation of auxiliary information. To show and compare its
performance, average run length (ARL) tables and ARL curves have been presented in the article.
An industrial example has also been included to show the practical application of the proposed chart
in a real scenario.

Keywords: SPC; exponentially weighted moving average (EWMA); Cumulative Sum (CUSUM);
auxiliary information; process control; ARL

1. Introduction

Statistical Process Control (SPC) contains a set of tools that are widely used for improving process
performance by reducing the variability in the key process parameters. These tools have been found to
be very useful in achieving process stability and improving process capability. It is one of the greatest
developments of the twentieth century. Because of sound underlying principles, it can be applied
to any process. Among the seven SPC tools, Walter A. Shewhart of the Bell Telephone Company
developed Shewhart control charts. These charts are commonly used in Phase-I implementation of
SPC to monitor the process when there is large shift in parameters.

A major objective of SPC is to quickly detect the occurrence of an assignable cause or non-random
cause of process shifts so that root cause analysis of the process and corrective action may be addressed
to avoid nonconforming items in the manufacturing process. These techniques are widely used as
online process monitoring techniques. The main purpose of the process control is to reduce the
variability if it cannot be completely eliminated. The control charts have been found highly effective to
reduce the variability in the process.

One of the disadvantages of the Shewhart control chart is that it utilizes only information
contained in the last sample and ignores the information lying in the earlier subgroups. This feature
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makes these charts less sensitive to small shifts. Accordingly, they are less useful in process control
when detection of small shifts is important. Moreover, in the modern competitive era of industry and
the precise requirements of the customer, these control charts are not that effective, which is due to
their flexibility. These charts may present the process in a well-controlled scenario, whereas actually
non-conforming items are also being produced. Today the industry focuses on Lean Processes to
decrease waste and increase productivity and profitability.

In this situation, the process demands very sensitive monitoring that is capable of detecting
a minor variation in controllable characteristics. This tendency has created new challenges for control
chart developers to develop more sensitive monitoring techniques. To capture minor shifts in the
processes, the most popular charts found in the literature are CUSUM and exponentially weighted
moving average chart (EWMA) control charts.

In the recent literature, the EWMA chart is more popular as a result of its appealing mechanism
that enables the user to adjust the weight-age of recent and previous data obtained from the process.
Roberts [1] introduced the EWMA statistic to construct a control chart for monitoring small and
moderate shifts in the process. It has the quality to embed any estimator to make the chart more
useful and sensitive in terms of its performance. In this article, an EWMA-DiD control chart has been
proposed to monitor small shifts in process average. This chart is based on an estimator suggested by
Shabbir and Awan [2]. In recent research, several charts have been suggested wherein two monitoring
techniques have been merged to improve the performance of the chart. Abbas et al. [3] suggested
an EWMA-CUSUM control chart and showed that it performs better than commonly used EWMA and
CUSUM charts. Using the same pattern, Haq [4] proposed hybrid exponentially weighted moving
average (HEWMA) chart by merging two statistics. Further details about the design and application of
further techniques can be reviewed from Lucas [5], Capizzi and Massaroto [6], Jiang et al. [7], Abbassi
and Miller [8] and Aslam et al. [9]

In some of the situations, these mixed type charts have been further improved upon by implying
different sampling techniques. Azam et al. [10] suggested an HEWMA control chart using repetitive
sampling and proved that it works better than either EWMA or CUSUM. Haq et al. [11] proposed
two control charts based on ordered double ranked set sampling (ODRSS) and imperfect double
ranked set sampling (OIDRSS) and proved that these charts outperform the other sampling techniques.
Haq et al. [12] suggested an EWMA control chart under a Median ranked set sampling and Median
Imperfect ranked set sampling and showed that the suggested chart performs better as compared to
other sampling techniques.

In some of the latest publications on a similar topic, Aslam et al. [13] proposed mixed np-EWMA
and np-HEWMA control charts. In the proposed charts, attribute and variable characteristics from
the same process were simultaneously used for process monitoring. The suggested charts were found
more efficient than the existing schemes dealing the same type of data. Haq and Ali [14] proposed
a mixed chart by integrating a generalized weighted moving average (GWMA) and usual CUSUM.
GWMA was suggested by Sheu and Lin [15]. They compared the performance of their chart with
mixed EWMA-CUSUM, EWMA, and CUSUM control charts to show that proposed technique is
more sensitive. Riaz and Ajadi [16] proposed integrated EWMA-CUSUM control charts in Multivariate
environment and compared the performance with different Multivariate control charts. It was
highlighted that like univariate case, a mixed technique is equally effective in Multivariate scenario.
Riaz et al. [17] introduced a new technique by combining Tukey-EWMA and Tukey-CUSUM charts.
They experimented this technique over several skewed and symmetrical probability models to
strengthen its application. They also assessed the ability of a new technique using different run
length properties. They presented and detailed comparison of several charts that indicate mixed
techniques are a highly effective tool in process monitoring and they improve the capability of
process monitoring.

Based on the above discussion, the proposed control chart is a combination of two statistics;
i.e., usual EWMA statistic and YDiD statistic, as suggested by Shabbir and Awan [2]. It is expected that
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the suggested chart performs better than the monitoring scheme proposed by Shabbir and Awan [2] in
capturing small shifts in process. The advantage of applying this chart is that parameter and other
sampling techniques are the same as the chart by [2]. As such, no additional information is required to
apply EWMA-DiD except constant “λ”. Assuming “λ = 1” the proposed chart performs the same as
the control chart suggested by [2].

2. Designing of EWMA-DiD Control Chart

Let m random samples {(Yij, Uij, Vij): i = 1, 2, . . . , m; j = 1, 2, . . . , n} of size n are drawn from
a process having a tri-variate normal distribution with µ as a mean vector and Σ as a variance
covariance matrix, as

u =

 µy

µu

µv

 and ∑ =

 σ2
y ρyuσyσu ρyvσyσv

ρyuσyσu σ2
u ρuvσuσv

ρyvσyσv ρuvσuσv σ2
v


Here, Y is main variable concerned with a critical dimension of quality of a certain product, U and

V are auxiliary variables. These auxiliary variables are not crucial to quality but related to the same
product and correlate with each other including Y. µ vector contains the population means of these
variables, σ2 with different subscripts are representing the variances of given variables (Y, U and V)
and ρ with different subscripts are correlations between possible combinations of these variables.

In statistical process control, the recoded information is mainly about the quality related variable.
If some information about the other variables is easily available that can be correlated with our study
variable, the performance of the control chart can be improved. The information obtained from such
variables is known as auxiliary information. In sampling and quality control literature there are many
instances where auxiliary information has been used for improvements and new developments. In the
literature of sampling techniques, Hanif et al. [18], Hamad et al. [19] and Awan and Shabbir [20] have
developed new estimators by using auxiliary information. In quality control there are many cases
where control charts have been improved by using correlated auxiliary variables; for example, Shabbir
and Awan [2] proposed an efficient control chart to monitor process mean wherein charting statistic
is based on two auxiliary variables. Abbassi and Riaz [21] have proposed a process control where
they have used auxiliary information for Ranking as well as for estimation. Zhang [22] designed
cause-selecting-type control chart by using auxiliary information. Abbass et al. [23] used similar
technique to improve the performance of EWMA chart.

Now defining two sequences {E1, E2, E3, . . . } and {ED1, ED2, ED3, . . . } as follows:

Et = Xt for t = 1

Et = λXt + (1− λ)Et−1; 0 < λ ≤ 1 for t > 1

here, Et is usual exponentially weighted moving average statistic and Xt is any statistic related to
variable of interest.

EDt = YDiDt for t = 1

EDt = λYDiDt + (1− λ)EDt−1; 0 < λ ≤ 1 for t > 1

here, EDt is proposed statistic based on the estimator YDiDt used by [15].

YDiDt = y + 1
1−ρ2

uv
βyu
[
µu −

{
U + βuv

(
µv −V

)}]
+ 1

1−ρ2
uv

βyv
[
µv −

{
V + βvu

(
µu −U

)}]
The above statistic was proposed by [20] and the objective of using this statistic in the proposed

control chart is because in a Tri-variate Normal population situation, it is more efficient among the
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mean per unit estimator, classical regression estimator, and regression estimator with two variables.
This has been indicated in theoretical, simulation studies, and graphical caparisons by [20]. It is
quite obvious that a control chart based on an estimator having the least variance is more efficient
in detecting process parameter shifts. A comparison of Theoretical Percentage Relative Efficiency
presented by [20] is as follows (Table 1):

Table 1. Percentage relative efficiency of estimators.

Simple Mean Ratio Estimator Classical
Regression Estimator

Regression Estimator with
Two Auxiliary Variables

Estimator Used in
Proposed Chart

100 603.37 635.08 233.37 11,620.59

The proposed control chart i.e., EWMA-DiD has two control limits, upper action limit (UAL) and
lower action limit (LAL). It works in the following way;

Step 1: Select a sample of size n from the process as per the frequency of the drawing subgroup
defined by the process experts or manager. It is assumed that the process meets all the requirements
as explained in Shabbir and Awan [2]. Computing the value of the estimator, proposed EDt,
and corresponding set of UAL and LAL.

Step 2: The process is declared as out of control if EDt ≥ UAL or EDt ≤ LAL, otherwise process is
in control.

Suppose that the mean of the process is µ = µ0 when process is well in control. The means and
variances of the estimator used and proposed EDt statistic are as follows;

E
(
YDiDt

)
= µy and V

(
YDiDt

)
=

1
n(1− ρ2uv)

σ2
y

(
1− ρ2

yu − ρ2
yv − ρ2

uv + 2ρyuρyvρuv

)
Based on the above estimator the proposed statistic follows;

Based on the above statistic, the control limits of the proposed EWMA-DiD control chart to
monitor small shifts are:

UAL = µ0 + L
σy√

n

√
λδ

2− λ

(
1− (1− λ)2t

)
Center Line (CL) = µ0

LAL = µ0 − L
σy√

n

√
λδ

2− λ

(
1− (1− λ)2t

)
where δ = 1

(1−ρ2uv)

(
1− ρ2

yu − ρ2
yv − ρ2

uv + 2ρyuρyvρuv
)

3. Performance of the Proposed EWMA-DiD Control Chart

To gage the performance of the proposed chart, the yardstick used is the average run length (ARL)
when all the required parameters to run the proposed control chart are known.

The ARLs given in the tables have been computed as per Algorithm 1, with the assumption that all
the relevant parameters are known. For the cases where these parameters are unknown, a lot of detail is
given in Shabbir and Awan [2] for several cases. Moreover, literature contains many articles to estimate
the parameters by taking samples from the available data in phase I. As such, the proposed technique is
applicable in all the cases that have been discussed in the above mentioned referenced control chart.
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Algorithm 1. Monte Carlo Simulation Program of EWMA-DiD Control Chart for in-control and shifted process

The following are the algorithmic steps involved in Monte Carlo Simulation R program.

(1) Computation of proposed EWMA-DiD statistic.

(1.1) Generate Yt, Ut, Vt a random sample of size 3 from the Tri-variate Normal Distribution with
specified means vector µ and variance covariance matrix ∑. Generate 100,000 such subgroups.

(1.2) Compute Ydidt statistic and EWMA-DiD statistic EDt simultaneously at a fixed value of “λ” for
every generated subgroup.

(2) Setting up control limits

(2.1) Compute UAL and LAL by using a specific “λ” value and Control Limit constant “L”.
(2.2) Keeping in view the procedure of proposed control chart, insert the criteria to declare the process

as in-control or out-of-control. If the out of control signal appears, recording the number of
particular subgroup as run length; i.e., all the subgroups before this out of control subgroup were
indicating the process as in-control.

(2.3) Repeat the above mentioned step a sufficient number of times (say 10,000) to calculate the
in-control ARL. If the in-control ARL is very close or preferably equal to the desired ARL0
(say ARL 0 = 370), then go to Step 3 with the current value of L. Otherwise, modify the value of L
and repeat Steps 2.2 & 2.3 unless desired results are achieved.

(3) Evaluate the out-of-control ARL

For the shifted process, introducing shift to study variable Y, by substituting µy1 = µ0 + f σy, where f σy

is amount of shift in µ0

(3.1) Generate Yt, Ut, Vt a random sample of size 3 at each subgroup from the Tri-variate Normal
Distribution with specified means vector µ and variance covariance matrix ∑ for shifted process.
Generate 100,000 such subgroups.

(3.2) Compute Ydidt statistic and EWMA-DiD statistic EDt simultaneously at a fixed value of “λ” for
every generated subgroup.

(3.3) Let all the computed EWMA-DiD statistic EDt passing through in-control and out-of-control
criteria until the process is declared as out of control.

(3.4) Record the number of subgroup as run length at which out-of-control signal appears
(3.5) Repeat all the above mentioned steps 10,000 times to obtain the Average Run Length at different

shift sizes.

ARLs from EWMA-DiD Control Chart with n = 3 and ARL0 = 370 are lying in Table 2, whereas
for ARL0 = 500 are lying in Table 3.

To observe the performance of proposed chart graphically, ARL curves have been represented in
the Figures 1–14. In the Figures 1–7, ARL curves are corresponding to ARL0 = 370 and Figures 8–14 are
pertaining to ARL0 = 500. In all these Figures 1–14, ARL curves corresponding to “λ = 1” represent the
performance of existing chart whereas other curves are representing the performance of proposed chart.
It is quite clear from the given Figures 1–14, that chart performs better when “λ 6= 1” and moreover,
it’s performance improves as the value of “λ” decreases.

The ARLs in the below mentioned tables have been computed by selecting few combinations of
correlation coefficients where results can be compared with the performance of the existing chart. It is
quite clear that the proposed chart outperforms the existing chart in all the correlation combinations
where ARLs have been simulated. It can also be proved that at any scenario of the correlation
combination, the proposed chart performs better. Now discussing the proposed chart individually,
it is very clear that its performance is highly dependent on the choice value of “λ”. At the smaller
values of this parameter, the chart is more sensitive to capture the shifts. As the value of “λ” increases



Technologies 2018, 6, 69 6 of 16

the sensitivity of the chart decreases, so the usefulness of the chart lies in the appropriate selection
of “λ”. Another advantage of the chart is that even on correlation coefficients that are not very strong;
the chart is quite smart to handle the case.

Table 2. ARL0 = 370.

æyu, æyv,
æuv

Shift(f) λ =
0.05

λ =
0.10

λ =
0.20

λ =
0.25

λ =
1.00

æyu, æyv,
æuv

λ =
0.05

λ =
0.10

λ =
0.20

λ =
0.25

λ =
1.00

(1)
0.95,
0.95,
0.85

0.00 375.5 374.1 368.1 349.5 355.1

(7)
0.90,
0.10,
0.52

364.1 375.0 365.3 374.7 366.8
0.05 18.3 20.9 27.7 32.5 130.6 4.4 5.0 5.2 5.7 21.7
0.10 5.6 6.4 7.3 7.6 34.6 1.6 1.7 1.8 1.9 2.8
0.15 3.0 3.3 3.7 3.7 11.2 1.1 1.1 1.1 1.2 1.2
0.20 2.0 2.2 2.3 2.3 4.5 1.0 1.0 1.0 1.0 1.0
0.35 1.1 1.1 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0
0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(2)
0.95,
0.70,
0.85

0.00 370.7 366.1 347.9 374.9 369.2

(8)
0.85,
0.35,
0.60

375.4 370.8 355.2 367.3 358.1
0.05 36.1 45.1 61.2 72.6 215.0 109.6 146.6 179.3 186.6 316.3
0.10 11.1 13.3 15.6 18.4 85.6 38.1 47.4 65.6 78.0 216.4
0.15 6.1 6.6 7.4 7.7 34.1 19.3 23.4 30.3 35.4 139.0
0.20 3.6 4.1 4.5 4.7 16.2 12.0 13.6 17.1 19.8 90.1
0.35 1.7 1.8 1.9 1.9 3.0 4.8 5.3 6.0 6.4 24.4
0.50 1.1 1.2 1.2 1.2 1.3 2.8 3.0 3.3 3.4 9.3
0.75 1.0 1.0 1.0 1.0 1.0 1.6 1.7 1.8 1.9 2.7
1.00 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.3 1.4

(3)
0.90,
0.90,
0.75

0.00 376.0 368.0 371.6 365.6 365.5

(9)
0.80,
0.80,
0.70

388.4 360.1 364.0 375.0 358.9
0.05 45.5 56.6 82.0 94.0 250.3 115.9 140.8 185.7 204.4 331.1
0.10 14.7 17.0 21.3 24.0 111.1 39.5 48.7 69.7 79.1 225.5
0.15 7.3 8.4 9.5 10.4 48.5 20.2 23.8 32.3 36.9 148.6
0.20 4.7 5.1 5.7 6.0 23.9 12.5 14.1 17.6 19.6 93.0
0.35 1.9 2.2 2.3 2.3 4.6 4.9 5.5 6.1 6.5 27.9
0.50 1.3 1.4 1.4 1.4 1.7 2.8 3.1 3.4 3.6 9.7
0.75 1.0 1.0 1.0 1.0 1.0 1.6 1.7 1.8 1.9 2.8
1.00 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.3 1.3 1.4

(4)
0.90,
0.40,
0.10

0.00 359.7 374.7 359.2 363.6 372.3

(10)
0.75,
0.75,
0.35

381.2 367.8 361.0 365.1 362.7
0.05 56.3 70.4 97.6 113.6 265.1 90.0 108.2 150.8 165.7 301.5
0.10 17.7 20.4 27.2 30.4 124.4 28.3 35.3 49.4 54.8 195.9
0.15 8.9 10.1 11.9 13.4 60.4 14.2 16.6 22.2 25.1 106.0
0.20 5.5 6.0 6.9 7.4 32.0 8.9 10.1 11.7 13.5 66.8
0.35 2.3 2.5 2.7 2.8 6.6 3.5 4.0 4.4 4.5 15.3
0.50 1.4 1.5 1.6 1.7 2.3 2.1 2.3 2.5 2.6 5.3
0.75 1.0 1.1 1.1 1.1 1.1 1.3 1.4 1.4 1.4 1.7
1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1

(5)
0.70,
0.70,
0.50

0.00 373.0 359.8 359.0 371.0 378.5

(11)
−0.90,
0.90,
−0.75

370.8 373.7 373.0 357.3 357.4
0.05 145.3 173.3 208.6 227.1 326.7 46.6 57.9 80.7 94.6 239.5
0.10 53.6 68.0 90.5 109.6 248.6 14.8 16.5 21.4 23.9 107.0
0.15 27.3 32.5 44.3 49.6 185.5 7.5 8.3 9.8 10.5 49.2
0.20 16.5 19.2 25.0 27.4 126.3 4.6 5.1 5.7 6.1 24.2
0.35 6.3 7.1 8.4 8.8 41.4 2.0 2.2 2.3 2.4 4.6
0.50 3.6 4.0 4.5 4.7 15.5 1.3 1.4 1.4 1.5 1.8
0.75 2.0 2.2 2.3 2.4 4.6 1.0 1.0 1.0 1.0 1.0
1.00 1.4 1.5 1.6 1.6 2.1 1.0 1.0 1.0 1.0 1.0

(6)
0.65,
0.30,
0.50

0.00 369.2 382.1 359.9 359.6 367.4

(12)
0.90,
−0.90,
−0.75

387.2 380.6 350.2 367.5 364.0
0.05 188.7 225.1 257.2 274.9 350.1 45.9 57.2 83.9 93.5 242.0
0.10 77.6 100.7 130.1 146.9 297.1 14.4 17.1 21.4 23.8 107.4
0.15 40.7 51.3 70.6 80.0 237.4 7.3 8.3 9.4 10.3 49.4
0.20 25.6 30.7 42.0 48.8 165.9 4.7 5.1 5.7 6.1 23.0
0.35 10.2 11.1 13.4 15.4 68.9 2.0 2.2 2.3 2.4 4.6
0.50 5.5 6.1 6.8 7.2 31.1 1.3 1.4 1.4 1.5 1.7
0.75 2.9 3.2 3.4 3.7 9.9 1.0 1.0 1.0 1.0 1.0
1.00 1.9 2.1 2.3 2.3 4.2 1.0 1.0 1.0 1.0 1.0
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Table 3. ARL0 = 500.

æyu, æyv,
æuv

Shift(f) λ =
0.05

λ =
0.10

λ =
0.20

λ =
0.25

λ =
1.00

æyu, æyv,
æuv

λ =
0.05

λ =
0.10

λ =
0.20

λ =
0.25

λ =
1.00

(1)
0.95,
0.95,
0.85

0.00 508.7 490.9 521.9 478.7 489.6

(7)
0.90,
0.10,
0.52

499.8 478.4 508.7 491.7 490.1
0.05 20.0 23.7 33.8 37.8 173.9 4.8 5.2 5.8 6.1 26.8
0.10 6.3 6.8 7.9 8.4 41.3 1.7 1.8 1.9 2.0 3.2
0.15 3.2 3.6 3.8 4.0 13.1 1.1 1.1 1.2 1.2 1.3
0.20 2.1 2.3 2.5 2.5 5.0 1.0 1.0 1.0 1.0 1.0
0.35 1.1 1.1 1.2 1.2 1.3 1.0 1.0 1.0 1.0 1.0
0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(2)
0.95,
0.70,
0.85

0.00 506.0 478.7 508.1 485.5 484.0

(8)
0.85,
0.35,
0.60

487.9 479.4 515.5 502.1 485.7
0.05 41.0 54.0 78.9 90.5 292.9 138.9 173.8 255.2 270.1 426.6
0.10 12.5 14.1 19.1 20.4 109.9 41.3 55.6 86.3 94.9 286.3
0.15 6.4 7.0 8.0 8.4 43.2 20.8 25.9 36.3 41.3 187.7
0.20 4.0 4.3 4.8 5.0 20.1 13.2 15.2 19.5 21.6 119.0
0.35 1.7 1.9 2.0 2.0 3.4 5.1 5.7 6.5 6.9 30.9
0.50 1.2 1.2 1.3 1.3 1.4 2.9 3.2 3.6 3.6 10.7
0.75 1.0 1.0 1.0 1.0 1.0 1.6 1.8 1.9 1.9 3.0
1.00 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.3 1.3 1.5

(3)
0.90,
0.90,
0.75

0.00 493.9 490.7 533.6 494.9 498.0

(9)
0.80,
0.80,
0.70

485.0 475.5 495.2 495.2 482.5
0.05 51.7 68.8 109.3 117.9 329.9 138.6 181.2 256.7 278.6 429.6
0.10 15.3 18.5 25.9 28.7 146.1 44.0 60.2 86.3 98.2 305.5
0.15 8.0 9.0 10.7 11.6 61.8 21.9 27.6 37.5 43.9 188.4
0.20 5.1 5.6 6.2 6.5 28.7 13.4 15.8 20.7 22.8 118.9
0.35 2.1 2.3 2.5 2.5 5.4 5.2 5.8 6.5 7.1 33.1
0.50 1.3 1.4 1.5 1.5 1.9 3.0 3.2 3.6 3.7 11.3
0.75 1.0 1.0 1.0 1.0 1.0 1.7 1.8 1.9 2.0 3.2
1.00 1.0 1.0 1.0 1.0 1.0 1.2 1.3 1.3 1.3 1.5

(4)
0.90,
0.40,
0.10

0.00 461.8 480.6 499.1 489.2 481.8

(10)
0.75,
0.75,
0.35

487.0 486.5 501.6 487.5 488.0
0.05 65.0 86.5 127.9 137.1 348.7 100.8 135.3 193.9 222.5 424.0
0.10 19.1 22.9 32.9 37.0 173.4 31.6 39.9 60.2 67.7 246.1
0.15 9.7 10.9 13.7 14.9 80.6 16.2 18.9 24.6 28.6 140.5
0.20 6.1 6.5 7.7 8.1 40.4 9.7 11.0 13.6 15.2 78.6
0.35 2.5 2.6 3.0 3.0 7.7 3.9 4.2 4.7 4.8 18.9
0.50 1.5 1.6 1.7 1.7 2.5 2.2 2.5 2.6 2.7 6.2
0.75 1.1 1.1 1.1 1.1 1.1 1.3 1.4 1.5 1.5 1.9
1.00 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1

(5)
0.70,
0.70,
0.50

0.00 488.9 498.3 520.7 495.9 507.6

(11)
−0.90,
0.90,
−0.75

484.4 476.7 505.3 508.4 490.3
0.05 174.5 222.7 311.6 323.5 417.8 51.3 67.9 102.5 116.4 330.6
0.10 59.3 80.2 119.4 138.2 346.8 15.8 18.6 24.4 28.3 137.9
0.15 29.0 36.4 55.7 63.2 237.6 8.0 9.0 10.7 11.6 60.6
0.20 17.8 21.7 29.1 33.3 155.2 4.9 5.4 6.3 6.4 29.1
0.35 7.0 7.9 9.2 10.1 50.7 2.1 2.3 2.5 2.5 5.2
0.50 3.9 4.3 4.8 4.9 19.0 1.3 1.4 1.5 1.5 1.9
0.75 2.1 2.3 2.5 2.6 5.4 1.0 1.0 1.0 1.0 1.1
1.00 1.5 1.5 1.7 1.7 2.3 1.0 1.0 1.0 1.0 1.0

(6)
0.65,
0.30,
0.50

0.00 489.9 507.5 506.1 486.0 493.2

(12)
0.90,
−0.90,
−0.75

488.0 478.9 516.1 477.2 492.1
0.05 236.4 290.7 358.0 393.0 471.0 53.2 68.6 105.7 117.2 337.2
0.10 92.0 120.9 176.3 197.8 386.3 16.1 17.8 25.3 27.8 136.4
0.15 46.2 61.9 89.3 104.0 311.4 7.9 8.9 10.8 11.6 59.1
0.20 28.6 33.8 53.5 57.9 228.4 4.9 5.5 6.3 6.5 28.8
0.35 10.9 12.0 15.4 16.6 92.5 2.1 2.3 2.5 2.5 5.1
0.50 5.9 6.7 7.9 7.9 39.7 1.3 1.4 1.5 1.5 1.9
0.75 3.0 3.4 3.7 3.8 11.6 1.0 1.0 1.0 1.0 1.1
1.00 2.0 2.2 2.4 2.4 4.8 1.0 1.0 1.0 1.0 1.0

Following are ARL Curves of the Proposed Charts at few selective correlation combinations.
In the given charts the curve corresponding to λ = 1 represents performance of existing chart.



Technologies 2018, 6, 69 8 of 16

Technologies 2018, 6, x FOR PEER REVIEW  8 of 16 

 

1.000.750.500.250.00

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.65,0.30,0.50

 

Figure 1. Average run length (ARL) curves when ��� = 0.65, ��� = 0.30, ��� = 0.50 at above values 

of λ. 

1 .00 .80 .60 .40 .20 .0

40

30

20

10

0

s hift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

 -  0 .9 0,0.9 0 ,-  0 .7 5

 

Figure 2. ARL curves when ��� = −0.9, ��� = 0.9, ��� = −0.75 at above values of λ. 

1.00.80.60.40.20.0

40

30

20

10

0

shift

A
R

L

λ=0.05

λ=0.10

λ=0.20

λ=0.25

λ=1.0

Variab le

0.90,- 0.90,- 0.75

 

Figure 3. ARL curves when ��� = 0.9, ��� = −0.9, ��� = −0.75 at above values of λ. 

Figure 1. Average run length (ARL) curves when ρyu = 0.65, ρyv = 0.30, ρuv = 0.50 at above values of λ.

Technologies 2018, 6, x FOR PEER REVIEW  8 of 16 

 

1.000.750.500.250.00

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.65,0.30,0.50

 

Figure 1. Average run length (ARL) curves when ��� = 0.65, ��� = 0.30, ��� = 0.50 at above values 

of λ. 

1 .00 .80 .60 .40 .20 .0

40

30

20

10

0

s hift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

 -  0 .9 0,0.9 0 ,-  0 .7 5

 

Figure 2. ARL curves when ��� = −0.9, ��� = 0.9, ��� = −0.75 at above values of λ. 

1.00.80.60.40.20.0

40

30

20

10

0

shift

A
R

L

λ=0.05

λ=0.10

λ=0.20

λ=0.25

λ=1.0

Variab le

0.90,- 0.90,- 0.75

 

Figure 3. ARL curves when ��� = 0.9, ��� = −0.9, ��� = −0.75 at above values of λ. 

Figure 2. ARL curves when ρyu = −0.9, ρyv = 0.9, ρuv = −0.75 at above values of λ.

Technologies 2018, 6, x FOR PEER REVIEW  8 of 16 

 

1.000.750.500.250.00

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.65,0.30,0.50

 

Figure 1. Average run length (ARL) curves when ��� = 0.65, ��� = 0.30, ��� = 0.50 at above values 

of λ. 

1 .00 .80 .60 .40 .20 .0

40

30

20

10

0

s hift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

 -  0 .9 0,0.9 0 ,-  0 .7 5

 

Figure 2. ARL curves when ��� = −0.9, ��� = 0.9, ��� = −0.75 at above values of λ. 

1.00.80.60.40.20.0

40

30

20

10

0

shift

A
R

L

λ=0.05

λ=0.10

λ=0.20

λ=0.25

λ=1.0

Variab le

0.90,- 0.90,- 0.75

 

Figure 3. ARL curves when ��� = 0.9, ��� = −0.9, ��� = −0.75 at above values of λ. 
Figure 3. ARL curves when ρyu = 0.9, ρyv = −0.9, ρuv = −0.75 at above values of λ.



Technologies 2018, 6, 69 9 of 16

Technologies 2018, 6, x FOR PEER REVIEW  9 of 16 

 

1.00.80.60 .40.20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.90,0.90 ,0.75

 

Figure 4. ARL curves when ��� = 0.9, ��� = 0.9, ��� 	= 0.75 at above values of λ. 

1 .00 .80.60 .40 .20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.90,0 .40,0 .10

 

Figure 5. ARL curves when ��� = 0.9, ��� = 0.4, ��� = 0.1 at above values of λ. 

1.00.80.60.40.20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.85,0.35,0.60

 

Figure 6. ARL curves when ��� = 0.85, ��� = 0.35, ��� = 0.60 at above values of λ. 

Figure 4. ARL curves when ρyu = 0.9, ρyv = 0.9, ρuv = 0.75 at above values of λ.

Technologies 2018, 6, x FOR PEER REVIEW  9 of 16 

 

1.00.80.60 .40.20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.90,0.90 ,0.75

 

Figure 4. ARL curves when ��� = 0.9, ��� = 0.9, ��� 	= 0.75 at above values of λ. 

1 .00 .80.60 .40 .20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.90,0 .40,0 .10

 

Figure 5. ARL curves when ��� = 0.9, ��� = 0.4, ��� = 0.1 at above values of λ. 

1.00.80.60.40.20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.85,0.35,0.60

 

Figure 6. ARL curves when ��� = 0.85, ��� = 0.35, ��� = 0.60 at above values of λ. 

Figure 5. ARL curves when ρyu = 0.9, ρyv = 0.4, ρuv = 0.1 at above values of λ.

Technologies 2018, 6, x FOR PEER REVIEW  9 of 16 

 

1.00.80.60 .40.20.0

40

30

20

10

0

shift

A
R

L
λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.90,0.90 ,0.75

 

Figure 4. ARL curves when ��� = 0.9, ��� = 0.9, ��� 	= 0.75 at above values of λ. 

1 .00 .80.60 .40 .20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.90,0 .40,0 .10

 

Figure 5. ARL curves when ��� = 0.9, ��� = 0.4, ��� = 0.1 at above values of λ. 

1.00.80.60.40.20.0

40

30

20

10

0

shift

A
R

L

λ =0.05

λ =0.10

λ =0.20

λ =0.25

λ =1.0

Var iab le

0.85,0.35,0.60

 

Figure 6. ARL curves when ��� = 0.85, ��� = 0.35, ��� = 0.60 at above values of λ. 
Figure 6. ARL curves when ρyu = 0.85, ρyv = 0.35, ρuv = 0.60 at above values of λ.
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Figure 9. ARL curves when ρyu = 0.7, ρyv = 0.7, ρuv = 0.35 at above values of λ.
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Figure 12. ARL curves when ρyu = 0.9, ρyv = 0.4, ρuv = 0.1 at above values of λ.
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compared. It is quite clear from the comparison that �� -chart, CUSUM, and EWMA charts are 

performing equally for shifts greater than 1, CUSUM and EWMA charts are performing equally for 

moderate shifts; i.e., 0.5 to 1 (both inclusive) and for the same shift size ����� is performing better 

than CUSUM and EWMA. Therefore, as far as small shifts are concerned, the proposed EWMA-DiD 

is best in performance. ARLs in the above mentioned table have been computed from tri-variate 

normal, simulated data with parameters as �� = 	�� = �� = 0 and �� = 	�� = �� = 1 with ��� =

0.8, ��� = 0.8, ��� = 0.7 . The sample size has been taken as n = 3 for the simulated data. The 

correlations and other information related to auxiliary variables U and V, are applicable for EWMA-

DiD and ����� control charts, whereas, ��-chart, CUSUM and EWMA charts are using parameters 

related to variable Y only. In computing the ARLs of the proposed chart, the weighing constant λ 

assumes values of 0.05, 0.10, 0.20, and 0.25. As the chart takes one variable for quality control 

monitoring and two as auxiliary variables, there is no need to compare the performance with 

multivariate charts. This has also been advised by Shabbir and Awan [2]. 
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4. Comparison of EWMA-DiD Control Chart with Other Control Charts

In the below mentioned Table 4, ARLs of different commonly used techniques have been compared.
It is quite clear from the comparison that X-chart, CUSUM, and EWMA charts are performing equally
for shifts greater than 1, CUSUM and EWMA charts are performing equally for moderate shifts; i.e., 0.5
to 1 (both inclusive) and for the same shift size XDiD is performing better than CUSUM and EWMA.
Therefore, as far as small shifts are concerned, the proposed EWMA-DiD is best in performance. ARLs in
the above mentioned table have been computed from tri-variate normal, simulated data with parameters
as µy = µu = µv = 0 and σy = σu = σv = 1 with ρyu = 0.8, ρyv = 0.8, ρuv = 0.7. The sample size has
been taken as n = 3 for the simulated data. The correlations and other information related to auxiliary
variables U and V, are applicable for EWMA-DiD and XDiD control charts, whereas, X-chart, CUSUM and
EWMA charts are using parameters related to variable Y only. In computing the ARLs of the proposed
chart, the weighing constant λ assumes values of 0.05, 0.10, 0.20, and 0.25. As the chart takes one variable
for quality control monitoring and two as auxiliary variables, there is no need to compare the performance
with multivariate charts. This has also been advised by Shabbir and Awan [2].
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Table 4. Comparison of different control charts.

Shift XChart
CUSUM
k = 0.5

EWMA Chart
EWMA-DiD XDiD −Chart

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.25 λ = 0.5

0.00 500.5 502.8 499.9 499.8 499.6 500.0 500.5 495.8 490.1
0.25 241.2 52.4 35.5 40.5 55.8 64.8 116.9 <13.0 78.1
0.50 76.2 13.4 13.6 12.7 13.7 14.9 25.1 <3.7 11.3
0.75 27.3 7.1 8.3 7.3 6.8 6.9 9.1 <2.0 3.2
1.00 11.5 4.8 6.1 5.1 4.5 4.4 4.8 <1.3 1.5
1.50 3.2 3.0 4.0 3.3 2.8 2.6 2.4 1.0 1.0
2.00 1.5 2.3 3.1 2.5 2.1 2.0 1.6 1.0 1.0
2.50 1.1 1.9 2.5 2.1 1.7 1.6 1.2 1.0 1.0
3.00 1.0 1.6 2.1 1.9 1.4 1.3 1.0 1.0 1.0

5. Application of Proposed Chart on Real Data Obtained from Industry

The data were taken from an industry producing Yarn. The variables are related to the Auto
cone department, which are RH% (Relative Humidity Percentage), Ambient Temperature in Celsius,
and Ambient RH. RH% is very important to maintain in the department because the tensile strength of
the yarn as well as the final quality of their end product is highly dependent on it. Their procedures
are well standardized to control the defect rate and quality of their product.

They provided around 11,000 observations that were recorded from the actual process and, after
the filtration by removing the rows containing missing entries, 10,266 rows were available for the
parameter estimation and charting purpose. For parameter estimation, 1000 samples of 1000 size each
without replacement were selected assuming that the process is well in control from first 8000 entries
and the remaining were kept for charting purpose.

The parameters were computed as follows (Table 5):

Table 5. Process parameters.

Variables Parameters Variable Type

RH% µy = 65.794 σy = 2.0266 ρyu = −0.3498 Quality Concern
Amb TC µu = 26.403 σu = 3.3591 ρyv = 0.3374 Auxiliary

InformationAmb RH µv = 69.6995 σv = 9.3185 ρuv = −0.6688

From the data pool kept for charting, 100 subgroups of size 3 each were selected for the construction
of the control chart. The charts have been constructed in Figures 15–17, selecting different values of λ.
The control lines have been drawn at L = 3.00 as Action limits and Warning limits are at L = 2.50.
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6. Conclusions 

From the application and the simulation results of the proposed chart, we observe that the chart 

mechanism is very smart in detecting shifts if the main quality concerned variable is strongly 

correlated with at least one of the auxiliary variables. Otherwise, as the correlation becomes weaker, 

the performance of the chart becomes less efficient. In case one of the auxiliary variables is 

uncorrelated, the chart’s efficiency is close to a simple X-bar chart. In the above mentioned 

application, there are three charts in Figures 15 to 17, from the same data at different values of λ. As 

the value of λ decreases from 0.5, the weight-age to present value of statistic becomes smaller than 

previous information. As such the chart shows different behaviors of the process control at varying 

values of λ. At smaller value of this weighting constant, minor drifts in the process are in pattern; at 

the higher value of λ the points that are close to upper action limits are highlighted. It is suggested 

in light of the above mentioned findings, for an in-depth analysis of the process the chart should be 

assigned different values of λ to listen to the voice of the process. 
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6. Conclusions

From the application and the simulation results of the proposed chart, we observe that the
chart mechanism is very smart in detecting shifts if the main quality concerned variable is strongly
correlated with at least one of the auxiliary variables. Otherwise, as the correlation becomes weaker,
the performance of the chart becomes less efficient. In case one of the auxiliary variables is uncorrelated,
the chart’s efficiency is close to a simple X-bar chart. In the above mentioned application, there are three
charts in Figures 15–17, from the same data at different values of λ. As the value of λ decreases from
0.5, the weight-age to present value of statistic becomes smaller than previous information. As such
the chart shows different behaviors of the process control at varying values of λ. At smaller value of
this weighting constant, minor drifts in the process are in pattern; at the higher value of λ the points
that are close to upper action limits are highlighted. It is suggested in light of the above mentioned
findings, for an in-depth analysis of the process the chart should be assigned different values of λ to
listen to the voice of the process.
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