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Abstract: The recommender systems are deployed on the Web for reducing cognitive overload. It uses
different parameters, such as profile information, feedbacks, history, etc., as input and recommends
items to a user or group of users. Such parameters are easy to predict and calculate for a single user on a
personalized device, such as a personal computer or smartphone. However, watching the Web contents
on a smart TV is significantly different from other connected devices. For example, the smart TV is a
multi-user, lean-back supported device, and normally enjoyed in groups. Moreover, the performance
of a recommender system is questionable due to the dynamic interests of groups in front of a smart TV.
This paper discussed in detail the existing recommender system approaches in the context of smart TV
environment. Moreover, it highlights the issues and challenges in existing recommendations for smart
TV viewer(s) and presents some research opportunities to cope with these issues. The paper further
reports some overlooked factors that affect the recommendation process on a smart TV. A subjective
study of viewers” watching behavior on a smart TV is also presented for validating these factors.
Results show that apart from all technological advancement, the viewers are enjoying smart TV
as a passive, lean-back device, and mostly used for watching live channels and videos on the big
screen. Furthermore, in most households, smart TV is enjoyed in groups as a shared device which
creates hurdles in personalized recommendations. This is because predicting the group members
and satisfying each member is still an issue. The findings of this study suggest that for precise and
relevant recommendations on smart TVs, the recommender systems need to adapt to the varying
watching behavior of viewer(s).
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1. Introduction

The Smart television (TV) is a connected device that provides an extended functionality in
delivering digital contents, such as live channels, movies, dramas, shows, and video on demand
(VOD) services [1]. The smart TV comes with processing capabilities, third-party platforms, operating
systems, and media players. The amalgamation of television with a processor, connectivity capabilities,
and support for the Web 2.0 features has made this device attractive not only for viewers but also
for researchers [1]. As compared to traditional TV systems, smart TV is a computing device [1] that
can perform a variety of operations, including voice and gesture recognition. The life cycle of the
smart TV is longer as compared to other smart devices, such as a smartphone, smartwatch, laptop,
etc., [1,2]. This motivates enterprises and companies to develop technologically-advanced hardware
and software for smart TVs. However, numerous issues are associated with smart TVs, which include
security and privacy, complex user interfaces, interactivity issues, bloatware [3], the complex nature of
browsing and searching, and personalized recommendation issues [1]. In this paper, we targeted the
issues and factors affecting the recommendation process in the context of smart TV watching scenarios.
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The most common approaches for watching the contents on smart TV are browsing and searching
for desired contents from robust and diverse data sources, such as stored videos, live channels, clips,
etc. However, such rich and growing data sources make it difficult to search for the desired contents [1].
The reasons include the (a) widely used legacy remote controls, (b) lean-back nature of the smart TV,
(c) specialized entertainment device, and (d) a device for all types of viewers. The details of these
reasons are (a) apart from the availability of a variety of input devices and smart remote controls,
the legacy remote is still widely used with smart TVs and limits frequent interactions; (b) in the
lean-back, the contents are normally enjoyed in passive mode and preferably less interactively; (c) the
smart TV is a specialized entertainment device, normally used for watching video, movies, live
channels, and playing games; (d) the smart TV is for every type of viewer, including senior citizens,
non-technical persons, and kids. Hence, searching and browsing are among the difficult activities on
smart TV [4]. Although electronic program guides (EPGs) may help in searching the desired channel,
due to a significant collection of channels and programs on EPG the searching and scrolling is a difficult
task [5]. In addition to searching and browsing, the recommender system helps in reducing information
overload by helping a user to select the best items from a significant collection of items [6-8].

A recommender system is a software tool that recommends suitable items to a user or group of
users [9]. The recommender systems infer user interests by utilizing various sources of data, such as
user profiles, clicks, and feedbacks (rating, and like/dislike) [8,10]. However, in a smart TV environment,
such data are neither accurate nor simple to predict or calculate because the smart TV represents
a set of users with diverse interests and taste. This distinct watching behavior and purpose make
smart TV a unique device; however, the recommender systems consider the smart TV as an ordinarily
connected device and recommend items based on activities performed by a single user or group of users.
Such approaches are neither viable nor accurate to recommend items to the exact viewer(s) of smart
TV. Hence, in the context of smart TV viewing scenarios, content filtering, channel recommendation,
scheduling programs, and personalized viewership are challenging opportunities [11].

The recommender systems use numerous approaches for recommendations. Examples of
such approaches include content-based filtering, collaborative filtering, and hybrid approaches [12].
The content-based filtering techniques rely on the user’s profile information and the item’s profile
information [13]. However, smart TV is normally enjoyed in groups, and hence, the user” profile
information cannot represent the whole group of viewers. Therefore, content-based filtering is not
suitable for a smart TV watching scenario. The collaborative filtering approaches rely on user feedbacks,
i.e., implicit feedbacks and explicit feedbacks. The implicit feedbacks are calculated from user activities,
such as navigation, browsing, etc.; whereas explicit feedbacks are provided by the user in the form
of likes/dislikes, rating, etc., [14]. The explicit feedbacks are rarely provided by a smart TV viewer.
Therefore, specifically in the context of smart TV, we are left with only a few implicit feedbacks for
recommending relevant items to the viewer(s) [15]. In hybrid filtering techniques, both approaches
are combined to get better recommendations. However, it suffers from the inherent issues of both
content and collaborative filtering approaches. Although some hybrid recommender systems, such as
discussed in [16], combined several techniques for achieving accuracy; yet, most of the techniques
demand active feedbacks from the user, which is not welcomed by smart TV viewers due to lean-back
nature of a smart TV. Moreover, we cannot expect the same interactions from viewers as they normally
have with computers and smartphones [17]. In addition to the interactive nature of smart TV, it is
enjoyed as a lean-back device and passive as legacy TV systems [18].

The approaches for analyzing user activities, such as data mining, clickstream analysis, and in-depth
identification of a viewer(s) may lead to serious security and privacy threats [18]. Although security
and privacy issues for smart TV are in the infancy stage, they are the most important concerns for
smart TV viewers [19]. Security and privacy are usually ignored by the buyer, seller, and even by the
manufacturer [1]. Such concerns need a thorough investigation to make smart TV more user-friendly
and intelligent. As discussed, a smart TV can provide rich types of entertainment on a single platform;
however, smart TVs are widely used for streaming live channels and movies [20,21]. This distinct nature
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puts a question mark on the performance of the existing recommender systems because these systems
are specially designed for personalized recommendations on personalized devices, such as smartphones
and personal computers. The feedback that comes from computers and smartphones can be handled
by the existing recommender systems; however, the feedback that comes from smart TV needs further
investigation for recommending relevant items to the viewer or group of viewers.

In the smart TV watching scenario, group recommendations play a vital role. This is because,
in most of the households, the smart TV is enjoyed in a group for watching movies, dramas,
news, etc., [22]. Different approaches are used for group recommendations, such as aggregated
predictions and aggregated model for preferences aggregation of individuals in a group [22-24].
However, the approaches for the identification of group members is based on predictions and
estimation. Furthermore, due to the diverse interest of individuals; aggregated predictions and
preferences aggregation are not feasible solutions and may lead to privacy issues. Therefore, the exact
identity of group members and satisfying every group member is still challenging.

This paper is an attempt to identify some overlooked factors that affect the recommendation process
and recommendation results on a smart TV. The factors are validated by the results of a subjective study
conducted for this research. The first factor that affects the recommendation process is the group of viewers
in front of a smart TV. The recommender system considers smart TV as a single viewer; however, there may
be groups having diverse interests. The second factor that affects the recommendation process is the limited
provision of feedbacks by the viewer. The reasons for such limited provision of feedbacks include the
lean-back nature of smart TV, legacy remote controls, and the shared nature of smart TV. The third factor that
affects the recommendation results is the different watching behavior of smart TV viewers. The smart TV is
normally used for watching movies, video, and live channels. The viewer rarely uses smart TV for reading
news, books, articles, etc. Therefore, navigating between video, movies, and channels provide limited
feedbacks to the recommender system. The app-based and complex user interfaces are the fourth factor
that affects the recommendation process. The smart TV comes with an operating system and applications
(apps in short). Therefore, navigating between channels means navigating between apps, which create
hurdles in calculating the viewer(s) interests. The fifth factor that affects the recommendation process
is the shared nature of smart TV. The focus of the recommender system is the delivery of personalized
recommendations; however, smart TV is not a single user device (See Section 3 for more details).

The contributions of this study are:

e To investigate the issues and challenges in existing group recommender systems for content
recommendations on Smart TV.

e  Toidentify the factors that affect the performance of a recommender system in the context of smart
TV watching scenarios.

e A subjective study for validating the factors by analyzing the watching behavior of smart TV viewers.

Results of the subjective study show that in most of the households, smart TV is enjoyed in
groups for watching live channels, movies, and videos. Moreover, the identification of viewers for the
personalized recommendation may lead to privacy concerns, which is not welcomed by the smart TV
viewers. The findings of this paper suggest that the recommender system should treat smart TV as a
different connected device. This is because the other devices, such as computers and smartphones,
are personalized devices, whereas smart TV is a shared device. Furthermore, user modeling plays an
important role in recommender systems [25] and may enhance the recommendation results. This paper
further suggests an enhanced user and group modeling technique for enhancing the personalization
services in general and group recommendations in specific on a smart TV.

The rest of the paper is divided into 7 sections. Section 2 is the state-of-the-art Literature on
the recommender systems in the context of smart TV. Section 3 presents some Potential Factors that
affect the recommendation process for smart TV viewers. Section 4 presents the Methods and Material
for analyzing and validating the factors identified in Section 3. Sections 5 and 6 are Results and
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Analysis, respectively. Section 7 is Discussion and Future Research Work. Section 8 concludes the
paper. References are listed at the end.

2. Literature Review

During 1950, TV was considered the primary source to influence public opinion and still plays a
significant role in molding and shaping people’s perception [26]. The legacy TV system is the most
popular entertainment device still widely used [27]. Compared with the combined daily consumption
of smartphones, tablets, and PC; the time spent on watching TV is still high [28]. Today’s TVs are
not only full-duplex in nature, but also smart and come with built-in operating systems, third-party
software, and sensors [1]. Moreover, modern television, called smart TV, is significantly different from
the technological point of view as well as from an entertainment point of view. The smart TV comes in
traditional shapes and sizes as well as in the form of set-top-boxes (5TBs) that can be connected with
a variety of displays, including legacy TV systems. Smart TV has revolutionized the entertainment
industries by enabling streaming of Web contents. This amalgamation opens new avenues not only for
entertainment industries but also for education, health, defense, business, commerce, etc. The operating
system of smart TV enables the installation of different software and for managing many distinct
features related to connectivity, communication, and interaction with smart TV [29]. Table 1 shows and
compares a list of the features of smart TV and legacy TV systems.

Table 1. A comparison of smart TV features with the legacy TV system.

Features TV Smart-TV/TV-Box
Infrared v v
USB X v
Wi-Fi X v
Hardware perspectives Storage X v
HDMI X v
RJ45 X v
VGA X v
Lean-back support v v
Personalization X v
Operating System X v
Mobile X X
Software perspectives Interactive X !
IP address X v
History/Logs X v
Third-party applications X v
Browser X v
Sensors support X v

As connected TV, a smart TV can stream a variety of contents from the Web. Because of this,
the terrestrial broadcast TV channels are now shifting their TV contents to the Web. The channel
owners have their own web applications, which can provide streaming services to their users.
Similarly, video-sharing websites are available, such as YouTube, Netflix, etc. The videos to such video
sharing websites are uploaded by the channel owner or by the third parties, including individuals.

Such a rich set of multimedia contents makes it difficult to search for the relevant content.
Moreover, searching is a user-driven activity that mostly relies on user queries. In addition to searching for
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relevant content on a smart TV, the online recommender systems are used to overcome the cognitive overload
and recommend different items to a viewer [30]. However, the existing recommender systems are designed
for the individual user who consumes content on a variety of personal devices, including computers and
smartphones. Recommendations on terrestrial TV are usually based on regions. TV operators recommend
items, goods, and services on a regional basis. As recommendation is on regional bases, viewers have
to watch the running content, or they simply change the channel. To avoid such stereotype TV content,
viewers have shifted to more advanced watching systems, i.e., smart TVs. The smart TV gives better clues
to the recommender systems because of an Internet Protocol (IP) address, the log file, from which location,
interests, etc., can easily be extracted. However, it suffers from numerous issues (see Section 3 for details).
Figure 1 shows a common recommendation process on smart TVs.

Watching behavuor Feedbacks >
Interaction modes Intemet
Recommendations -
Personalization
i e :
Viewer(s) Ty Streaming Server

Figure 1. General scenario of recommendation process on a smart TV.

The following are some state-of-the-art systems and literature on recommender systems in the
context of smart TV, connected TV, and Internet Protocol Television (IPTV).

In Hybrid Broadcast Broadband Television (HbbTV) project, they have designed several
frameworks for identifying a viewer in front of a smart TV that include multi-user identification and
multi-user recommendations [17,18,31]. HbbTV is heavily criticized in the literature for its security and
privacy concerns as it is capable of capturing private data, such as picture and profile information [19].
Smart Parental Advisory [32] proposed a deep learning-based framework and usage control for
implementing dynamic parental controls on a smart TV. The proposed work shows a camera with a TV
for providing real-time parental control on smart TV content. In [33], a face recognition system for
set-top-box based intelligent TV was proposed. They used a web camera for pictures, which is connected
with a set-top-box, and a server is attached for face recognition. The exact identification of the viewer(s)
on server-side is time-consuming due to the frequent switching of the viewer(s) in front of a smart TV.
In [34], an enhanced recommender system was proposed by face detection and recognition system
in front of a smart TV. They have used Face++ (https://www.faceplusplus.com/) and SkyBiomerty
(https://skybiometry.com/) for face and emotion detection and recognition. Furthermore, they argued
that detection of more than one person could form a group, and hence, the recommender system
should recommend items to the group instead of individuals.

A TV program recommendation technique for a group of viewers was proposed in [35]. This work
proposed a TV program recommendation system for multiple viewers (group) based on merging
user profiles. Similarly, the study in [11] proposed the merging of multiple preferences to improve
recommendation results. RecTime [36], proposed a real-time recommender for an online broadcasting
system, which considers a user’s preferences and time factors simultaneously. A personalized TV
listings service for the digital TV [37] is proposed. The work describes the development of personalized
television (PTV (http://www.ptv.ie)) listing system which handles the information overload, by providing an
Internet-based personalized listings service. Shinjee et al. [38], worked on the automatic and personalized
recommendations of TV programs for smart TV viewers. They argued that due to the massive content
available for watching on a TV, it is difficult to retrieve the desired program and hence, worked on the
automation of recommending TV programs. An intelligent hybrid recommendation approach is proposed
in [39], which uses hybrid collaborating filtering with a voice recognition system for controlling the smart
TV. However, the work is limited to the recommendation of already crawled TV programs. Kwon and
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Hong [40], proposed a personalized program recommender system (PRS) for smart TV, which is based on
a novel similarity method and collaborative filtering techniques.

Most smart TVs are equipped with automatic content recognition (ACR) system that automatically
recognizes the content and recommend items to a viewer based on currently watching contents [41].
However, frequent switching of viewers in front of smart TV create difficulties for accurate recommendations.
MovieLens (http:/www.movielens.org) is an online web-based movie recommender system that invites
viewer(s) to rate any movie in the list. In return, the system performs predictions and personalized
recommendations. In the case of smart TV, such types of web-applications are less effective because
rating and tagging are among the difficult activities to perform on the legacy remote control of a smart
TV. TV-Predicator [31], designed an application which allows personalized recommendations without
disturbing the lean-back position in front of a TV. It uses the customers watching behavior and explicit
feedbacks (ratings) on the server side to predict user preferences and recommend relevant items.

Different data-mining techniques are used to predict viewer preferences, such as, content-based
filtering algorithms are used for related items, collaborative filtering techniques are used for ratings
predictions, clustering techniques are used for increasing the performance, association rules mining
approaches are used for analyzing item relations, vector space model is used for the identification of the
viewer’s watching patterns. However, data-mining techniques, clickstream analytics, and in-depth analysis
of the viewer’s data may lead to serious security and privacy issues [42]. We argue that personalization
and recommendations on smart TV should not compromise the security and privacy of the viewers.

PolyLens [43], is a web-based movie recommender system that uses collaborative filtering techniques
to recommend items to group users rather than individuals. PolyLens has used a group recommender
extension to the MovieLens recommender system. PloyLens explores the design space of collaborative
filtering recommenders for group viewers. A detailed log is maintained to measure how viewers formed
a group(s). They also survey the group users and analyze their experiences of group recommendations.
The issue with PolyLens is that it relies on collaborative filtering techniques. Collaborative filtering
techniques suffer from data sparsity and gray sheep problems [44]. OntoTV [45] is developed for the
management of different sources of TV contents. It uses semantic multimedia techniques by developing
an ontology for different TV-related content. OntoTV is a television content management system, which
retrieves content information from different sources and represents them using ontologies and knowledge
engineering. A cloud-based program recommendation system (CPRS) [46] was proposed and implemented
to improve channel recommendation systems by the formation of groups that have similar taste. The system
is implemented using cloud computing, which uses the map-reduce algorithm. In CPRS, the first step
is to cluster the user profiles and then grouped these profiles by the K-means clustering algorithm.
These techniques required a good computation power to recommend an item from very large datasets.

J. Kim et al. [47] proposed a searching and recommendation method for TV programs based on
contents and viewers ontologies. They designed the ontology model of TV programs to define the semantic
structure of the content. Compared with keyword-based searching, a more precise searching was achieved
on documentary programs. N. Chang et al. [28] proposed a TV program recommender framework, which
integrates the Web 2.0 features into television sets and smart TVs (set-top-boxes). A personalized TV
recommendation with mixture probabilistic matrix factorization [15] developed a two-stage framework for
building a TV recommender system. First, the proposed framework automatically learns the number of
watching groups, and then the mixture probabilistic matrix factorization (mPMF) model was proposed
for learning the mixture preference of television programs. A TV program recommendation for multiple
viewers based on users’ profile merging techniques [29] was proposed. The work proposed a TV program
recommendation for multiple viewers (group) based on merging user profiles. The profile merging is
based on total distance minimization techniques that generate the results closed to most users’ preferences.

Summarizing the literature; the content recommendation on a smart TV is based on a single user
profile; however, in actual scenarios, the smart TV may be enjoyed in groups. This situation creates
hurdles for existing recommendation algorithms. Although different approaches are used for group
recommendations, such as aggregated predictions, preferences aggregation, etc., however, these approaches
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are not only difficult to calculate but also may lead to privacy issues. Furthermore, the identity of a
group member is based on predictions and estimations and usually performed on the server-side, which
may lead to serious privacy issues. The following section presents some potential factors that affect the
personalization services, including the recommendations for smart TV viewer(s).

3. Potential Factors

In this section, we discuss the potential factors that may affect the recommendation process and
recommendation results in the context of smart TV watching scenarios. These factors suggest that
smart TV should be considered as a different device from other connected devices, such as computers
and smartphones.

3.1. Smart TV is a Shared Device

In most households, smart TV is enjoyed in groups. The members of such groups may have
different ages, gender, and taste. Therefore, recommending an item on smart TV may not be relevant to
all group members. Moreover, the random switching of viewers in front of a smart TV makes it difficult
to predict, maintain, and update multiple profiles on a smart TV. A smart-TV/STB registered with a
single email address can be watched by the whole family members. Therefore, the recommendations
based on login information may not be relevant. Moreover, there may be diverse preferences and
interests, which makes it hard to predict the exact preferences of every individual in a group [15].

The group recommender system used two approaches for group recommendations, i.e.,
(i) aggregated predictions and (ii) the aggregated model for preferences merging of individuals [48].
These methods are based on predictions and estimations, and hence, the recommendations in such
cases are not up to the mark. Moreover, the privacy concerns, and the varying interests of viewers,
the preferences merging, and aggregate predictions are not practicable [49]. Figures 2 and 3 depict the
aggregated predictions and aggregated model for preferences merging strategies.

Proposed items by the recommender Proposed Items

systems for individual user [Ranking)
U
3 dati {item 11, item 12, item 13..... item1,
User1 A Recommend ations item 2,
item 3,
3 {item 21, item 232, item 23 .....
A Recommend ations
User2 u Items Aggregation
. . itemn
{item n1, item n2, itemn3 ...
Usern i Recommend ations a - e

Figure 2. Aggregated prediction techniques in which items are aggregated for group recommendations.

Proposed ltems

(Ranking)

Userl Preferences Group Profile item 1,

item 2,

item 3,
User2 Preferences Recommendations

A Preferences Aggregation based on this

aggregated profile

' item n

Usern i Preferences

Figure 3. Aggregated model for preferences merging in which preferences of individuals are aggregated

for group recommendations.
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In Figure 2, i.e., aggregated predictions, the recommendations to every individual are aggregated
and ranked for recommendations to a group of users. In a smart TV watching scenario, merging the
recommended items may lead to privacy issues. Hence, the recommendations based on aggregated
predictions are not suitable for the smart TV watching scenario. In Figure 3, an aggregated model for
preferences merging technique is depicted. In this technique, the preferences of users are aggregated for
making a group profile. The recommender system then recommends items based on this group profile.
The aggregated model for preferences merging is not viable due to the diverse interests of individuals.
Moreover, calculating or predicting user preferences is not an easy task. Furthermore, identifying every
individual of a group has not yet been achieved and is normally based on predictions. Therefore, in the
smart TV watching environment, the recommendations based on preferences merging may not be easy
or accurate. Therefore, the exact identity of viewer(s) and satisfying every individual of the group is
still a challenging task.

3.2. Limitations of Recommendation Approaches

The recommender system uses different approaches for recommendations, such as collaborative
filtering, content-based filtering, and hybrid approaches. The collaborative filtering approach take
user feedbacks in the form of implicit, explicit, or combination of both [50]. The explicit feedbacks,
such as rating and likes/dislikes, require explicit actions from a user; whereas implicit feedbacks are
calculated by the recommender system from user activities [51]. The explicit feedbacks are difficult
to provide in a smart TV environment [47]. Therefore, in a typical smart TV watching scenario,
implicit feedbacks may be a better option than explicit feedbacks [18]. The second approach used
by the recommender system is content-based filtering technique, which rely on the user’s profile
and item profile (description). In this technique, the recommender systems build a user profile; after
which, the recommender system compares program attributes (item description) to a user profile and
generates similarities between them [13]. Based on similarities, the suitable programs (items) are then
recommended to a user. It uses watching history, likes, comments, and description with an object and
recommends the best possible relevant item(s). When the description of an item matches with a user profile,
history, etc., then an item is recommended to a user [52]. The issue that creates hurdles for content-based
filtering algorithms is that smart TV is considered as a single profile (personalized device), such as a
computer and smartphone. However, in most households, smart TV is enjoyed by an entire family or
closed group [53]. In this case, the smart TV profile (single profile) may not be the true representative
of the entire group/family [15]. In content-based filtering, the already consumed contents and profile
play a key role in recommendations and hence, may fail to generate relevant and better results for the
smart TV watching scenario. Furthermore, content-based filtering techniques rely on watching history;
however, relying on watching history may not accurately recommend an item in the context of smart
TV watching scenarios because of frequent switching of users. Furthermore, watching history cannot
be related to every person in a group or family. Table 2 shows, some recommendation approaches,
along with issues that may arise in recommending contents on a smart TV.

3.3. Watching Behavior on Smart TV

Smart TV is the most liked medium for watching the news, videos, games, music, etc., [54]. It can
stream every available type of web content without time or location constraints. Despite the emergence
of new gadgets to spend leisure time on the internet, TV watching remains the most popular activity
around the globe [55]. However, the watching behavior on a smart TV is different from other devices,
such as computers and smartphones. Despite the provision of lots of innovative features, smart TVs are
mostly used for watching movies and video clips on the big screen. This watching behavior resembles
with legacy TV systems, which is passive and less interactive. Hence, the expected feedbacks from a
computer or smartphone user cannot be treated in the same manner with the feedbacks that comes
from smart TV. We argue that instead of a pull mechanism, the recommender system should rely on a
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push mechanism for recommending item(s) for smart TV viewer(s). The pull mechanism needs active
interactions with the device and hence, is not suitable for smart TVs.

Some social recommender systems (SRS) use social data for improving the recommendation
results [56]. However, socializing on a smart TV is a rare activity. Despite the interactive nature of smart
TVs, web 2.0 features, such as commenting, blogging, likes/dislikes, etc., are rarely used on a smart TV.
Surfing web 2.0 features with a primary communication device (remote control) is a cumbersome job.
As discussed, the main activity on a smart TV is to watch movies and videos on the big screen [20,21].

Table 2. Recommendation techniques and issues in the context of smart TV watching scenarios.

Recommendation

Techniques Approaches Some Common Algorithms Issues
Cosine similarity, decision .
Content-based Item description, tree, Bayesian network, re Sizsa;;;lziése ré(f)ta?iitervliirs
Filtering Techniques user profile neural network, clustering p .
algorithms [12] behind smart TV [57]

. Collective Cosine snr}llarlty, Pearson-r Unpredictable feedbacks in
Collaborative correlation, Slope one, .
—_ . preferences of the . case of smart TV watching

filtering techniques crowd Singular value scenarios
decomposition (SVD) [12]
Hybrid Approaches Combining Both Any combination of above Same inherited issues
Contextual Time. Place, location, Contextual rules, Contextual Diverse interest of group
Recommendations Events ontologies [12] members

3.4. TV Channel as an App

The channels in smart TV are actually the apps that stream content from channel streaming
servers or video sharing websites. Therefore, the contents are recommended within a specific app
that is currently running. For example, YouTube recommends videos/clips within the YouTube
app. Outside that app, the recommender system has nothing to do with other apps or contents.
So, any channel (app) that has better recommendation algorithm will recommend items in a better way.
We argue that recommendations should be app-independent.

3.5. Smart TV User Interfaces

Interaction modes play a vital role in the recommendation process because the interactions provide
feedbacks to recommender systems. Smart TVs, including STBs, have full support for a variety of
input devices including wireless keyboard and mouse. However, most of the viewers used the remote
control as a primary communicating device with a smart TV. Hence, interacting by using a remote
control is a difficult job, which in turn provide limited feedbacks to the recommender systems.

The explosion of recommended items may clutter the smart TV user interface. Cluttered user
interface (UI) may make it difficult to search or open a channel [57]. What to recommend? and where
to display the recommended item(s)? are the two major concerns for practitioners and Uls designers.
The existing cluttered Uls of the smart TVs make it difficult for non-technical persons, especially
senior citizens, to overview the recommended item(s) in detail and select the best one from the list.
This phenomenon may contribute to cognitive overload [1]. We argue that the recommended item(s)
should be displayed in such a way that enhances visibility and readability.

3.6. Profile-Based Recommendations

The main objective of most of the recommender system is personalized recommendations. For this
purpose, all the activities of a user are tracked and logged. What a user has searched, watched,
or watching is tracked by using profile information, cookies, login information, locations, IP address,
a device address (MAC address), etc. Although these approaches work well for computer and
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smartphone users; however, it fails to accurately predict the viewers’ preferences on smart TVs.
A smart TV represents the entire group/family as a single profile; therefore, it is quite difficult to
track multiple profiles behind this single device. Like the smartphone, smart TV can be registered by
a viewer’s email address for downloading the application from the app-stores. This email address
(logging information) plays a vital role in the personalized recommendation. However, a smart-TV
logged-in by a single person email address may be enjoyed by the entire group or family members,
including a senior citizen, wife, husband, kids, etc. Furthermore, there may be many viewers, having
diverse interests, ages, and preferences behind a single TV, which makes it difficult to predict the
accurate preferences of a closed group or family [15].

4. Validating the Factors

For analyzing the watching behavior on smart TVs, we conducted a subjective study. The main
purpose was to discover the factors that may affect the recommendation process and recommendation
results on a smart TV. Although the watching behavior may be significantly different for every region
of the world, we have tried to validate the factors that contribute to the recommendation process and
ask the questions that possibly represent a larger population.

4.1. Methods and Material

A mixed mode survey, i.e., observation, interview, and questionnaire (attached as Annex-A in
Supplementary Materials section), was used for data collection. A random sample of 300 viewers was
selected from different age groups, including senior citizens, teenagers, housewives, professionals,
educated, and literate. For making the survey unbiased, we surveyed every age group, including
male and female. The grouping, demographics, percentage value, and standard deviation (SD) are
represented in Table 3.

Table 3. Demographic information.

Participants Demographics Number of Participants Percentage SD
Female 920 30 %
Gender 84.85281
Male 210 70 %
20 to 30 Years 90 30 %
31 to 40 Years 95 31.66 %
Age group 33.41656
41 to 50 Years 90 30 %
Others 25 8.33 %
Educated 260 86.66 Y%
Background 155.5635
Literate 40 13.33 %
1 year 110 36.66 %
TV 2 years 95 31.66 %
Smart / Usage 3719319
Experience 3 years 70 23.33 %
Others 25 8.33 %

There were 15 questions in the survey, in which four were related to personal information and
excluded from results and analysis. The collected responses were filtered, in which the responses of
29 respondents were found invalid and hence, removed from the analysis. The rest of the responses of
271 respondents were used for analysis. The reliability of the questionnaire for 11 questions (items) was
tested using the Statistical Package for Social Science (SPSS). Cronbach’s Alpha value of 0.788 shows
an acceptable and reliable score, as shown in Table 4. Moreover, the composite reliability (CR) with
a score of 0.759 shows an acceptable range. The calculated value of the average variance extracted
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(AVE) was 0.28, which is acceptable. The AVE was calculated after factor analysis (FA) using principal
component analysis (PCA) in SPSS. The Root Mean Square Error (RMSE) value of 0.07, which is less
than the recommended value of 0.08, is also acceptable.

Table 4. Cronbach’s Alpha score for the reliability of the questionnaire.

Cronbach’s Alpha Cronbach’s Alpha Based on Standardized Items No of Items
0.788 0.831 11

The descriptive statistics for each item are presented in Table 5, which is generated by using factor
analysis (FA) in SPSS. Moreover, the determinant value 0.013 from the correlation matrix is greater
than 0.001 and shows a positive correlation between items. Furthermore, the Kaiser-Meyer—Olkin
measure of sampling adequacy’s value was 0.836, which is greater than 0.7 and shows an appropriate
factor analysis, as shown in Table 6.

Table 5. Descriptive statistics.

Mean Std. Deviation Analysis N

Q5 1.4834 0.50065 271
Q6 1.5203 0.50051 271
Q7 1.4059 0.50681 271
Q8 1.5461 0.58110 271
Q9 2.1292 1.22396 271
Q10 1.8339 1.31871 271
Q11 1.3579 1.01156 271
Q12 1.0480 0.21410 271
Q13 1.8303 0.78926 271
Q14 1.7085 0.77929 271
Q15 1.4945 0.58923 271

Table 6. Kaiser-Meyer-Olkin (KMO) and Bartlett’s Test (df: Degree of Freedom, Sig: Significance).

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.836
Approx. Chi-Square 1153.530
Bartlett’s Test of Sphericity df. 55
Sig. 0.000

5. Results

The following sub-sections present the results generated from the subjective study. The results
are shown by using descriptive statistics, i.e., by using graph and charts. The main objective was to
validate the factors that were discussed in Section 3. As discussed, the following results are based on
11 questions and responses of 271 respondents.

5.1. Type of Smart TV

From the collected responses, we found that most of the smart TV viewers (60%) have set-top-boxes
(STBs) at their homes, as shown in Figure 4a. One major reason is the low prices of STBs. Smart TVs with a
built-in operating system are comparatively expensive. The collected data shows that viewers spent a good
amount of daily time in front of a smart TV, as shown in Figure 4b. However, the time spent may vary due
to different events, vacations, mood, etc. As shown in Figure 4b, most of the viewers spent a reasonable
amount of daily time, i.e., 1 to 8 h/per day in front of a TV. This shows that apart from personalized gadgets,
such as smartphones, the importance of TV watching cannot be ignored.
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Figure 4. (a) Type of smart TVs; (b) Time spent in front of a smart TV.

5.2. Watching Activities

We found that watching videos, movies, clips, and game playing are among the major activities on
smart TVs. Other activities, such as socializing, checking or sending emails, reading books/blogs, etc.,
are rarely used on smart TVs. This shows that being technologically advanced, smart TVs are treated as a
legacy TV system. After applying the multiple correspondence analysis (MCA), we obtained Figure 5,
which shows that streaming live channels and video watching are the most dominant activities on a smart
TV. Moreover, smart TVs are enjoyed by either group or mixed (sometimes individual + sometimes group).
It further shows that apart from full support for the Web 2.0 features; it is rarely used on smart TVs due to
its shared nature and privacy issues. Analyzing the collected data, we found that viewers used smart TVs
for watching moving pictures (videos, clips, etc.) on big High Definition (HD) screens.

Categories (axes F1 and F2: 28.93 %)
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Figure 5. Multiple correspondence analysis (MCA) results for analyzing major activities on a smart TV.

5.3. Privacy Concerns

From the collected data, we found that privacy and security are big concerns for smart TV viewers.
Not surprisingly, 95% of viewers refused to allow a smart TV to keep track of personal information for
personalized services, including recommendations. Figure 6 shows a high average rate for privacy
concerns, which is 4.4 out of 5. This shows that personalization services, including recommendations
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at the cost of security and privacy, are not welcomed by the viewers. Moreover, the leakages of TV
viewership data may compromise the privacy of the whole family or closed groups.
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Figure 6. Box plot, showing high-security concerns by smart TV viewers.

5.4. Primary Communication Device with Smart TVs

The primary device for interactions with a smart TV is a remote control used by 86% of viewers,
as shown in Figure 7a. This shows that writing blogs, commenting, likes/dislikes, and textual entry is a
cumbersome task on this primary device, i.e., remote control. Moreover, we found that voice-based
commands are used only by 5% of viewers, as shown in Figure 7b. One reason is that English was
not the native language where we collected the data. For example, instead of using the Google
Assistant on smart TVs, the press and clicks were preferred methods for retrieving the desired contents.
Although smart remote controls, including smartphone-based remote controls, are available, these
smart remote controls are either expensive, device dependent, or complex to use. That is why the
legacy remote controls are still widely used. An easy to use a universal smart remote control for
superseding the legacy remote controls is yet to come.

= 1. Remote control

= 2. Keyboard
= 1. Press/Clicks

= 3. Mouse
= 2. Voice

4. Gesture

= 5. Others
(smartphone-based
remote control )

(@) (b)

Figure 7. (a) Primary interaction device for smart TV; (b) Preferred method of interaction.
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5.5. Device Registration Via Email

The device registration plays a vital role in personalized recommendations. Asking about
device registration was a bit of a technical question for viewers; however, we achieved our desired
results. We found that Android-based smart TVs and Apple TV boxes are registered with a personal
email by 35% of viewers shown in Figure 8a. Such registration is mandatory for downloading
applications from app stores, such as Google-Play-store (https://play.google.com/store/apps), iTunes
(https://itunes.apple.com/us/genre/ios/id36?mt=8), etc. This registration information is considered as
explicit feedbacks for recommender systems. However, the registration of a smart TV with a single
email is not viable because this TV can be enjoyed by other people as well. Moreover, we found that
31% of viewers have downloaded applications from app-stores, as shown in Figure 8b. The apps,
such as live channels and games, are the most downloaded categories on a smart TV. This shows that
smart TV viewers are interested mostly in entertainment-related apps, such as live channels, videos,
and games.

®1.No 1.No

= 2. ¥es 49% =2 Yes

= 3. Don't know
3. Don't know

(a) (b)

Figure 8. (a) Device Registration Via Email; (b) Downloading Apps from App-stores.

6. Analysis

The results of this study confirm that watching behavior on a smart TV is different from other
connected devices, including computers and smartphones. Moreover, apart from the technological
advancement in smart TV technologies, it is used as traditional TV. Furthermore, it is confirmed
that smart TV is enjoyed in groups as a passive, lean-back device, in which the viewer(s) prefer
less interactivity with a smart TV. These factors provide limited input to recommender systems.
Thus, the recommendation results generated on smart TV may be irrelevant to different viewers in
front of a smart TV. Rest of the findings are analyzed in the following sub-sections.

6.1. Primary Activity on Smart TV

A smart TV can stream almost every type of Web content, including live channels, movies, clips,
web 2.0 features, etc. However, as discussed, the smart TV is enjoyed as traditional TV. Analyzing the
collected data, we found that viewers used smart TVs for watching moving pictures, i.e., videos, clips,
etc. Although the transformation of the legacy TV system to smart TV took a long time, people are
enjoying smart TV as a lean-back device with lots of innovative features and options for watching
their desired TV contents. This watching behavior provides very limited clues for a personalized
service, including recommendations. As discussed, in most of the households, the smart TV is used as
a shared device, i.e., a device for the whole family. However, the existing recommender systems are
not intelligent enough to consider the whole family or closed group member for precise and relevant
recommendations. Therefore, the recommended item(s) may not be relevant to all viewers in front of a
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smart TV. From the subjective study, it is confirmed that writing blogs, commenting, likes/dislikes,
and other textual entry is a cumbersome task by using a remote control. Therefore, the recommender
systems relying on user feedbacks for recommendations may not perform well for smart TV viewers.

6.2. Passive Feedbacks

The existing recommender systems take a user feedbacks, preferences, and watching history as input
and recommend items to a user. The feedbacks may be explicit or implicit. The explicit feedbacks, such as
commenting, likes/dislikes, login information, etc., are among difficult activities on smart TV (see Section 3
for more details). The implicit feedbacks are normally calculated from user activities, such as browsing,
navigations, clicks, etc. In a smart TV watching scenario, the calculation or estimation of implicit feedbacks
are not only difficult but also inaccurate results are highly probable. The reasons include the lean-back
nature of smart TV. Moreover, behind a smart TV, we have multiple profiles that make it difficult to calculate
and estimate the exact viewer profile. As discussed, television watching is a passive activity. The viewers
prefer less interaction during content consumption on smart TV. The legacy remote controls and complex
user interfaces further restrict the interaction with a smart TV. This type of passive feedbacks and watching
behavior provides very limited input to recommender systems. Surfing the web contents on computers
and smartphones are significantly different from a smart TV. However, the existing recommender rarely
considers such factors during the recommendation process.

6.3. Personalized Recommendations and Privacy Concerns

The private data of a viewer may be captured for the delivery of personalized services, such as
VOD services and recommendations. Results of the subjective study show that viewers are reluctant
to allow a smart TV to capture their private data. Some recommender systems, such as used by
HbbTV project of Hbb-Next, capture the private data of viewers, such as face detection and recognition
for making precise recommendations. However, the HbbTV has been criticized in the literature for
capturing a viewer’s private data. This study suggests a tradeoff between recommendation results
and privacy concerns. We argue that the recommender systems should seamlessly recommend items
without any breaches of security and privacy.

6.4. Primary Communication Device with Smart TV

Analyzing the collected data, we found that apart from technological advancement, the primary
communication device with a smart TV is a legacy remote control. Apart from full support, other
communication devices, such as wireless keyboards, mouse, touch pads, etc., are rarely used with a
smart TV. Although smartphone-based remote controls are also available; however, more accessible
and innovative smartphone-based remote controls are still to come. Moreover, this study confirms that
the key press is a major activity on the remote control for retrieving desired contents. Voice-based
commands are used only by 5% of viewers. Some reasons for this low usage of voice-based commands
are poor multi-lingual support, noisy environment, the pronunciation of words, etc. Although advanced
technologies, such as Apple’s Siri for Apple-based STBs, Google-Assistants for Android-based smart
TVs, and smartphone-based universal remote controls are available; however, they are rarely used for
watching smart TV contents.

7. Discussion and Future Work

The significant and growing TV-related multimedia content on the web makes it difficult to find
relevant contents and hence, leads to content, information, and cognitive overload. For these reasons,
recommender systems are used to help a viewer in selecting relevant contents. The recommender
system considered different parameters for recommendations, such as user feedbacks, watching
history, profile information, and user’s preferences [16]. All these parameters are significantly different
in the perspectives of smart TV watching scenarios. For example, user feedbacks are difficult due
to the lean-back nature of smart TV. Similarly, smart TV is a multi-user device and hence, profile
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information, watching history, and user preferences are difficult to calculate. Therefore, the existing
recommendation process needs a thorough investigation for relevant recommendations to the smart
TV viewer(s). This paper presents some issues and challenges, along with some critical factors that
affect the recommendation process on a smart TV. In the context of smart TV watching scenarios,
the existing recommender systems have numerous issues and challenges, such as (1) the passive
lean-back nature of a smart TV, (2) group/shared device, (3) connected devices that may leak a viewer’s
privacy, (4) remote-control as primary device for communication that restricts frequent interactions.
Moreover, the nature of content delivery on a smart TV is based on a push mechanism that makes it
difficult to provide better clues for recommender systems. The pull mechanism, in which the user is
actively involved in the interaction, is not well suited for smart TV.

In the future, we intend to expand this work for semantically enriched contextual recommendations
on smart TVs. We aim to design a recommender system for smart TV viewers that relies mostly on
viewer’s implicit feedbacks rather than explicit feedbacks. Furthermore, we aim to design a dedicated
recommender system for smart TV viewers that have the least security and privacy issues. Most of the
recent research work ignores the user-centric recommendations, which may play a major role in smart
TV recommendations. A better study of smart TV watching behavior and viewer(s)/group modeling
may further enhance the recommendation results. Social metadata should be used in such a way that
further enhance the recommendations on a smart TV. Although some work [58] has already been done
by integrating the social metadata with recommender systems for enhancing recommendation results for
TV programs, more work is needed for incorporating social metadata with a recommender system for
mitigating the issues of feedbacks on a smart TV. It is worth mentioning here that the social metadata
of every family member is not necessary to be available every time. Therefore, social metadata should
be integrated in such a way that it represents the whole group instead of individuals. The results of
the subjective study suggest that better user or group modeling techniques may further enhance the
recommendation results. Moreover, this study suggests the design of a more innovative and easy-to-use
smart remote control for a smart TV that may have better control over smart TV’s dynamic user interfaces.

8. Conclusions

This paper highlighted some overlooked issues that affect the performance of the recommender
system in the context of smart TV environment. Some future research guidelines and potential factors
were also presented for the improvement of existing recommender systems. The results of this study
confirmed that for precise and relevant recommendations on a smart TV, the existing approaches are
neither enough nor accurate to cope with the dynamic watching behavior of the viewer or group of
viewers. The factors have been validated by a subjective study of smart TV viewers. Behind a smart
TV, we have multiple profiles that have diverse interests. The recommender system should understand
these multiple profiles (groups) and the interests of individuals for relevant recommendations on a
smart TV. We argue that better user modeling or group modeling may enhance the performance of the
recommender system in a typical smart TV environment. Moreover, we argue that rich contextual
information, such as vacations, the day of weeks (holidays, office timings), events (Christmas, Eid,
Diwali, Ramadan, Sports events, World cups, etc.) should be integrated in such a way as to enhance
the performance of existing recommendation approaches. We further argue that recommender systems
should treat smart TV as a different device from other personalized devices, such as computers
and smartphones.

Supplementary Materials: Annex-A: Questionnaire available online at http://www.mdpi.com/2227-7080/7/2/41/s1.
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