
technologies

Article

A Preconditioned Iterative Approach for Efficient
Full Chip Thermal Analysis on Massively
Parallel Platforms †

George Floros 1,*, Konstantis Daloukas 1,2, Nestor Evmorfopoulos 1 and George Stamoulis 1

1 Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece;
kodalouk@e-ce.uth.gr (K.D.); nestevmo@e-ce.uth.gr (N.E.); georges@e-ce.uth.gr (G.S.)

2 Helic Inc., 2350 Mission College Boulevard, Suite 495, Santa Clara, CA 95054, USA
* Correspondence: gefloros@e-ce.uth.gr; Tel.: +30-2421-074-979
† This paper is an extended version of our paper published in the Proceedings of the 7th International

Conference on Modern Circuit and System Technologies on Electronics and Communications
(MOCAST 2018), Thessaloniki, Greece, 7–9 May 2018.

Received: 1 November 2018; Accepted: 17 December 2018; Published: 20 December 2018 ����������
�������

Abstract: Efficient full-chip thermal simulation is among the most challenging problems facing the
EDA industry today, especially for modern 3D integrated circuits, due to the huge linear systems
resulting from thermal modeling approaches that require unreasonably long computational times.
While the formulation problem, by applying a thermal equivalent circuit, is prevalent and can be easily
constructed, the corresponding 3D equations network has an undesirable time-consuming numerical
simulation. Direct linear solvers are not capable of handling such huge problems, and iterative
methods are the only feasible approach. In this paper, we propose a computationally-efficient iterative
method with a parallel preconditioned technique that exploits the resources of massively-parallel
architectures such as Graphic Processor Units (GPUs). Experimental results demonstrate that the
proposed method achieves a speedup of 2.2× in CPU execution and a 26.93× speedup in GPU
execution over the state-of-the-art iterative method.

Keywords: thermal analysis; integrated circuits; electronic design automation

1. Introduction

The evolution of the manufacturing technology of Integrated Circuits (ICs) has continued
unabated over the past fifty years, according to the predictions of Moore’s law and has led to extremely
complex circuits (modern processors contain several billion transistors and are easily the most complex
human construction), but also to analogous escalation of the problems related to the analysis and
simulation of such circuits. Therefore, thermal analysis is one of the most critical challenges arising
from the technological evolution. The continuous effort for smaller sizes, in the sub-45-nm era,
and greater performance, as well as the new 3D structures have begun to outpace the ability of heat
sinks to dissipate the on-chip power.

In particular, aggravation of thermal effects is an inevitable consequence of the continuous scaling
trend. High temperature has a significant impact on chip performance and functionality, leading to
slower transistor speed, more leakage power, higher interconnect resistance, and reduced reliability [1].
The problem becomes more pronounced in modern technologies due to the multilayer 3D stacking,
and the use of new device technologies, like FinFETsand Silicon on Insulator (SOI), which are more
sensitive to the self-heating effect [2]. Furthermore, as heat generation is nonuniform, local hotspots
and spatial gradients appear. Stacking multiple layers in a 3D chip promises density and performance
enhancement. However, it requires extensive thermal analysis as the power density and temperature

Technologies 2019, 7, 1; doi:10.3390/technologies7010001 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
http://www.mdpi.com/2227-7080/7/1/1?type=check_update&version=1
http://dx.doi.org/10.3390/technologies7010001
http://www.mdpi.com/journal/technologies

Technologies 2019, 7, 1 2 of 15

of these architectures can be quite high. For the above reasons, full chip thermal analysis is a vital,
but extremely difficult problem due to the size of the systems that need to be solved for multiple time
points and remains a key issue for future microprocessors and ICs [3,4]. Due to this fact, IC thermal
analysis problems have drawn considerable attention over the past two decades. To deal with these
challenges, prior approaches have focused on the formulation of the problem and the fast steady-state
and transient thermal simulation in order to compute the temperature across the whole chip.

Direct methods (based on matrix factorization) have been widely used in the past for solving the
resulting linear systems, mainly because of their robustness in most types of problems. Unfortunately,
these methods do not scale well with the dimension of the linear system and are prohibitively expensive,
while the thermal problems are becoming larger, in both execution time and memory requirements.
On the other hand, iterative Krylov-subspace methods such as Conjugate Gradients (CG) involve only
inner products and matrix-vector products and constitute a better alternative for large sparse linear
systems in many respects, being more computationally- and memory-efficient.

Moving beyond conventional direct solvers, our early work in [5] introduced an approach for
full chip thermal analysis that is based on the Finite Difference Method (FDM) or the formulation of
an RC equivalent electrical network in conjunction with a highly parallel iterative Krylov-subspace
Preconditioned Conjugate Gradient (PCG) method, which overcomes the computational demands for
the very large systems arising from the thermal modeling. In particular, the contributions of this paper
to the problem of thermal analysis are:

• Accelerated solution of thermal grids: The proposed thermal simulator uses FDM with
preconditioned CG, which is well-suited, offers faster solution times, and uses less memory
than sparse direct solvers.

• Highly parallel preconditioned mechanism: The specialized structures of thermal grids allow
the usage of fast transform solvers as a preconditioned mechanism in the CG method, which are
highly parallel and can be easily ported to GPUs.

• Fast convergence to the solution: Fast transform solvers can handle different matrix blocks,
which offers a good preconditioner approximation. This results in considerably more accurate
preconditioners that can approximate thermal grids and make CG converge to the final solution
in a few iterations.

Experimental results demonstrate that our method achieves speedups of around 20× on GPU and
around 2× on CPU for a 10 M node thermal grid over a state-of-the-art iterative method, like Incomplete
Cholesky Preconditioned Conjugate Gradient (ICCG) on a CPU.

The rest of the paper, is organized as follows. Section 2 describes the related work on the thermal
simulation problem. Section 3 introduces the thermal model that was used in the present work.
Section 4 provides a brief description of the 3D fast transform solver. Section 5 describes the proposed
approach, combining the methods presented in the two previous sections. Finally, Section 6 presents the
results and a discussion about the advantages of the method, followed by the conclusions in Section 7.

2. Related Work

The growing need to simulate large-scale thermal models in technology nodes below 45 nm
has led to some important research in the fast thermal estimation of the IC chips. In this section,
we briefly review some of these methods. Most transient thermal analysis methodologies have so far
relied on solving the entire system, using different modeling techniques, based mainly on the Finite
Element Method (FEM), the Finite Difference Method (FDM), and Green’s functions. The research work
in [6,7] adopted the FDM method, with a multigrid approach in order to speed up the simulation
process, and the FDM method with temporal and spatial adaptation to further accelerate thermal
analysis was proposed in [8,9]. Similarly, in [10], the full-chip thermal transient equations were solved
in a similar manner using an Alternating Direction Implicit (ADI) method for enhanced computational
efficiency. Furthermore, in [11,12], the FDM approach and the RCequivalent were used along with

Technologies 2019, 7, 1 3 of 15

modeling of the fluids for micro-cooling 3D structures. In [13], FEM was adopted for 2D and 3D
geometries along with a multigrid preconditioning method and automatic mesh generation for chip
geometries. Finally, Green’s functions were used in [14] with discrete cosine transform and its inversion
in order to accelerate the numerical computation of the homogeneous and inhomogeneous solution.
However, these method are efficient for a limited range of problems, since they have limited potential
for parallelism.

Besides the previous conventional approaches, different methods like a Neural Net (NN) approach
were used in [15], but since it was based in predictions, it did not always provide an accurate solution
to the crucial problem of thermal analysis. Moreover, a Look Up Table (LUT) method based on the
power thermal relation, which develops a double-mesh scheme to capture thermal characteristics and
store the results in library files, was presented in [16]. However, currently, chips can lead to huge
library files due to the highly complex combined heat maps. Furthermore, the reduction of the problem
size, through a Model Order Reduction (MOR) process, was proposed in [17,18], which can be useful
in addressing the performance of individual devices, but in some cases, it is not enough to address all
the reliability issues.

Finally, the authors in [19] provided a parallel iterative Generalized Minimal RESidual (GMRES)
method for FDM and micro-cooling problems, but without any special preconditioning approach.
Clearly, the concept of a dedicated fully-parallel preconditioned technique has not yet been introduced
in the context of transient thermal analysis.

3. On-Chip Thermal Modeling and Analysis

There are three modes of heat transfer: conduction, convection, and radiation. The primary
mechanism of heat transfer in solids is by conduction, and the others can be neglected. The starting
point for thermal analysis is Fourier’s law of heat conduction [20]:

q(r, t) = −kt∇T(r, t) (1)

which states that the vector of heat flux density q (heat flow per unit area and unit time) is proportional
to the negative gradient of temperature T at every spacial point r = [x, y, z]T and time t, where kt is
the thermal conductivity of the material.

The conservation of energy also states that the divergence of the heat flux q equals the difference
between the power generated by external heat sources and the rate of change of temperature, i.e.,

∇ · q(r, t) = g(r, t)− ρcp
∂T(r, t)

∂t
(2)

where g(r, t) is the power density of the heat sources, cp is the specific heat capacity of the material,
and ρ is the density of the material. By combining (1) and (2), we have:

−kt∇2T(r, t) = g(r, t)− ρcp
∂T(r, t)

∂t
(3)

which may be rewritten as the following parabolic Partial Differential Equation (PDE):

ρcp
∂T(r, t)

∂t
= kt∇2T(r, t) + g(r, t)

= kt(
∂2T(r, t)

∂x2 +
∂2T(r, t)

∂y2 +
∂2T(r, t)

∂z2) + g(r, t)
(4)

(normally accompanied by appropriate boundary conditions [21]).
A common procedure for the numerical solution of (4) is by discretization along the three spatial

coordinates with steps ∆x, ∆y, and ∆z and substitution of the spatial second-order derivatives by finite

Technologies 2019, 7, 1 4 of 15

difference approximations, leading to the following expression for temperature Ti,j,k at each discrete
point (i, j, k) in relation to its neighboring points:

ρcp
dTi,j,k

dt
= kt

Ti+1,j,k − 2Ti,j,k + Ti−1,j,k

∆x2

+kt
Ti,j+1,k − 2Ti,j,k + Ti,j−1,k

∆y2

+kt
Ti,j,k+1 − 2Ti,j,k + Ti,j,k−1

∆z2 + gi,j,k

(5)

or by multiplying by ∆x∆y∆z:

ρcp(∆x∆y∆z)
dTi,j,k

dt

−kt
∆y∆z

∆x
(Ti+1,j,k − 2Ti,j,k + Ti−1,j,k)

−kt
∆x∆z

∆y
(Ti,j+1,k − 2Ti,j,k + Ti,j−1,k)

−kt
∆x∆y

∆z
(Ti,j,k+1 − 2Ti,j,k + Ti,j,k−1)

= gi,j,k(∆x∆y∆z)

(6)

There is a well-known analogy between thermal and electrical conduction, where temperature
corresponds to voltage and heat flow corresponds to current (see Table 1).

Table 1. Analogy between electrical and thermal circuits.

Electrical Circuit Thermal Circuit
Voltage Temperature
Current Heat Flow

Electrical Conductance Thermal Conductance
Electrical Resistance Thermal Resistance

Electrical Capacitance Thermal Capacitance
Current Source Heat Source

In light of this analogy, Equation (6) has a direct correspondence to an electrical circuit where
there is a node at every discrete point or cell in the thermal grid (see Figure 1). Every circuit node is
connected to spatially-neighboring nodes via conductances in the directions x, y, z with values:

Gx ≡
kt∆y∆z

∆x
, Gy ≡

kt∆x∆z
∆y

, Gz ≡
kt∆x∆y

∆z
(7)

and there is a capacitance to ground at every node or thermal cell with value:

C ≡ ρcp(∆x∆y∆z) (8)

The heat sources constitute input excitations and are modeled in the equivalent circuit as the
current sources with values:

Ii,j,k ≡ gi,j,k(∆x∆y∆z) (9)

The above current sources are connected at the specific points (i, j, k) or circuit nodes where there
is heat flow (i.e., power dissipation from the underlying chip logic blocks).

Technologies 2019, 7, 1 5 of 15

Figure 1. Spatial discretization of a chip for thermal analysis and the formulation of the electrical
equivalent problem.

The resulting electrical equivalent circuit is described in the time domain, using the Modified
Nodal Analysis (MNA) framework, by a system of Ordinary Differential Equations (ODE):

Gx(t) + C
dx(t)

dt
= u(t) (10)

where G ∈ Rn×n is a symmetric and positive definite matrix of the conductances (7), C ∈ Rn×n is
a diagonal matrix of cell capacitances (8), x ∈ Rn is the vector of unknown temperatures Ti,j,k at all
discretization points (constituting internal states of the system), and u ∈ Rp is the vector of input
excitations from the current sources Ii,j,k of (9).

For transient simulation, we can discretize the time interval into time instants tk, k = 1, 2, . . .
and use the backward-Euler numerical integration method for the calculation of temperature in each
discrete time instant tk:

(G +
C
hk

)x(tk) =
C
hk

x(tk−1) + u(tk) (11)

where hk = tk − tk−1, k = 1, 2, . . . is the time step of time tk (which may in general vary during
transient analysis). The above equation involves the solution of a very large sparse linear system in
each time instant tk.

Direct methods (based on matrix factorization) have been widely used in the past for solving the
resulting linear systems, mainly because of their robustness in most types of problems. Unfortunately,
these methods do not scale well with the dimension of the linear system and become prohibitively
expensive for large-scale networks. Iterative methods involve only inner products and matrix-vector
products and constitute a better alternative for large sparse linear systems in many respects, being more
computationally and memory efficient. In this work, we employ iterative methods for the solution of
large-scale networks arising from the 3D discretization of the chip for thermal analysis. The system
matrices arising from the modeling of the thermal grid can also be shown to be Symmetric and
Positive Definite (SPD), which allows the use of the efficient method of the Conjugate Gradient (CG)
for the solution of the corresponding linear systems. The CG method is well known [22], and its
implementation is shown in Algorithm 1.

Technologies 2019, 7, 1 6 of 15

Algorithm 1 Preconditioned conjugate gradient.

1: x = initial guess x(0)
2: r = b−Ax
3: iter = 0
4: repeat
5: iter = iter + 1
6: Solve Mz = r (Preconditioner-Solve Step)
7: ρ = r · z
8: if iter == 1 then
9: p = z

10: else
11: β = ρ/ρ1
12: p = z + βp
13: end if
14: ρ1 = ρ
15: q = Ap
16: α = ρ/(p · q)
17: x = x + αp
18: r = r− αq
19: until ||b−Ax||

||b|| < tol

Regarding the convergence rate of CG, it can be shown [23] that the required number of
iterations (for a given initial guess and convergence tolerance) is bounded in terms of the spectral
condition number k2(A) = ||A||2||A−1||2 ≥ 1; specifically, it is O(

√
k2(A)), which for SPD matrices

becomes k2(A) = λmax(A)
λmin(A)

where λmax(A), λmin(A) are the maximum and minimum eigenvalues of A,
respectively. This means that convergence of CG is fast when k2(A) ≈ 1 and slow when k2(A) >> 1.

To improve the convergence speed, it is necessary to apply a preconditioning mechanism,
which transforms the initial linear system into an equivalent one with a more favorable spectral
condition number. The so-called preconditioner is a matrix M that approximates A in some way,
such that the transformed system M−1Ax = M−1b (which obviously has the same solution as the
initial Ax = b) exhibits condition number k2(M−1A) = k2(I) = 1. In practice, it is not necessary to
invert the preconditioner M and apply it directly at the system Ax = b. It can be shown that the same
thing can be accomplished by introducing an extra computational step within the iterative method,
which entails solving a system Mz = r with known Right-Hand Side (RHS) vector r and unknown
vector z in every iteration [23].

From the above, it follows that a good preconditioner M must satisfy two key properties:

• The fast convergence rate of the preconditioned.
• A linear system involving M is solved much more efficiently than the original system that

involves A.

where “more efficiently” can mean with less asymptotic complexity—ideally, an optimal or
near-optimal complexity of O(N) or O(NlogN)—and/or significantly more parallelism in the solution
procedure. If the preconditioner is faithful enough to reduce the iterations substantially, then the
whole burden of the algorithm is transferred to the preconditioner-solve step Mz = r. The next section
will describe the proposed form of the preconditioner matrices for 3D thermal networks, as well
as the solution of the corresponding linear systems via two series of fast transforms and inverse
fast transforms.

4. Fast Transform Preconditioners for 3D Thermal Networks

Recent implementations of fast transform solvers have shown great potential for the solution of
block-tridiagonal systems with a special structure [24,25]. This section describes such an algorithm for

Technologies 2019, 7, 1 7 of 15

the solution of an appropriate preconditioner system Mz = r by the use of a fast transform solver in
a near-optimal number of operations.

Let M be an N × N block-tridiagonal matrix with l diagonal blocks of size mn×mn each (overall
N = lmn), where l is very small (typically 5–8 depending on the material layers (metal and insulator)
of the chip), with the following form:

M =


M1 −δ1Imn

−δ1Imn M2 −δ2Imn

· · ·
−δl−2Imn Ml−1 −δl−1Imn

−δl−1Imn Ml

 (12)

where Imn is the mn×mn identity matrix and Mi, i = 1, . . . , l, are block tridiagonal mn×mn matrices
of the form:

Mi =


Ti + γiIn −γiIn

−γiIn Ti + 2γiIn −γiIn

· · ·
−γiIn Ti + γiIn −γiIn

−γiIn Ti + γiIn

 (13)

where In is the n × n identity matrix and Ti, i = 1, . . . , m are n × n tridiagonal matrices with the
following form:

Ti =


αi + βi −αi
−αi 2αi + βi −αi

· · ·
−αi 2αi + βi −αi

−αi αi + βi

 =

αi


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 1

+ βiI (14)

This class of tridiagonal matrices has a beforehand known eigen-decomposition. Specifically,
it can be shown [26] that each Ti has n distinct eigenvalues λi,j, j = 1, . . . , n, which are given by:

λi,j = βi + 4αisin2(
(j− 1)π

2n
) = βi + αi(2cos(

(j− 1)π
n

)− 2) (15)

and a set of n orthonormal eigenvectors qj, j = 1, . . . , n, with elements:

qj,k =


√

1
n cos (2k−1)(j−1)π

2n , j = 1, k = 1, . . . , n√
2
n cos (2k−1)(j−1)π

2n , j = 2, . . . , n, k = 1, . . . , n
(16)

Note that, the eigenvectors do not depend on the values αi and βi and are the same for every
matrix Ti. If Qn = [q1, . . . , qn] denotes the matrix whose columns are the eigenvectors qj, then due
to the eigen-decomposition of Ti, we have QT

n TiQn = Λi = diag(λi,1, . . . , λi,n). By exploiting the

Technologies 2019, 7, 1 8 of 15

diagonalization of the matrix Ti and considering that QT
n Qn = I, the system Mz = r is equivalent to

the following system: QT
n

. . .
QT

n

 M

 Qn
. . .

Qn


 QT

n
. . .

QT
n

 z

=

 QT
n

. . .
QT

n

r⇔

(17)


M̃1 −δ1Imn

−δ1Imn M̃2 −δ2Imn

· · ·
−δl−2Imn M̃l−1 −δl−1Imn

−δl−1Imn M̃l

 z̃ = r̃ (18)

where:

M̃i =


Λ

(1)
i −γiI
−γiI Λ

(2)
i −γiI
· · ·

−γiI Λ
(2)
i −γiI
−γiI Λ

(1)
i

 (19)

z̃ =

 QT
n

. . .
QT

n

 z, r̃ =

 QT
n

. . .
QT

n

 r

and Λ
(1)
i = diag(λ(1)

i,1 , . . . , λ
(1)
i,n) and Λ

(2)
i = diag(λ(2)

i,1 , . . . , λ
(2)
i,n) are diagonal matrices with the

eigenvalues of Ti + γiIn, Ti + 2γiIn, which are the following:

λ
(1)
i,j = γi + βi + αi(2cos(

(j− 1)π
n

)− 2) j = 1, . . . , n,

λ
(2)
i,j = 2γi + βi + αi(2cos(

(j− 1)π
n

)− 2) j = 1, . . . , n,
(20)

If the N × 1 vectors r, z, r̃, z̃ are also partitioned into m blocks of size n× 1 each, i.e.,

r =

 r1
...

rm

 , z =

 z1
...

zm

 , r̃ =

 r̃1
...

r̃m

 , z̃ =

 z̃1
...

z̃m


then we have: r̃i = QT

n ri and z̃i = QT
n zi ⇔ zi = Qnz̃i, i = 1, . . . , m.

However, it can be shown [27] that each product QT
n ri = r̃i corresponds to a Discrete Cosine

Transform of Type-II (DCT-II) on ri, and each product Qnz̃i = zi corresponds to an Inverse Discrete
Cosine Transform of Type-II (IDCT-II) on z̃i. This means that the computation of the whole vector r̃
from r amounts to m independent DCT-II transforms of size n, and the computation of the whole vector
z from z̃ amounts to m independent IDCT-II transforms of size n. A modification of the Fast Fourier
Transform (FFT) can be employed for each of the lm independent DCT-II/IDCT-II transforms [27],
giving a total near-optimal operation count of O(mn log n) = O(N log n).

If now, P is a permutation matrix of size mn×mn that reorders the elements of a vector or the rows
of a matrix as 1, n+ 1, . . . , (m− 1)n+ 1, 2, n+ 2, . . . , (m− 1)n+ 2, . . . , n, n+ n, . . . , (m− 1)n+ n and P1,

Technologies 2019, 7, 1 9 of 15

PT
1 are the block-diagonal lmn× lmn permutation matrices P1 = diag(P, . . . , P), PT

1 = diag(PT , . . . , PT),
then the system at (18) is transformed into:

P1


M̃1 −δ1Imn

−δ1Imn M̃2 −δ2Imn

· · ·
−δl−2Imn M̃l−1 −δl−1Imn

−δl−1Imn M̃l

 PT
1 P1z̃ = P1 r̃⇔


D1 −δ1Imn

−δ1Imn D2 −δ2Imn

· · ·
−δl−2Imn Dl−1 −δl−1Imn

−δl−1Imn Dl

 z̃P1 = r̃P1 (21)

where D1 = diag(T̃i,1, . . . , T̃i,n), i = 1, . . . , l, with T̃i,j, j = 1, . . . , n being m×m tridiagonal matrices of
the form:

T̃i,j =



λ
(1)
i,j −γi

−γi λ
(2)
i,j −γi

· · ·
−γi λ

(2)
i,j −γi

−γi λ
(1)
i,j


=

γi


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 1

+ (βi + αi(2cos(
(j− 1)π

n
)− 2))Im (22)

and z̃P1 = P1z̃, r̃P1 = P1 r̃. If Λ̃i,j = diag(λ̃i,j,1, . . . , λ̃i,j,m) is the diagonal matrix with the eigenvalues of
T̃i,j, which are:

λ̃i,j,k = γi(2cos(
(k− 1)π

n
)− 2) + βi + αi(2cos(

(j− 1)π
n

)− 2), k = 1, . . . , m (23)

and Qm is the common matrix of eigenvectors for all T̃i,j, then by similar reasoning as in (17), the system
(21) is equivalent to:

D̃1 −δ1Imn

−δ1Imn D̃2 −δ2Imn

· · ·
−δl−2Imn D̃l−1 −δl−1Imn

−δl−1Imn D̃l

 ˜̃z = ˜̃r (24)

where D̃i = diag(Λ̃i,1, . . . , Λ̃i,n) and:

˜̃z =

 QT
m

. . .
QT

m

 z̃P
1 , ˜̃r =

 QT
m

. . .
QT

m

 r̃P
1

Technologies 2019, 7, 1 10 of 15

In a similar way as previously, the N × 1 vectors z̃P1 , r̃P1 , ˜̃z, and ˜̃r can be partitioned into ln
sub-vectors of size m× 1 each, and the DCT-II and IDCT-II are performed accordingly, giving a total
near-optimal operation count of O(lmn log n) = O(N log n).

If now, P2 is a permutation matrix of size N× N that reorders the elements of a vector or the rows
of a matrix as 1, mn+ 1, 2mn+ 1, . . . , (l− 1)mn+ 1, 2, mn+ 2, 2mn+ 2, . . . , (l− 1)mn+ 2, . . . , mn, mn+

mn, 2mn + mn, . . . , (l − 1)mn + mn, and PT
2 is the inverse permutation matrix, then System (24) is

equivalent to:
˜̃M ˜̃zP2 = ˜̃rP2 (25)

where ˜̃M = diag(˜̃T1,1, ˜̃T1,2, . . . , ˜̃T1,m, ˜̃T2,1, ˜̃T2,2, . . . , ˜̃T2,m, . . . ˜̃Tn,m), with ˜̃Tj,k, j = 1, . . . , n, k = 1, . . . , m
being l × l tridiagonal matrices of the form:

˜̃Tj,k =


λ̃1,i,k −δ1

−δ1 λ̃2,i,k −δ2

· · ·
−δl−1 λ̃l−1,i,k −δl

−δl λ̃l,i,k

 (26)

and ˜̃zP2 = P2 ˜̃z, ˜̃rP2 = P2 ˜̃r.
Taking into account the above equations and by applying permutation matrices in order to reorder

the elements of the Mz = r system, a fast solution for the preconditioner solve step can be obtained as
shown in Algorithm 2.

Algorithm 2 Preconditioner solution for the thermal grid.

1: Partition vector r into lm sub-vectors ri of size n, and perform DCT-II transform (QT
n ri) on each

sub-vector to obtain transformed vector r̃.
2: Partition vector r̃ into l sub-vectors r̃i of size mn, and permute each subvector by permutation

P, which orders elements as 1, n + 1, . . . , (m− 1)n + 1, 2, n + 2, . . . , (m− 1)n + 2, . . . , n, n + n, . . . ,
(m− 1)n + n, in order to obtain vector r̃P1 .

3: Partition vector r̃P1 into ln sub-vectors r̃i
P1 of size m, and perform DCT-II transform (QT

m r̃i
P1) on

each sub-vector to obtain transformed vector ˜̃r.
4: Permute vector ˜̃r by applying permutation P2, which orders elements as 1, mn + 1, 2mn + 1, . . . ,

(l − 1)mn + 1, 2, mn + 2, 2mn + 2, . . . , (l − 1)mn + 2, . . . , mn, mn + mn, 2mn + mn, . . . , (l − 1)mn
+mn, in order to obtain vector ˜̃rP2 .

5: Calculate elements of matrices T̃n,m, and solve the mn tridiagonal systems, in order to obtain
vector ˜̃zP2 .

6: Apply inverse permutation PT
2 on vector ˜̃zP2 so as to obtain vector ˜̃z.

7: Partition vector ˜̃z into ln sub-vectors ˜̃zi of size m, and perform IDCT-II transform (Qm ˜̃zi) on each
sub-vector to obtain vector z̃P1 .

8: Partition vector z̃P1 into l sub-vectors z̃i
P1 of size mn, and apply inverse permutation PT on each

sub-vector to obtain vector z̃.
9: Partition vector z̃ into lm sub-vectors z̃i of size n, and perform IDCT-II transform (Qnzi) on each

sub-vector to obtain final solution vector z.

5. Methodology for Full Chip Thermal Analysis

This section applies the theoretical background that was analyzed before for the computation of
the temperatures across the chip. The complete methodology consists of the following steps:

Technologies 2019, 7, 1 11 of 15

• 3D discretization of the chip: The spatial steps ∆x, ∆y in the x- and y-direction are user defined,
but the step ∆z along the z-direction is typically chosen to coincide with the interface between
successive layers (metal and insulator). The discretization procedure naturally covers multiple
layers in the z-direction and can be easily extended to model heterogeneous structures that can be
found in modern chips (e.g., heat sinks).

• Construction of equivalent electrical circuit: The RC elements of the electrical equivalent are
calculated by (7) and (8).

• Estimation of the power consumption profile of chip logic blocks. This determines the location
and the time behavior of heat sources and the value of current sources (9) that constitute the vector
u(t) in (10).

• Formulation of equivalent circuit description: Using modified nodal analysis, the equivalent
circuit is described by the ODE system (10).

• Construction of the preconditioner matrix: Based on the algorithm described in the previous
section, the preconditioner matrix is constructed based on [24], and the preconditioner-solve step
is performed with the fast transform solver. More specifically, the thermal grid is equivalent to
a highly regular resistive network, as depicted in Figure 2, with resistive branches connecting
nodes in the x, y, and z axis. To create a preconditioner that will approximate the grid matrix,
we substitute each horizontal and vertical thermal conductance with its average value in the
corresponding layer. Moreover, we substitute each thermal conductance connecting nodes in
adjacent layers (z axis) with their average value between the two layers.

• Compute either the DC or transient solution: The solution is obtained with the iterative PCG
method in both cases. Note that in the case of the transient solution, the backward-Euler numerical
integration method as in (11) is employed for the calculation of temperature in each discrete time
instant. The convergence of the method is accelerated with the highly parallel fast transform
solver that is used in preconditioner-solve step in Algorithm 1.

Figure 2. Example of a 3D thermal grid that is used for preconditioning.

The proposed methodology offers significant advantages over the established thermal simulation
methods. Firstly, iterative methods can handle large-scale problems in contrast to direct methods that
do not scale well with the matrix dimension and can only be applied to a narrow range of problems.
Furthermore, the fast preconditioned solution step exhibits near-optimal computational complexity,
low memory requirements, and great potential for parallelism, which can harness the computational
power of parallel architectures, such as multicore processors or GPUs, thus further reducing the
amount of time required for simulation.

Technologies 2019, 7, 1 12 of 15

6. Experimental Results

Due to the lack of availability of benchmarks for full chip thermal analysis and in order to evaluate
the efficiency of the proposed methodology for thermal simulation, we have created a set of artificial
benchmark circuits that represent simplified microprocessor designs (like MIPS and LEON) with
a random control logic and datapath, based on the theory described in Section 3. The technology node
that was used for this work was 32 nm. Similarly, one can form the linear set of equations for different
technology-specific parameters of Equations (7) and (8). Despite the fact that the benchmarks were
artificially created, the problems that would arise from a real design would be represented by a similar
set of linear equations.

In Table 2 discretization points are the number of discretizations in each axis, while layers are
the number of layers that each benchmark has. Moreover, the matrix dimensions can be calculated
by multiplying the square of the discretization points by the number of layers. All experiments were
executed on a Linux workstation, comprised of an Intel Core i7 processor running at 2.4 GHz (six cores
and 24 GB main memory) and an NVIDIA Tesla C2075 GPU with 6 GB of main memory. We have used
the CUDA library [28] (Version 5.5, along with the CUBLAS, CUSPARSE, and CUFFT libraries) for
mapping the proposed Fast-Transform PCG (FT-PCG) algorithm on the GPU. The ICCG was executed
on the CPU since it would not be beneficial to port it on the GPU due many irregular memory transfers.
The convergence tolerance (tol) for iterative solvers was set to 10−6, which is typically sufficient to
yield perfect accuracy, and convergence was achieved in all cases. Table 2 presents the results from the
evaluation of the aforementioned methods on the set of benchmark circuits. The number Iter. is the
number of iterations that the algorithm needed to converge, while Time (s) refers to the time in seconds
that were needed to compute the final solution. Both the number of iterations and time represent either
the DC solution of the system or the average iterations and time of a time instant in transient analysis.

Table 2. Runtime results for the three solvers. Bench. is the name of the benchmark, Discr. Point.
is the number of points that correspond to the x and y axis, Layers is the number of layers of each
chip and corresponds to the z axis, Time (s) denotes the average time required for the solution at each
iteration, Iter. is the average number of iterations required for the convergence of each iterative method,
while Speedup denotes the speedup of our method over the ICCG.

Bench. Discr. Points Layers ICCG FT-PCG (CPU) FT-PCG (GPU)

Iter. Time (s) Iter. Time (s) Speedup Iter. Time (s) Speedup
ckt1 175 5 48 0.48 12 0.31 1.54× 11 0.03 16×
ckt2 320 5 57 1.98 15 1.23 1.6× 12 0.08 24.75×
ckt3 410 6 58 4.20 16 2.64 1.59× 12 0.23 18.26×
ckt4 500 7 67 8.35 17 4.51 1.85× 12 0.31 26.93×
ckt5 845 7 58 21.07 12 9.48 2.22× 11 1.34 15.72×
ckt6 946 7 59 28.27 16 17.94 1.57× 11 1.60 17.65×
ckt7 1118 8 68 49.35 17 33.07 1.49× 12 2.39 20.64×

Comparing the iterative methods, it can be observed that the proposed method was able to reduce
the number of iterations required for convergence greatly, as shown in Figure 3a. Compared with
general purpose preconditioning methods such as ICCG, the proposed preconditioners take into
account the topology characteristics of the thermal grid. As a result, they are able to approximate it
faithfully enough and reduce the required number of iterations. Moreover, owing to their inherent
parallelism, the proposed preconditioners can utilize the vast amount of computational resources
found in massively-parallel architectures, such as GPUs. Thus, their efficiency is increased with the
increasing circuit size, by greatly reducing the runtime for each time-step, as depicted in Figure 3b.
FT-PCG was able to achieve a speed-up ranging between 1.5× and 2.2× in CPU execution and 16×
and 26.93× in GPU execution over ICCG.

Technologies 2019, 7, 1 13 of 15

(a) (b)
Figure 3. (a) Average number of iterations, (b) Average runtimes for each time-step in each benchmark.

7. Conclusions

In this paper, we presented a fast thermal simulation method based on the RC equivalent,
which uses fast transform solvers and preconditioned Krylov-subspace iterative solvers.
The preconditioned iterative solvers offer linear scaling in simulation time as the thermal grid is
increased. Experimental evaluation of the proposed method on a set of thermal benchmarks with the
size ranging from 0.15 M–10 M nodes showed that the proposed methodology achieved a speedup
ranging between 15.72× and 26.93× over a preconditioned iterative method with an incomplete
Cholesky factorization preconditioner when GPUs are utilized.

Author Contributions: Conceptualization, G.F. and N.E.; data curation, G.F.; funding acquisition, N.E. and G.S.;
investigation, G.F.; methodology, G.F., K.D. and N.E.; project administration, N.E. and G.S.; software, K.D.;
supervision, N.E. and G.S.; validation, G.F. and K.D.; writing, original draft, G.F.; writing, review and editing,
G.F., K.D., N.E., and G.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

EDA Electronic Design Automation
GPU Graphic Processor Unit
IC Integrated Circuit
SOI Silicon on Insulator
FDM Finite Difference Method
PCG Preconditioned Conjugate Gradient
ICCG Incomplete Cholesky Conjugate Gradient
FEM Finite Element Method
ADI Alternating Direction Implicit
NN Neural Net
LUT Look Up Table
MOR Model Order Reduction
GMRES Generalized Minimal RESidual
PDE Partial Differential Equation
LHS Left-Hand Side
MNA Modified Nodal Analysis
ODE Ordinary Differential Equations
SPD Symmetric and Positive Definite
CG Conjugate Gradient

Technologies 2019, 7, 1 14 of 15

RHS Right-Hand Side
DCT-II Discrete Cosine Transform of Type-II
IDCT-II Inverse Discrete Cosine Transform of Type-II
FFT Fast Fourier Transform
FT-PCG Fast Transform Preconditioned Conjugate Gradient

References

1. Waldrop, M M. The Chips Are Down for Moore’s Law. Nat. News 2016, 530, 144–147. [CrossRef] [PubMed]
2. Xu, C.; Kolluri, S.K.; Endo, K.; Banerjee, K. Analytical Thermal Model for Self-Heating in Advanced FinFET

Devices With Implications for Design and Reliability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
2013, 32, 1045–1058.

3. SIA. International Technology Roadmap for Semiconductors (ITRS) 2015 Edition-ERD; SIA: Washington,
DC, USA, 2015.

4. Pedram, M.; Nazarian, S. Thermal modeling, analysis, and management in VLSI circuits: Principles and
methods. Proc. IEEE 2006, 94, 1487–1501. [CrossRef]

5. Floros, G.; Daloukas, K.; Evmorfopoulos, N.; Stamoulis, G. A parallel iterative approach for efficient full
chip thermal analysis. In Proceedings of the 7th International Conference on Modern Circuits and Systems
Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4.

6. Li, P.; Pileggi, L.T.; Asheghi, M.; Chandra, R. Efficient full-chip thermal modeling and analysis. In Proceedings of
the IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, USA, 7–11 November 2004;
pp. 319–326.

7. Li, P.; Pileggi, L.T.; Asheghi, M.; Chandra, R. IC thermal simulation and modeling via efficient
multigrid-based approaches. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2006, 25, 1763–1776.

8. Yang, Y.; Zhu, C.; Gu, Z.; Shang, L.; Dick, R.P. Adaptive multi-domain thermal modeling and analysis for
integrated circuit synthesis and design. In Proceedings of the IEEE/ACM International Conference on
Computer Aided Design, San Jose, CA, USA, 5–9 November 2006; pp. 575–582.

9. Yang, Y.; Gu, Z.; Zhu, C.; Dick, R.P.; Shang, L. ISAC: Integrated Space-and-Time-Adaptive Chip-Package
Thermal Analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007, 26, 86–99. [CrossRef]

10. Wang, T.Y.; Chen, C.C.P. 3-D Thermal-ADI: a linear-time chip level transient thermal simulator. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2002, 21, 1434–1445. [CrossRef]

11. Sridhar, A.; Vincenzi, A.; Ruggiero, M.; Brunschwiler, T.; Atienza, D. 3D-ICE: Fast compact transient
thermal modeling for 3D ICs with inter-tier liquid cooling. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, San Jose, CA, USA, 7–11 November 2010; pp. 463–470.

12. Sridhar, A.; Vincenzi, A.; Atienza, D.; Brunschwiler, T. 3D-ICE: A Compact Thermal Model for Early-Stage
Design of Liquid-Cooled ICs. IEEE Trans. Comput. 2014, 63, 2576–2589 [CrossRef]

13. Ladenheim, S.; Chen, Y.C.; Mihajlovic, M.; Pavlidis, V. IC thermal analyzer for versatile 3-D structures using
multigrid preconditioned Krylov methods. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, Austin, TX, USA, 7–10 November 2016; pp. 1–8.

14. Zhan, Y.; Sapatnekar, S.S. High-Efficiency Green Function-Based Thermal Simulation Algorithms.
IIEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007, 26, 1661–1675. [CrossRef]

15. Vincenzi, A.; Sridhar, A.; Ruggiero, M.; Atienza, D. Fast thermal simulation of 2D/3D integrated circuits
exploiting neural networks and GPUs. In Proceedings of the IEEE/ACM International Symposium on Low
Power Electronics and Design, Fukuoka, Japan, 1–3 August 2011; pp. 151–156.

16. Lee, Y.M.; Pan, C.W.; Huang, P.Y.; Yang, C.P. LUTSim: A Look-Up Table-Based Thermal Simulator for 3-D
ICs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 1250–1263

17. Wang, T.Y.; Chen, C.C.P. SPICE-compatible thermal simulation with lumped circuit modeling for thermal
reliability analysis based on modeling order reduction. In Proceedings of the International Symposium on
Signals, Circuits and Systems, San Jose, CA, USA, 22–24 March 2004; pp. 357–362.

18. Floros, G.; Evmorfopoulos, N.; Stamoulis, G. Efficient Hotspot Thermal Simulation Via Low-Rank Model
Order Reduction. In Proceedings of the 15th International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD), Prague, Czech Republic, 2–5 July 2018;
pp. 205–208.

http://dx.doi.org/10.1038/530144a
http://www.ncbi.nlm.nih.gov/pubmed/26863965
http://dx.doi.org/10.1109/JPROC.2006.879797
http://dx.doi.org/10.1109/TCAD.2006.882589
http://dx.doi.org/10.1109/TCAD.2002.804385
http://dx.doi.org/10.1109/TC.2013.127
http://dx.doi.org/10.1109/TCAD.2007.895754

Technologies 2019, 7, 1 15 of 15

19. Liu, X.X.; Zhai, K.; Liu, Z.; He, K.; Tan, S.X.D.; Yu, W. Parallel Thermal Analysis of 3-D Integrated Circuits
With Liquid Cooling on CPU-GPU Platforms. IEEE Trans. Very Large Scale Integr. Syst. 2015, 23, 575–579.

20. Ouzisik, N. Heat Transfer—A Basic Approach; Mcgraw-Hill College Book Company: New York, NY, USA, 1985.
21. Bergman, T.; Lavine, B.; Incropera, P.; DeWitt, P. Fundamentals of Heat and Mass Transfer; Wiley: New York,

NY, USA, 2017.
22. Barrett, R.; Berry, M.; Chan, T.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.;

van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed.;
SIAM: Philadelphia, PA, USA, 1992.

23. Axelsson, O.; Barker, V.A. Quadratic Spline Collocation Methods for Elliptic Partial Differential Equations;
Academic Press: Cambridge, MA, USA, 1984.

24. Daloukas, K.; Marnari, A.; Evmorfopoulos, N.; Tsompanopoulou, P.; Stamoulis, G.I. A parallel fast
transform-based preconditioning approach for electrical-thermal co-simulation of power delivery networks.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,
France, 18–22 March 2013; pp. 1689–1694.

25. Daloukas, K.; Evmorfopoulos, N.; Tsompanopoulou, P.; Stamoulis, G. Parallel Fast Transform-Based
Preconditioners for Large-Scale Power Grid Analysis on Graphics Processing Units (GPUs). IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 1653–1666. [CrossRef]

26. Christara, C.C. Quadratic Spline Collocation Methods for Elliptic Partial Differential Equations. BIT Numer. Math.
1994, 34, 33–61. [CrossRef]

27. Van Loan, C. Computational Frameworks for the Fast Fourier Transform; SIAM: Philadelphia, PA, USA, 1992.
28. NVIDIA CUDA Programming Guide, CUSPARSE, CUBLAS, and CUFFT Library User Guides. Available online:

http://developer.nvidia.com/nvidia-gpu-computing-documentation (accessed on 19 December 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCAD.2016.2523933
http://dx.doi.org/10.1007/BF01935015
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	On-Chip Thermal Modeling and Analysis
	 Fast Transform Preconditioners for 3D Thermal Networks
	Methodology for Full Chip Thermal Analysis
	Experimental Results
	Conclusions
	References

