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Abstract: This work presents a unified approach to the analysis of contact problems with various
interface laws that model the processes involved in contact between a deformable body and a rigid or
reactive foundation. These laws are then used in the formulation of a general static frictional contact
problem with unilateral constraints for elastic materials, which is governed by three parameters.
A weak formulation of the problem is derived, which is in the form of an elliptic variational inequality,
and the Tykhonov well-posedness of the problem is established, under appropriate assumptions
on the data and parameters, with respect to a special Tykhonov triple. The proof is based on argu-
ments on coercivity, compactness, and lower-semicontinuity. This abstract result leads to different
convergence results, which establish the continuous dependence of the weak solution on the data
and the parameters. Moreover, these results elucidate the links among the weak solutions of the dif-
ferent models. Finally, the corresponding mechanical interpretations of the conditions and the results
are provided. The novelty in this work is the application of the Tykhonov well-posedness concept,
which allows a unified and elegant framework for this class of static contact problems.

Keywords: contact problem; unilateral constraint; variational inequality; Tykhonov triple; Tykhonov
well-posedness; approximating sequence

1. Introduction

Processes of contact between a deformable solid and a foundation are ubiquitous,
and they can be found in many industrial settings, in transportation, in various scientific
experimental settings, and in everyday life. This is the reason for the very large amount of
engineering literature dedicated to the modeling, numerical approximations, and computer
simulations of such processes. In addition, indeed, one can find shelf upon shelf of books
and journal publications dealing with the myriad aspects of contact processes.

On the other hand, although the Mathematical Theory of Contact Mechanics (MTCM)
has expanded substantially in recent years and is quickly maturing because of the substan-
tial mathematical complexity of most models for contact processes, the theory necessarily
became more and more abstract. In a way, the gulf between the highly sophisticated
abstract theory and the engineering applications became ever more wider. However, the
theory yielded also many different effective computer algorithms for the computer ap-
proximations of the solutions of the models with various levels of convergence assertions.
Thus, the very abstract theory yielded very useful and practical tools for the simulations of
contact models.

Mathematically, contact processes are modeled with complex highly nonlinear and
often non-smooth boundary value problems, which explains the various mathematical
challenges they pose. In particular, their analysis is carried out by using the so-called weak
or variational formulation, which is usually in the form of a variational or hemivariational
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inequality, or more complex differential set-inclusions. The MTCM has provided many
existence, uniqueness, and convergence results, as well as the measurability of the solutions
when randomness in the system parameters and inputs is allowed. These were obtained
by using the mathematical properties of the convexity, monotonicity, lower semicontinuity
of various functions and operators, and various fixed point theorems. A sample of MTCM
references are, e.g., the books [1–9]. The computation aspects and the related numerical anal-
ysis of various models of contact, including numerical simulations, can be find in [10–13],
see also the recent survey [14], among a host of many other publications.

A special type of contact problems, which is very challenging mathematically, but
is somewhat popular in engineering literature, deals with computational aspects of the
models for the processes involved in contact between an elastic solid body and a rigid
foundation or surface, the so-called rigid obstacle. This is an idealization of the real process,
since there are no perfectly rigid obstacles; however, it is found to be a useful approximation
in many applications. Moreover, it leads to a very simple linear complementarity formula-
tion. Indeed, since the obstacle is assumed to be perfectly rigid, the contact conditions are
expressed in terms of inequalities for the normal component of the displacement and the
stress fields, thus taking into account the non-penetrability of the obstacle or foundation
by the body. However, whereas the “classical” formulations is simple, it leads to severe
mathematical difficulties, and it took a long time for the MTCM to encompass problems
with such a condition. The complementarity condition for the normal surface displacement
causes the variational or weak formulation of such problems to be in the form of inequality
problems with unilateral constraints. These models may describe a variety of contact
settings which arise in the following situations. There is a gap between the surface of the
body and the rigid obstacle; there is a thin layer of deformable material that covers the
rigid obstacle. Furthermore, the properties of such a thin layer can be elastic, rigid-plastic,
or rigid-elastic, for instance. The resulting variational inequalities involve a number of
parameters and it is of considerable interest to study the convergence of the solutions with
respect to these parameters. Indeed, this allows us to predict the changes in the solutions
caused by the perturbations of the data. Moreover, such convergence results establish links
between the different models, and justify some of the assumptions made in the modeling
of the different physical settings.

The mathematical literature dedicated to general convergence results, within the
context of models using differential equations or inclusions, in various settings, function
spaces, and under different assumptions is extensive. Such results may be obtained by using
different methods and functional arguments, including monotonicity, pseudomonotonicity,
compactness, and convexity, among many others. Nevertheless, most of the convergence
results in the literature are stated in the following abstract functional framework: Given
a functional space X and a problem P which has a unique solution u ∈ X, a family
of approximating problems {P θ} is constructed such that, when uθ ∈ X is a solution
of Problem P θ , then uθ converges to u in X, as θ converges. A careful analysis of this
description reveals that, in practice, we need to complete the functional framework above
by describing the following three ingredients: (a) the set I to which the parameter θ belongs;
(b) the problem P θ or its sets of solutions, denoted by Θ(θ), for each θ ∈ I; (c) the meaning
we give to the convergence of the parameter θ. Collecting these three ingredients, we arrive
in a natural way to the concept of Tykhonov triple, denoted by T = (I, Θ, C), where C is a
set of sequences which governs the convergence of θ.

Basic properties of Tykhonov triples can be found in [15]. There, Tykhonov triples
have been used to introduce the general concept of Tykhonov well-posedness in metric spaces
and then various applications in functional analysis have been described. The Tykhonov
well-posedness concept can be applied to the study of a large class of problems: minimiza-
tion problems, operator equations, fixed point problems, differential equations, inclusions,
sweeping processes, and various classes of inequalities as well. It was introduced in
the context of optimization problems in the pioneering work [16] and was based on two
main ingredients: the existence and uniqueness of the solution to a problem and the con-
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vergence of every approximating sequence to this solution. For this reason, it provides
a framework in which various convergence results may be stated and proved in a uni-
fied way. Tykhonov well-posedness results in the study of viscoplastic constitutive laws,
anti-plane shear problems with elastic materials and quasistatic contact problems with
elasto-viscoplastic materials can be found in the papers [17–19], respectively.

In this paper, we use Tykhonov triples as the main ingredient of a unified theory of
various convergence results in the study of contact problems with unilateral constraints.
Our aim in this work is two fold—first, to describe a few mathematical models for the
process of contact of a linearly elastic body with unilateral constraints and to prove their
unique weak solvability; second, to obtain convergence results with respect to some of
the system parameters and to deduce the relationship among the weak solutions of these
models. To this end, we prove a Tykhonov well-posedness result, Theorem 1, which is used
to establish the two previous tasks. It is seen that this framework and the theorem allow us
to obtain these results in a simple, unified, and elegant functional framework.

Following this introduction, the rest of the paper is structured as follows. In Section 2,
we describe the interface laws of contact we consider in this manuscript. In Section 3, we
present a general mathematical model of static contact, state the assumption on the data,
and derive its variational formulation. The latter is in the form of an elliptic quasivariational
inequality for the displacement field. Then, in Section 4, we state and prove the Tykhonov
well-posedness theorem. We use this result in Sections 5 and 6 in order to obtain various
convergence results together with the corresponding mechanical interpretations. Indeed,
these convergence results provide a deeper insight into the connections and relations
among the various contact models. As an example for the theory, we provide in Section 7 a
one-dimensional somewhat simple case of the static contact of a rod with a layered obstacle
that, nevertheless, presents the main ideas of our approach without the mathematical
complications in two or three dimensions. This, in turn, may be used as a benchmark case
for testing numerical methods. Finally, concluding remarks and some future work are
provided in Section 8.

2. Interface Laws with Unilateral Constraints

This section presents various interface laws describing the contact process of a de-
formable body and an obstacle, the so-called foundation. These fall naturally into the
conditions in the normal direction and those in the tangential directions. To describe them,
we let d belong to the set {1, 2, 3} and Ω be a d-dimensional connected domain representing
the solid body, and let ΓD, ΓN and ΓC be three relatively open mutually disjoint surfaces
such that ∂Ω = ΓD ∪ ΓN ∪ ΓC. Here, ΓC denotes the potential contact surface and we let ν be
the unit outward normal to Ω. The equalities and inequalities we write below in this section
are valid on ΓC. Nevertheless, for the sake of simplicity, we do not mention it explicitly. We
denote by u the displacement field and by σ the stress field in the body. Moreover, we use
a dot for the inner product of vectors and the subscripts ν and τ denote the normal compo-
nent and the tangential part of vectors and tensors, respectively. For instance, the normal
and tangential displacements are given by uν = u · ν, uτ = u− uνν, while the normal and
tangential components of the stress field are σν = (σν) · ν, στ = σν− σνν, respectively.
We note that the component στ represents the tangential shear or the friction force.

We start with the interface laws in the normal direction, the contact conditions, and
consider two different physical settings. In the first one, the foundation is a rigid body
and in the second one it is made of a rigid body covered by a layer of deformable material,
which may be another material or just the surface asperities.

Contact conditions with a rigid body. First, we assume that the foundation is per-
fectly rigid, and there is no gap between the deformable body and the foundation, as shown
in Figure 1a. Although there are no perfect rigid bodies, the conditions below turn out to
be useful in many applied settings. A popular contact condition used both in engineering
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literature and mathematical publications is the Signorini contact condition, formulated as
follows:

uν ≤ 0, σν ≤ 0, σνuν = 0 on ΓC. (1)

This condition was first introduced in [20] and then used in many papers, see e.g., Ref. [7]
and the references therein. This condition doesn’t allow interpenetration. When uν < 0,
there is separation between the body and the foundation and (1) implies that σν = 0, i.e.,
the normal stress vanishes. When uν = 0, there is contact. Therefore, (1) implies that σν ≤ 0,
i.e., the reaction of the foundation is towards the body. A graphic representation of the the
Signorini condition (1) is provided in Figure 2a.
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Figure 1. Physical setting: (a) contact with a rigid obstacle without gap; (b) contact with a rigid obstacle with gap; (c) contact
with a rigid obstacle covered by a deformable layer.         
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Figure 2. Five contact conditions with unilateral constraints: (a) condition (1); (b) condition (2);
(c) condition (7); (d) condition (9); (e) condition (11).
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In the next case, we assume in addition that there is a gap g > 0, in the reference
configuration, between the body and the foundation, see Figure 1b. Then, the Signorini
condition reads

uν ≤ g, σν ≤ 0, σν(uν − g) = 0 on ΓC. (2)

The mechanical interpretations of (2) is very similar to the case g = 0, and, graphically,
it is depicted in Figure 2b.

We next consider more complex conditions.
Contact conditions with a rigid body covered by a deformable layer. Consider now

the case when the foundation is made of a rigid body covered with a layer of deformable
material of thickness g > 0. This layer may be just the asperities or a softer material, as is
shown is shown in Figure 1c. Then, since the rigid obstacle is impenetrable, we have

uν ≤ g. (3)

Moreover, using the principle of superposition, it follows that the normal stress has
an additive decomposition of the form

σν = σD
ν + σR

ν , (4)

in which σD
ν describes the reaction of the deformable layer and σR

ν describes the reaction of
the rigid body.

Assume now that the deformable layer has an elastic behavior. Then, for the part σD
ν

of the normal stress, we use the so-called normal compliance contact condition, which
assigns a reactive normal pressure that depends on the interpenetration of the asperities on
the body’s surface and those of the foundation. Therefore,

− σD
ν = p(uν) (5)

where p is a nonnegative regular function that vanishes for a negative argument. Indeed,
when uν < 0, there is no contact and the normal pressure vanishes. When 0 ≤ uν ≤ g,
there is contact and uν represents a measure of the interpenetration into the elastic layer.
Then, condition (5) shows that the layer exerts on the body a pressure that depends on
the penetration. In addition, when uν = g, this layer is completely squeezed, and the
normal pressure it exerts is p(g). The normal compliance contact condition was first
introduced in [21] and since then used in many publications, see e.g., Refs. [13,22–24] and
the references therein. On the other hand, for the rigid part of the obstacle, we use the
Signorini contact condition with a gap (2). Therefore,

σR
ν ≤ 0, σR

ν (uν − g) = 0 (6)

and recall that g > 0 represents the thickness of the deformable layer. We now gather
conditions (3)–(6) and, in this way, we obtain the contact condition

uν ≤ g,
σν = 0 if uν < 0
−σν = p(uν) if 0 ≤ uν < g
−σν ≥ p(g) if uν = g

 on ΓC. (7)

A graphic depiction of the contact condition (7) is provided in Figure 2c.
Next, we also consider the case when the deformable layer has a rigid-plastic behavior.

In this case, in addition to (3), (4), and (6), we assume that

− F ≤ σD
ν ≤ 0, σD

ν =

{
0 if uν < 0,

−F if uν > 0.
(8)
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Here, F is a given positive traction threshold that may depend on the spatial variable
x. Using (8), we have

−F < σP
ν ≤ 0 =⇒ uν ≤ 0,

σP
ν = −F =⇒ uν ≥ 0.

This shows that the layer does not allow penetration and, therefore, behaves as a rigid
body, as far as the inequality −F < σP

ν ≤ 0 holds. It allows penetration only when the
threshold is reached, σP

ν = −F and, then, it offers no additional resistance, as surface plastic
flow commences. Thus, conditions (8) model the situation when the deformable layer has
a rigid-plastic behavior. Moreover, the function F could be interpreted as the yield limit.
Gathering conditions (3), (4), (6), and (8) yields the contact condition

uν ≤ g,

σν = 0 if uν < 0
−F ≤ σν ≤ 0 if uν = 0
σν = −F if 0 < uν < g
σν ≤ −F if uν = g

 on ΓC. (9)

We may summarize this condition as follows:

(a) If uν < 0, there is no contact and then (8) implies that σD
ν = 0, (5) implies that σR

ν = 0
and, therefore, equality (4) shows that σν = 0. Thus, the contact traction vanishes,
as expected.

(b) If uν = 0, contact has just been established (or is about to be lost) and then (8) implies
that −F ≤ σD

ν ≤ 0, (5) implies that σR
ν = 0 and, therefore, equality (4) shows that

−F ≤ σν ≤ 0. Thus, the layer behaves as a rigid surface.
(c) If 0 < uν < g, there is thus interpenetration into the layer, and then (8) implies that

σD
ν = −F, and (5) implies that σR

ν = 0 and, therefore, equality (4) shows that σν = −F.
The layer is in the plastic flow regime.

(d) If uν = g, the layer is completely squashed, and then (8) implies that σP
ν = −F, and

(5) implies that σR
ν ≤ 0 and, therefore, equality (4) shows that σν ≤ −F.

The contact condition (9) is depicted in Figure 2d. It was used in a number of papers,
see, e.g., Ref. [9] and the references therein.

Finally, we consider the case when the deformable layer has a rigid-elastic behavior.
In this case, in addition to (3), (4), and (6), we assume that

σD
ν = 0 if uν < 0
−F ≤ σν ≤ 0 if uν = 0
−σD

ν = F + p(uν) if uν > 0

. (10)

Condition (10) represents a combination of conditions (5) and (8) in which F is a
positive function and p is the normal compliance function; it is positive when the argument
is positive and vanishes for a negative argument. Arguments similar to those above show
that now the behavior of the deformable layer is rigid-elastic. Here, F could be interpreted
as the yield limit of the layer, while the normal compliance function p describes its elastic
properties. We now gather (3), (4), (6), and (10) to obtain the following contact condition:

uν ≤ g,

σν = 0 if uν < 0
−F ≤ σν ≤ 0 if uν = 0
−σν = F + p(uν) if 0 < uν < g
−σν ≥ F + p(uν) if uν = g

 on ΓC. (11)

This condition is depicted in Figure 2e.
Comments on the contact conditions (1), (2), (7), (9), and (11). First, these conditions

are expressed in terms of unilateral constraints and are governed by the data g, p, and
F. Moreover, all of them are described by multivalued relations between the normal
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displacement and the compressive normal stress, see Figure 2. In addition, there exists a
hierarchy among these contact conditions as follows:

(a) Condition (9) can be obtained from condition (11) when the normal compliance
function p vanishes, i.e., p ≡ 0.

(b) Condition (7) is obtained from condition (11) when the yield limit F vanishes, i.e.,
F = 0.

(c) Condition (2) can be recovered from condition (9), when p ≡ 0, from condition (7)
when F = 0 and from condition (11) when p ≡ 0 and F = 0.

(d) The Signorini contact condition (1) is obtained from conditions (2), (7), (9), and (11)
when g = 0.

We conclude that, among the above conditions, condition (11) is the most general one.
For this reason, it will play a special role in the next two sections.

Coulomb’s law of dry friction. We end this section with the conditions in the tangen-
tial directions, also called frictional conditions or friction laws. The simplest one is the
so-called frictionless condition in which the tangential part of the stress vanishes. This is an
idealization of the process, since even completely lubricated surfaces generate shear resis-
tance to tangential motion. For this reason, we assume in what follows that the tangential
traction στ does not vanish on the contact surface, i.e., the contact is with friction.

Frictional contact between solid surfaces without lubrication is usually modeled with
a number of variants of the Coulomb law of dry friction. The classical static version of this
law, commonly used in frictional contact problems describing the equilibrium states of
elastic bodies, is formulated as follows:

‖στ‖ ≤ µ |σν|, στ = −µ |σν|
uτ

‖uτ‖
if uτ 6= 0 on ΓC. (12)

Here, µ > 0 is the coefficient of friction and ‖στ‖ represents the norm of the friction
force. The friction law (12) was intensively studied in the literature; see, for instance,
the references in [7]. It shows that, during the contact process, the magnitude of the
friction force is bounded by the positive function µ |σν|, the friction bound. This is the
maximal strength that friction resistance can provide, and above it the surfaces undergo
a relative motion. It indicates that the points on the contact surface where the inequality
‖στ‖ < µ |σν| holds are in the stick state since there uτ = 0. The points of the contact
surface where uτ 6= 0 are in the slip state. There, the friction force στ is opposite to the slip
uτ and, moreover, its magnitude equals the magnitude of the friction bound since, in this
case, (12) implies that ‖στ‖ = µ |σν|.

We note here that “friction force” is not a force in the usual sense, since friction is only
resistance to motion and cannot initiate motion, unlike a “real” force. Although we use the
term friction force, “frictional resistance force” is the more accurate term in physics, since it
just opposes motion.

We now combine Coulomb’s law (12) with each one of the contact conditions (1), (2),
(7), (9), or (11), and obtain a specific boundary condition. We note that, when there is
separation between the surfaces (i.e., when uν < 0 in the case of conditions (1), (7), (9),
or (11), and uν < g in the case of condition (2)), then σν = 0 and, therefore, the friction
bound in (12) vanishes. This, in turn, implies that στ = 0, i.e., the friction resistance force
vanishes too. This property is realistic from a physical point of view and expresses the
compatibility between the contact conditions with unilateral constraints considered above
and the Coulomb law of dry friction.

In mathematical publications, and for mathematical reasons mentioned shortly, the
classical Coulomb’s law of dry friction (12) needs to be modified, and is very often used in
its regularized version

‖στ‖ ≤ µ |Rσν|, στ = −µ |Rσν|
uτ

‖uτ‖
if uτ 6= 0 on ΓC. (13)
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Here,R is a continuous regularizing operator that may be considered as the average
of the normal stress over a small patch around the contact point. The inclusion of this
operator can be traced to [25,26]. As explained in [25], there seems to be some physical
justification in considering the normal stress in the friction condition (13) as averaged
over a small surface area which contains many asperities, since the physical contact point
usually contains many asperities, and the contact surface is rarely smooth. However, the
main motivation for such a choice is mathematical, to avoid otherwise insurmountable
difficulties. Indeed, in the weak formulation, the regularity of the stress σ does not allow a
meaningful definition of the absolute value of the normal stress σν on the boundary. To
overcome this difficulty, the operatorR has been introduced in [26]. As an example of such
an operator, one may use the convolution of σ with an infinitely differentiable function
that has support in a small area that includes the point where the condition is applied.

The constitutive law of an elastic material is such that σ depends explicitly on u, and
we may write it as σ = σ(u), which, in turn, implies that σν = σν(u). Therefore, denoting
by R the regularizing operator defined by

Ru = Rσν(u),

in the case of elastic materials, we can write the regularized friction law (13) as follows:

‖στ‖ ≤ µ |Ru|, στ = −µ |Ru| uτ

‖uτ‖
if uτ 6= 0 on ΓC. (14)

Details on the regularized friction law (14) can be found in [7] and, therefore, we skip
them here. We just mention that in this paper we deal with contact problems for linearly
elastic materials and, therefore, we use the regularized version (14) of Coulomb’s law of dry
friction. The properties of the regularizing operator R will be described in the next section.

3. Main Problem and Variational Formulation

This section presents the physical setting of the contact problem we are interested in,
lists the assumption on the problem data, and derives its variational formulation.

Assume that a deformable solid body occupies, in the reference configuration, an
open, bounded, and connected set Ω ⊂ Rd (d = 2, 3). The boundary Γ = ∂Ω is composed
of three relatively closed sets ΓD, ΓN and ΓC, such that the relatively open sets ΓD, ΓN , and
ΓC are mutually disjoint and, moreover, the measure of ΓD is positive. The body is clamped
on ΓD. Tractions of surface density f N act on ΓN and, moreover, body forces of density (per
unit volume) f 0 act in Ω. The body can come into contact on ΓC with another solid, which
is called an “obstacle” or “foundation”, as shown in Figure 1. Our interest is in the static
mechanical equilibrium; the body is assumed to be linearly elastic; and the main interest is
in what happens on the contacting surface.

We use bold face letters for vectors and tensors; the outward unit normal on Γ is
denoted by ν; the spatial variable is denoted by x and, in order to simplify the notation, we
do not indicate explicitly the dependence of the various functions on x.

We denote by Sd the space of second order symmetric tensors on Rd and u : Ω→ Rd

and σ : Ω → Sd represent the displacement and the stress fields, respectively. The
mathematical model that describes the equilibrium of the elastic body, under the previous
mechanical assumptions, consists of the following equations:

σ = Eε(u) in Ω, (15)

Div σ + f 0 = 0 in Ω. (16)

The elastic constitutive law is given in (15) in which E is the elasticity tensor, and ε(u)
denotes the linearized strain field. The equilibrium Equation (16) describes the static process
that is assumed here. Next, the displacement–traction boundary conditions associated with
this physical settings are
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u = 0 on ΓD, (17)

σν = f N on ΓN . (18)

To complete the model, we add the friction law (14) and one of the contact conditions
introduced in Section 2. We recall that condition (11) is the most general one and, therefore,
we start by using this contact condition. Since it is governed by the data g, p, F, we denote
in what follows by P gpF the resulting mathematical model. To conclude, the main problem
we consider can be stated as follows.

Problem 1. P gpF. Find a displacement field u = u(g, p, F) : Ω → Rd and a stress field
σ = σ(g, p, F) : Ω→ Sd that satisfy (15)–(18), (11) and (14).

In the variational analysis of this problem, we denote by “·”, ‖ · ‖ and 0 the inner
product, the Euclidean norm, and the zero element of the spaces Rd and Sd, respectively.
We use the standard notation for the Sobolev and Lebesgue spaces associated with Ω ⊂ Rd

and Γ and, for an element v ∈ H1(Ω)d, we usually write v for the trace γv ∈ L2(Γ)d of v
on Γ. Moreover, we denote by vν and vτ the normal and tangential components of v on the
boundary, given by vν = v · ν and vτ = v− vνν, respectively. We also use the spaces

V = { v = (vi) ∈ H1(Ω)d : v = 0 on ΓD },
Q = { σ = (σij) : σij = σji ∈ L2(Ω), i, j = 1, . . . , d },

which are real Hilbert spaces endowed with the canonical inner products

(u, v)V =
∫

Ω
ε(u) · ε(v) dx, (σ, τ)Q =

∫
Ω

σ · τ dx. (19)

Recall that, in (19) and (16), ε and Div represent the deformation and the divergence
operators, respectively, i.e.,

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Div σ = (σij,j).

Here and below, an index that follows a comma denotes the partial derivative with
respect to the corresponding component of x, i.e., ui,j = ∂ui/∂xj, and the summation
convention over a repeated index is used. The associated norms on these spaces are
denoted by ‖ · ‖V and ‖ · ‖Q, respectively. We use ′′ → ′′ and ′′ ⇀ ′′ to denote the strong
and the weak convergence on V and 0V for the zero element in V. Moreover, it follows
from the Sobolev trace arguments that there exists a constant c0 > 0 such that

‖v‖L2(ΓC)d ≤ c0‖v‖V , ∀ v ∈ V. (20)

Finally, we recall that, for a regular stress function σ, the following Green’s formula
holds: ∫

Ω
σ · ε(v) dx +

∫
Ω

Div σ · v dx =
∫

Γ
σν · v dS, ∀ v ∈ H1(Ω)d. (21)

We now list the assumption on the data of the contact problem P gpF. The elasticity
tensor E is symmetric and positively definite, i.e., it satisfies the conditions

(a) E = (Eijkl) : Ω× Sd → Sd,

(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d,

(c) There exists mE > 0 such that
Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω.

(22)
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The regularization operator R is Lipschitz continuous, i.e.,{
R : V → L2(ΓC) and there exists LR > 0 such that

‖Ru− Rv‖L2(ΓC)
≤ LR‖u− v‖V for all u, v ∈ V.

(23)

We also assume that the densities of the body forces and surface tractions and the
thickness of the deformable layer are such that

f 0 ∈ L2(Ω)d. (24)

f N ∈ L2(ΓN)
d. (25)

g ≥ 0. (26)

Moreover, the normal compliance function p, the yield limit F, and the coefficient of
friction µ satisfy the following conditions:

p : ΓC ×R→ R+ and

(a) there exists Lp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2|

for all r1, r2 ∈ R, a.e. x ∈ ΓC,

(b) p(·, r) is measurable on ΓC for all r ∈ R,

(c) p(x, r) = 0 if and only if r ≤ 0, a.e. x ∈ ΓC.

(27)

F ∈ L2(ΓC), F(x) ≥ 0 a.e. x ∈ ΓC. (28)

µ ∈ L∞(ΓC), µ(x) ≥ 0 a.e. x ∈ ΓC. (29)

Finally, we assume that the following smallness condition holds:

c2
0Lp + c0LR‖µ‖L∞(ΓC)

< mE , (30)

where c0, LR, Lp, and mE are the positive constants in (20), (23), (27), and (22), respectively.

We turn to construct a variational inequality formulation of the problem. To that end,
we consider the set Kg ⊂ V, the form a : V × V → R, the function jpF : V × V → R and
the element f ∈ V defined by

Kg = { v ∈ V : vν ≤ g a.e. on ΓC }, (31)

a(u, v) =
∫

Ω
Eε(u) · ε(v) dx, ∀ u, v ∈ V, (32)

jpF(u, v) =
∫

ΓC

p(uν)vν dS +
∫

ΓC

Fv+ν dS +
∫

ΓC

µ |Ru| ‖vτ‖ dS, ∀ u, v ∈ V,

( f , v)V =
∫

Ω
f 0 · v dx +

∫
ΓN

f N · v dS, ∀ v ∈ V, (33)

where, here and below, r+ represents the positive part of r, which is r+ = max {r, 0}.

Next, standard arguments based on the Green formula (21) show that, if (u, σ) is a
smooth solution of Problem P gpF and v ∈ Kg, then
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∫
Ω
Eε(u) · (ε(v)− ε(u)) dx =

∫
Ω

f 0 · (v− u) dx +
∫

ΓN

f N · (v− u) dS (34)

+
∫

ΓC

σν(vν − uν) dS +
∫

ΓC

στ · (vτ − uτ) dS.

To deal with the third term on the right-hand side, we rewrite it as

σν(vν − uν) = (σν + F + p(uν))(vν − g) + (σν + F + p(uν))(g− uν)

+F(uν − vν) + p(uν)(uν − vν),

and, using the boundary conditions (11), we deduce that∫
ΓC

σν(vν − uν) dS ≥
∫

ΓC

F(u+
ν − v+ν ) dS +

∫
ΓC

p(uν)(uν − vν) dS. (35)

Moreover, using the friction law (14), we find that∫
ΓC

στ · (vτ − uτ) dS ≥
∫

ΓC

µ |Ru|(‖uτ‖ − ‖vτ‖) dS. (36)

We now combine (34) with inequalities (35) and (36) and obtain

∫
Ω
Eε(u) · (ε(v)− ε(u)) dx +

∫
ΓC

F(v+ν − u+
ν ) dS +

∫
ΓC

p(uν)(vν − uν) dS (37)

+
∫

ΓC

µ |Ru|(‖vτ‖ − ‖uτ‖) dS ≥
∫

Ω
f 0 · (v− u) dx +

∫
ΓN

f 2 · (v− u) dS.

Finally, we use inequality (37), the notations (32) and (33) and the fact that u ∈ Kg to ob-
tain the following variational formulation of Problem P gpF, in terms of the displacements.

Problem 2. PV
gpF. Find a displacement field u = u(g, p, F) such that

u ∈ Kg, a(u, v− u) + jpF(u, v)− jpF(u, u) ≥ ( f , v− u)V , ∀ v ∈ Kg. (38)

A function u = u(g, p, F) which satisfies inequality (38) is called a weak solution of the
contact problem P gpF. Once the existence of a weak solution is found, the stress function
can be obtained by using the elastic constitutive law (15).

4. Tykhonov Well-Posedness

In this section, we study the Tykhonov well-posedness of Problem PV
gpF and, to this

end, we start by recalling some of the necessary abstract setting and concepts introduced
in [15].

Consider an abstract mathematical object P , called a generic ”problem,” that is as-
sociated with a metric space (X, d̃). Problem P could be an equation, or a problem of
minimization, a fixed point, an inclusion, or an inequality. We associate with Problem P
the concept of “solution”, which depends on the context. We also denote by SP ⊂ X the set
of solutions to Problem P . Problem P has a unique solution iff SP has a unique element,
i.e., SP is a singleton. For a nonempty set B, we denote by S(B) the set of sequences
whose elements belong to B, and 2B is the set of all nonempty subsets of B. The concept of
well-posedness for Problem P is related to the so-called Tykhonov triple, defined as follows.

Definition 1. A Tykhonov triple is a mathematical object of the form T = (I, Θ, C), where I is a
given nonempty set, Θ : I → 2X and C is a nonempty subset of the set S(I).
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Below, we refer to I as the set of parameters; the family of sets {Θ(θ)}θ∈I represents the
family of approximating sets; finally, C defines the criterion of convergence.

Definition 2. Given a Tykhonov triple T = (I, Θ, C), a sequence {un} ∈ S(X) is called an
approximating sequence if there exists a sequence {θn} ∈ C such that un ∈ Θ(θn) for each n ∈ N.

Definition 3. Given a Tykhonov triple T = (I, Θ, C), Problem P is said to be well-posed in the
sense of Tykhonov if it has a unique solution, and every approximating sequence converges in X to
this solution.

We remark that approximating sequences always exist since, by assumption, C 6= ∅
and, moreover, for any sequence {θn} ∈ C and any n ∈ N, the set Θ(θn) is not empty. In
addition, the concept of approximating sequence depends on the Tykhonov triple T and,
for this reason, we use the terminology “T -approximating sequence”. As a consequence,
the concept of well-posedness depends on the Tykhonov triple T and, therefore, we refer
to it as “well-posedness with respect to T ” or “T -well-posedness,” for short.

We turn now on the well-posedness of Problem PV
gpF and, to this end, we consider the

Tykhonov triple T = (I, Θ, C), defined as follows:

I = { θ = (g̃, ε) ∈ R2 : g ≥ 0, ε ≥ 0 }, (39)

Θ(θ) = { u ∈ Kg̃ : a(u, v− u) + jpF(u, v)− jpF(u, u) (40)

+ε ‖v− u‖V ≥ ( f , v− u)V ∀ v ∈ Kg̃ } for θ = (g̃, ε) ∈ I,

C = { {θn} ⊂ S(I) : θn = (gn, εn) ∀ n ∈ N, : gn → g, εn → 0 }. (41)

Here, g̃ represents a potential thickness and the set Kg̃ is defined by (31), replacing g
with g̃. We next note that, for mathematical reasons, we introduce a positive parameter ε in
the definition of the Tykhonov triple (39)–(41). Convenient choices of this parameter allow
us to obtain various convergence results to the solution of the variational inequality (38), as
we show in Section 5.

Our main result in this section is the following:

Theorem 1. Assume that (22)–(30) holds. Then, Problem PV
gpF is well-posed with respect to the

Tykhonov triple (39)–(41).

The T -well-posedness of Problem PV
gpF can be established by using the general results

on the well-posedness of variational-hemivariational inequalities in [27]. Nevertheless,
the statement of the results there requires additional definitions and preliminaries and,
therefore, for the convenience of the reader, we present here a direct proof of Theorem 1,
which is structured in four steps, as follows.

Proof. (i) Existence of a unique solution of Problem PV
gpF. First, we remark that Kg, defined by

(31), is a closed, nonempty, and convex set in V. Next, assumptions (22) on the elasticity
tensor show that the bilinear form a : V×V → R, defined by (32), is symmetric, continuous,
and coercive. More precisely, it satisfies the inequality

a(v, v) ≥ mE‖v‖2
V , ∀ v ∈ V. (42)

In addition, using the assumptions (23), (27)–(29), it follows that the functional
jpF(u, ·) : V → R is convex and continuous. Then, the inequalities (20) and (23) imply that

jpF(u1, v2)− jpF(u1, v1) + jpF(u2, v1)− jpF(u1, v2) (43)

≤ (c2
0Lp + c0LR‖µ‖L∞(ΓC)

)‖u1 − u2‖V‖v1 − v2‖V , ∀ u1, u2, v1, v2 ∈ V.
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Inequalities (42) and (43) combined with the smallness assumption (30) allow us to
use Theorem 3.7 in [28] to deduce the unique solvability of Problem PV

gpF.
(ii) Weak convergence of approximating sequences. Assume that {un} is a T -approximating

sequence. Then, using Definition 2, we deduce that there exists a sequence {θn} ∈ C such
that un ∈ Θ(θn) for each n ∈ N. Therefore, definitions (40), (41), and (31) imply that

un ∈ Kgn , a(un, v− un) + jpF(un, v)− jpF(un, un) (44)

+εn ‖v− un‖V ≥ ( f , v− un)V ∀ v ∈ Kgn ,

for each n ∈ N, where

Kgn = { v ∈ V : vν ≤ gn a.e. on ΓC}, (45)

and, moreover,
gn → g, (46)

εn → 0 (47)

as n→ ∞.
Let n ∈ N be fixed. We choose v = 0V in (44) and, since j(un, 0V) = 0, j(un, un) ≥ 0,

we find that
a(un, un) ≤ εn ‖un‖V + ( f , un)V .

Next, inequality (42) implies that

‖un‖V ≤
1

mE
(εn + ‖ f‖V),

and, using (47), we obtain that the sequence {un} is bounded in V. This, in turn, implies
that there exists an element ũ ∈ V and a subsequence of {un}, still denoted by {un},
such that

un ⇀ ũ in V. (48)

It follows that un → ũ a.e. on ΓC and, using the definitions (45), (31) combined with
the convergence (46), we deduce that

ũ ∈ Kg. (49)

Let now v ∈ Kg and, for each n ∈ N, consider the element vn defined by

vn =


gn

g
v if g > 0,

v if g = 0.

Then, it is straightforward to see that vn ∈ Kgn and, moreover,

vn → v in V. (50)

We now use (44) to see that

jpF(un, vn)− jpF(un, un) ≥ a(un, un)− a(un, vn) + ( f , vn − un)V .

then we pass to the lower limit in this inequality and use the convergences (48) and (50),
the compactness of the trace operator and the properties of the form a and the function jpF
to find that

jpF(ũ, v)− jpF(ũ, ũ) ≥ lim inf a(un, un)− a(ũ, v) + ( f , v− ũ)V . (51)
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Next, since a(un − ũ, un − ũ) ≥ 0, we obtain

a(un, un) ≥ 2a(un, ũ)− a(ũ, ũ),

which implies that
lim inf a(un, un) ≥ a(ũ, ũ). (52)

Combining (49), (51), and (52) yields

ũ ∈ Kg, a(ũ, v− ũ) + jpF(ũ, v)− jpF(ũ, ũ) ≥ ( f , v− ũ)V ,

which shows that ũ is a solution of Problem PV
gpF. We now use the uniqueness of the

solution of this problem to deduce that ũ = u. This equality and a standard argument
imply that the whole sequence {un} convergences weakly to u in V, i.e.,

un ⇀ u in V. (53)

(iii) Strong convergence of approximating sequences. For each n ∈ N, we consider the
element ũn defined by

ũn =


gn

g
u if g > 0

u if g = 0.

Then, ũn ∈ Kgn and, moreover,

ũn → u in V. (54)

In addition, it follows from (44) that

a(un, un − ũn) ≤ jpF(un, ũn)− jpF(un, un) + εn ‖ũn − un‖V − ( f , ũn − un)V . (55)

We now use the coercivity of the form a (42) to find that

mE‖un − ũn‖2
V ≤ a(un − ũn, un − ũn) = a(un, un − ũn)− a(ũn, un − ũn),

and then (55) yields

mE‖un − ũn‖2
V ≤ jpF(un, ũn)− jpF(un, un) + εn ‖ũn − un‖V

−( f , ũn − un)V − a(ũn, un − ũn).

Next, we pass to the limit in this inequality and use the convergences (54), (53), and
(47) to deduce that

un − ũn → 0V in V. (56)

Finally, we combine (54) and (56) and obtain

un → u in V, (57)

which concludes the proof of this step.
(iv) The proof. It follows from step (i) that Problem PV

gpF has a unique solution,
and it follows from the step (iii) that every T -approximating sequence converges in V
to this solution. These two facts combined with Definition 3 show that Problem PV

gpF is
well-posed with respect to the Tykhonov triple (39)–(41), and this concludes the proof.

5. A Convergence Result for Perturbation of g, p, and F

In this section, we use the well-posedness result provided by Theorem 1 to obtain
perturbation convergence results. To that end, we assume in what follows that (22)–(30)
hold and denote by u = u(g, p, F) the solution of Problem PV

gpF in Theorem 1. For each
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n ∈ N, we consider a perturbation gn, pn, Fn of the data g, p, F which satisfy conditions
(26)–(28), respectively, denoted in what follows by (26)n, (27)n, (28)n. We also denote by
Lpn the Lipschitz constant of the function pn and we suppose that the following smallness
assumption holds for every n,

c2
0Lpn + c0LR‖µ‖L∞(ΓC)

< mE . (58)

We denote by jpn Fn : V ×V → R the function

jpn Fn(u, v) =
∫

ΓC

pn(uν)vν dS +
∫

ΓC

Fnv+ν dS +
∫

ΓC

µ |Ru| ‖vτ‖ dS, ∀ u, v ∈ V (59)

and, using notation (45), we consider the following variational problem.

Problem 3. PV
gn pn Fn

. Find a displacement field un = u(gn, pn, Fn) such that

un ∈ Kgn , a(un, v− un) + jpn Fn(un, v)− jpn Fn(un, un) ≥ ( f , v− un)V , ∀ v ∈ Kgn . (60)

Note that Problem PV
gn pn Fn

is obtained from Problem PV
gpF by replacing the data g,

p, F with the perturbed data gn, pn, Fn, respectively. Moreover, it follows from Theorem
1 that, under the assumption stated above, Problem PV

gn pn Fn
has a unique solution un =

u(gn, pn, Fn), for each n ∈ N. To study the convergence of this solution as n → ∞, we
consider in what follows the following additional assumptions:

gn → g as n→ ∞. (61)

Fn → F in L2(ΓC) as n→ ∞. (62)
(a) For each n ∈ N there exists ωn ≥ 0 such that
|pn(x, r)− p(x, r)| ≤ ωn for all r ∈ R, a.e. x ∈ ΓC.

(b) ωn → 0 as n→ ∞.

(63)

The main result in this section is the following.

Theorem 2. Assume that (22)–(30), (26)n, (27)n, (28)n, (58), (61)–(63) hold. Then, the
solutions un of Problems PV

gn pn Fn
converge to the solution u of Problem PV

gpF, which is

un = u(gn, pn, Fn)→ u = u(g, p, F) in V as n→ ∞. (64)

Proof. Let n ∈ N and v ∈ V. Then, using the definitions (59) and (33), we find that

jpn Fn(un, v)− jpn Fn(un, un)− jpF(un, v) + jpF(un, un)

=
∫

ΓC

(
pn(unν)− p(unν)

)
(vν − unν) dS +

∫
ΓC

(Fn − F)(v+ν − u+
nν) dS

≤
∫

ΓC

|pn(unν)− p(unν)||vν − unν| dS +
∫

ΓC

|Fn − F||v+ν − u+
nν| dS

≤
∫

ΓC

|pn(unν)− p(unν)|‖v− un‖ dS +
∫

ΓC

|Fn − F|‖v− un‖ dS,

and then assumption (63) (a) implies that

jpn Fn(un, v)− jpn Fn(un, un)− jpF(un, v) + jpF(un, un)

≤ωn ‖v− un‖L1(ΓC)d + ‖Fn − F‖L2(ΓC)
‖v− un‖L2(ΓC)d .
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This inequality combined with the continuity of the embedding L2(ΓC)
d ⊂ L1(ΓC)

d,
and the trace inequality (20) shows that there exists a constant α, which does not depend
on n, such that

jpn Fn(un, v)− jpn Fn(un, un)− jpF(un, v) + jpF(un, un) (65)

≤α
(
ωn + ‖Fn − F‖L2(ΓC)

)
‖v− un‖V .

Next, we use the notation

εn = α
(
ωn + ‖Fn − F‖L2(ΓC)

)
, (66)

θn = (gn, εn). (67)

Then, using (65) and (66), we find that

jpn Fn(un, v)− jpn Fn(un, un) ≤ jpF(un, v)− jpF(un, un) + εn‖v− un‖V .

and, therefore, (60) implies that

un ∈ Kgn , a(un, v− un) + jpF(un, v)− jpF(un, un) (68)

+εn‖v− un‖V ≥ ( f , v− un)V , ∀ v ∈ Kgn .

We now combine (67), (68), and (40) to see that un ∈ Θ(θn) and, since assumptions
(61), (62), and (63) (b) imply that gn → g and εn → 0, it follows from (41) that {θn} ⊂ C.
We conclude from Definition 2 that {un} is a T -approximating sequence for Problem PV

gpF.
The convergence (64) is now a direct consequence of Theorem 1 and Definition 3.

Note that convergence (64) expresses the continuous dependence of the solution of
Problem PV

gpF with respect to the data g, p, and F. Besides the mathematical interest in this
result, it is important from the mechanical and applications points of view since it shows
that small perturbation in the thickness g, the yield limit F, and the normal compliance
function p imply small changes in the weak solution of the contact problem P gpF.

6. Additional Convergence Results

We turn now to some special cases of the general convergence result (64), related to
the different boundary conditions mentioned in Section 2, for which we present additional
mechanical interpretations. To this end, we consider the following contact problems:

Problem 4. P gF. Find a displacement field u = u(g, F) : Ω → Rd and a stress field σ =

σ(g, F) : Ω→ Sd which satisfy (15)–(18), (9), and (14).

Problem 5. P gp. Find a displacement field u = u(g, p) : Ω → Rd and a stress field σ =

σ(g, p) : Ω→ Sd which satisfy (15)–(18), (7), and (14).

Problem 6. P g. Find a displacement field u = u(g) : Ω → Rd and a stress field σ = σ(g) :
Ω→ Sd, which satisfy (15)–(18), (2), and (14).

Problem 7. P . Find a displacement field u = u : Ω → Rd and a stress field σ = σ : Ω → Sd

which satisfy (15)–(18), (1) and (14).

Using the relationship between the contact conditions (1), (2), (7), (9), and (11)
discussed in Section 2, we have:

(a) Problem P gF is a particular case of Problem P gpF, obtained when p ≡ 0.
(b) Problem P gp is a particular case of Problem P gpF, obtained when F = 0.
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(c) Problem P g is a particular case of Problem P gp, obtained when p ≡ 0, a particular
case of Problem P gF obtained when F = 0, and a particular case of Problem P gpF,
obtained when p ≡ 0 and F = 0.

(d) Problem P is a particular case of Problems P gpF, P gp and P gF obtained when g = 0,
for any p and F.

Therefore, using the notation

K = { v ∈ V : vν ≤ 0 a.e. on ΓC }, (69)

jp(u, v) =
∫

ΓC

p(uν)vν dS +
∫

ΓC

µ |Rσν(u)| ‖vτ‖ dS, ∀ u, v ∈ V, (70)

jF(u, v) =
∫

ΓC

Fv+ν dS +
∫

ΓC

µ |Rσν(u)| ‖vτ‖ dS, ∀ u, v ∈ V, (71)

j(u, v) =
∫

ΓC

µ |Rσν(u)| ‖vτ‖ dS, ∀ u, v ∈ V, (72)

the variational formulations of these problems represent particular cases of the Problem
PV

gpF and are as follows:

Problem 8. PV
gF. Find a displacement field u = u(g, F) such that

u ∈ Kg, a(u, v− u) + jF(u, v)− jF(u, u) ≥ ( f , v− u)V , ∀ v ∈ Kg.

Problem 9. PV
gp. Find a displacement field u = u(g, p) such that

u ∈ Kg, a(u, v− u) + jp(u, v)− jp(u, u) ≥ ( f , v− u)V , ∀ v ∈ Kg.

Problem 10. PV
g . Find a displacement field u = u(g) such that

u ∈ Kg, a(u, v− u) + j(u, v)− j(u, u) ≥ ( f , v− u)V , ∀ v ∈ Kg.

Problem 11. PV . Find a displacement field u such that

u ∈ K, a(u, v− u) + j(u, v)− j(u, u) ≥ ( f , v− u)V , ∀ v ∈ K.

We now make the somewhat weaker assumption

c0LR‖µ‖L∞(ΓC)
< mE , (73)

and note that, if (58) holds with Lpn > 0, then (73) holds too. Then, the unique solvability
of the variational problems above is provided in the following result.

Corollary 1. Assume that (22)–(25), (29) hold. Then:

(a) Under assumptions (26), (28), and (73) Problem PV
gF has a unique solution u = u(g, F).

(b) Under assumptions (26), (27), and (30) Problem PV
gp has a unique solution u = u(g, p).

(c) Under assumptions (26) and (73), Problem PV
g has a unique solution u = u(g).

(d) Under assumption (73), Problem PV has a unique solution u.

Corollary 1 is a direct consequence of the unique solvability of the variational problem
P gpF, guaranteed by Theorem 1 and Definition 3. Moreover, under assumptions (23), (27),
(28), and (29), it is straightforward to check that

jpF(u, v) = jp(u, v) = jF(u, v) = j(u, v), ∀ u, v ∈ K.
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Therefore, with the notation in Corollary 1, we have

u(0, p, F) = u(0, F) = u(0, p) = u(0) = u. (74)

To proceed with the analysis, we introduce the following assumptions:

gn → 0 as n→ ∞. (75)

Fn → 0 in L2(ΓC) as n→ ∞. (76)
(a) For each n ∈ N there exists ωn ≥ 0 such that
|pn(x, r)| ≤ ωn for all r ∈ R, a.e. x ∈ ΓC.

(b) ωn → 0 as n→ ∞.
(77)

Then, as a direct consequence of Theorem 2 and equalities (74), we obtain the following
convergence results.

Corollary 2. Assume that (22)–(25), (29) hold. Then:

(a) Under assumptions (26), (28), (26)n, (27)n, (28)n, (58), (61), (62), (77), the solutions
u(gn, pn, Fn) of Problems PV

gn pn Fn
converge to the solution u(g, F) of Problem PV

gF, which is

u(gn, pn, Fn)→ u(g, F) in V as n→ ∞. (78)

(b) Under assumptions (26), (27), (28)n, (30), (26)n, (27)n, (58), (61), (63), and (76), the
solution u(gn, pn, Fn) of Problem PV

gn pn Fn
converges to the solution u(g, p) of Problem PV

gp,
which is

u(gn, pn, Fn)→ u(g, p) in V as n→ ∞. (79)

(c) Under assumptions (26), (26)n, (27)n, (28)n, (58), (61), (76), and (77), the solution
u(gn, pn, Fn) of Problem PV

gn pn Fn
converges to the solution u(g) of Problem PV

g , which is

u(gn, pn, Fn)→ u(g) in V as n→ ∞. (80)

(d) Under assumptions (26)n, (27), (27)n, (28), (28)n, (58), (62), (63), and (75), the solution
u(gn, pn, Fn) of Problem PV

gn pn Fn
converges to the solution u of Problem PV , which is

u(gn, pn, Fn)→ u in V as n→ ∞. (81)

(e) Under assumptions (26), (26)n, (28), (28)n, (61), (62), and (73), the solution u(gn, Fn) of
Problem PV

gn Fn
converges to the solution u(g, F) of Problem PV

gF, which is

u(gn, Fn)→ u(g, F) in V as n→ ∞. (82)

(f) Under assumptions (26), (26)n, (28)n, (61), (73), and (76), the solution u(gn, Fn) of
Problem PV

gn Fn
converges to the solution u(g) of Problem PV

g , which is

u(gn, Fn)→ u(g) in V as n→ ∞. (83)

(g) Under assumptions (26)n, (28), (28)n, (62), (73), and (75), the solution u(gn, Fn) of
Problem PV

gn Fn
converges to the solution u of Problem PV , which is

u(gn, Fn)→ u in V as n→ ∞. (84)

(h) Under assumptions (26), (27), (26)n, (27)n, (30), (58), (61), and (63), the solution
u(gn, pn) of Problem PV

gn pn converges to the solution u(g, p) of Problem PV
gp, which is

u(gn, pn)→ u(g, p) in V as n→ ∞. (85)
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(i) Under assumptions (26), (26)n, (27)n, (58), (61), and (77), the solution u(gn, pn) of
Problem PV

gn pn converges to the solution u(g) of Problem PV
g , which is

u(gn, pn)→ u(g) in V as n→ ∞. (86)

(j) Under assumptions (26)n, (27), (27)n, (58), (63), and (75), the solution u(gn, pn) of
Problem PV

gn pn converges to the solution u of Problem PV , which is

u(gn, pn)→ u in V as n→ ∞. (87)

(k) Under assumptions (26), (26)n, (61), and (73), the solution u(gn) of Problem PV
gn converges

to the solution u of Problem PV
g , which is

u(gn)→ u(g) in V as n→ ∞. (88)

(l) Under assumptions (26)n, (73), and (75), the solution u(gn) of Problem PV
gn converges to

the solution u of Problem PV , which is

u(gn)→ u in V as n→ ∞. (89)

Each one of the convergences above has an appropriate mechanical interpretation.
Moreover, they indicate how such problems with these interface or boundary conditions
can be approximated by the related problems.

First, the convergences (82), (85), and (88) establish the continuous dependence of the
weak solutions of Problems P gF, P gp, and P g, respectively, with respect to the data. Note
that in this case the convergences hold between solutions of problems constructed with the
same interface law, but with different data. In contrast, the rest of the results in Corollary 2
lead to convergence of the weak solutions of contact problems that have a different feature,
since they are formulated in terms of different interface laws. Indeed, for instance, we list
the following:

(a) In the particular case when gn = g and pn = p, the convergence (79) becomes

u(g, p, Fn)→ u(g, p) in V as Fn → 0 in L2(ΓC).

This shows that the weak solution of the contact problem with a rigid foundation
covered by an elastic layer, Figure 2c, can be approached by the solution of a the contact
problem with a foundation made by a rigid body covered by a layer of rigid-elastic material,
Figure 2e, when the yield limit F of this layer converges to zero, so the layer becomes fully
elastic.

(b) In the particular case when Fn = F, the convergence (84) and equalities (74) imply
that

u(gn, F)→ u(0, F) = u in V as gn → 0.

This shows that the weak solution of the contact problem with a rigid body, Figure 2a,
can be approached by the solution of the contact problem with a foundation made by a
rigid body covered by a layer of rigid-plastic material, Figure 2d, when the thickness of
this layer converges to zero.

We note that, in addition to the mathematical interest in these convergence results
(which asserts the stability of the solution), they are very important from the mechanical
point of view, since they allows us to establish the links among the different contact
models. Indeed, these results show that, for small values of some of the parameters, we
can replace, that is, approximate as closely as we wish, some of the more complex models
by simpler ones.
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7. A One-Dimensional Example

This section illustrates our theoretical results and studies a representative one-dimensional
example, that of a static elastic beam in contact with a two-layered foundation. We chose
it since it is easier to explain the main ideas of this work but without the complications
that arise in two or three dimensions. Thus, we consider a version of Problem PgF, where
the elastic beam of length l = 1 [m] is rigidly attached at x = 0 and may come in con-
tact, under the action of a force density (per unit length) f [kg/s2], with a foundation at
x = 1. The foundation has a deformable layer of the rigid-plastic type of thickness g [m],
which is attached to a rigid body underneath. In the notation above, we have Ω = (0, 1),
ΓD = {x = 0}, ΓN = ∅, ΓC = {x = 1}. The setting is depicted in Figure 3. 

g 

O 

l =1 f 

foundation 
rigid-plastic layer 

rigid body 

O 

x 

Figure 3. Physical setting.

We denote by u = u(x) [m] the displacement, and then the linearized strain field
is given by ε(u) = u′ (dimensionless), where, here and below, the prime denotes the
derivative with respect to x ∈ [0, 1]. We denote by Y [kg/m s2] the Young modulus of the
rod’s material, A [m2] the cross sectional area of the rod, and then E = YA [kg m/s2] is the
effective (1D) Young modulus. The stress in the rod is given by σ(x) [kg m/s2], and within
linearized elasticity, σ = Eu′. For the sake of simplicity, we assume that f ∈ R does not
depend on the spatial variable.

The statement of the problem of static contact between an elastic rod and a rigid-plastic
foundation is the following.

Problem 12. P1d
gF. Find a displacement field u : [0, 1] → R and a stress field σ : [0, 1] → R,

such that

σ(x) = E u′(x) for x ∈ (0, 1), (90)

σ′(x) + f = 0 for x ∈ (0, 1), (91)

u(0) = 0, (92)

u(1) ≤ g,

σ(1) = 0 if u(1) < 0

−F ≤ σ(1) ≤ 0 if u(1) = 0

σ(1) = −F if 0 < u(1) < g

σ(1) ≤ −F if u(1) = g


. (93)
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Here, F [kg m/sec2] is the rigid-plastic material yield limit, assumed to be positive.
One can combine Equations (1) and (2) into Eu′′ + f = 0; however, we write it in this way
to conform to the formulation of the abstract problems above.

We proceed to the the variational formulation and analysis of Problem P1d
gF. To that

end, we use the space
V = { v ∈ H1(0, 1) : v(0) = 0 },

and the set of admissible displacement fields is defined by

Kg = { u ∈ V : u(1) ≤ g }.

Then, the variational form of Problem P1d, obtained using integration by parts,
is as follows.

Problem 13. P1d−V
gF . Find a displacement field u ∈ Kg such that

∫ 1

0
Eu′(v′ − u′) dx + Fv(1)+ − Fu(1)+ ≥

∫ 1

0
f (v− u) dx ∀ v ∈ Kg. (94)

The existence of a unique solution to Problem P1d−V
gF follows from Corollary 1(a).

However, since the example is “simple”, direct calculations allow us to solve ProblemP1d
gF

and obtain closed form solutions. As was noted above, these may be used to calibrate and
verify numerical algorithms for realistic engineering problems. It is found that there are
four different possible cases that depend on the relationship between f and F. We describe
each one and its corresponding mechanical interpretation.

(a) The case f < 0. The body force acts away from the foundation and then the
solution of Problem P1d is given by σ(x) = f (1− x),

u(x) = f
E

(
1− 1

2 x
)

x,
∀ x ∈ [0, 1]. (95)

In this case, as is to be expected since there is no contact, u(1) < 0 and σ(1) = 0. Since
there is separation between the rod’s end and the foundation, there is no reaction at x = 1.
This case corresponds to Figure 4a.

(b) The case 0 ≤ f < 2F. The force pushes the rod towards the foundation and the
solution of Problem P1d is given by σ(x) = f

2 (1− 2x),

u(x) = f
2E (1− x)x,

∀ x ∈ [0, 1]. (96)

We have u(1) = 0 and −F < σ(1) ≤ 0, which shows that the rod is in contact with
the foundation, just touching it, and the reaction of the foundation is towards the rod.
Nevertheless, there is no penetration, since the magnitude of the stress at x = 1 is under
the yield limit F and, therefore, the rigid-plastic layer behaves like a rigid layer. This case
is depicted in Figure 4b.
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Figure 4. The four cases of contact between the rod and the foundation: (a) The case f < 0; (b) the case
0 ≤ f < 2F; (c) the case 2F ≤ f < 2Eg + 2F; (d) the case 2Eg + 2F ≤ f .

(c) The case 2F ≤ f < 2Eg + 2F. In this case, the force is sufficiently large to cause
the penetration of the rod’s end into the rigid-plastic layer. The solution of Problem P1d is
given by {

σ(x) = f (1− x)− F,

u(x) = f
2E (2− x)x− F

E x,
∀ x ∈ [0, 1]. (97)

We have 0 ≤ u(1) < g and −σ(1) = F. This, indeed, shows that the stress at x = 1
reached the yield limit and, therefore, there is penetration into the rigid-plastic layer which
now behaves plastically. Nevertheless, the penetration is partial and u(1) < g. This case is
shown in Figure 4c.

(d) The case 2Eg + 2F ≤ f . Here, the applied force is sufficient to make the whole
layer plastic. The solution of Problem P1d is given by σ(x) = f

2 (1− 2x) + Eg,

u(x) = f
2E (1− x)x + g,

∀ x ∈ [0, 1]. (98)

We have u(1) = g and σ(1) ≤ −F, which shows that the rigid-plastic layer is com-
pletely penetrated and the displacement of the point x = 1 reaches the rigid body. The
magnitude of the reaction in this point is larger than the yield limit F since, besides the
reaction of the rigid-plastic layer, there is also the reaction of the rigid body, which becomes
active in this case. This case is depicted in Figure 4d).

The analytic forms (95)–(98) of the solution in the four cases show clearly the contin-
uous dependence of the solution on the data F and g, which is the content of Corollary
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2(e)–(g). For instance, denote in what follows by (un, σn) the solution to Problem P1d
gF for

g = gn > 0 and Fn = F > 0, for all n ∈ N. Then, it follows from (95)–(98) that

un(x)→ ũ(x), σn(x)→ σ̃(x) for all x ∈ [0, 1] (99)

where ũ : [0, 1]→ R and σ̃ : [0, 1]→ R are the functions defined by σ̃(x) = f
2 (1− 2x),

ũ(x) = f
2E (1− x)x,

∀ x ∈ [0, 1]

if f < 0, and  σ̃(x) = f
2 (1− 2x),

ũ(x) = f
2E (1− x)x,

∀ x ∈ [0, 1]

if f ≥ 0. On the other hand, it is easy to see that the couple (ũ, σ̃) is the solution to the
Signorini problem without a gap, that is:

Problem 14. P1d. Find a displacement field u : [0, 1]→ R and a stress field σ : [0, 1]→ R, which
satisfy (90)–(92) and u(1) ≤ 0, σ(1) ≤ 0, σ(1)u(1) = 0.

Therefore, the convergence (99) represents a validation of the convergence result (84).

8. Conclusions

In this paper, we considered a general mathematical model, actually a framework that
describes the equilibrium of a system of a linearly elastic body that is in contact with a
number of different types of foundations. The model includes four important particular
cases, which depend on the assumptions on the system and its parameters. The variational
formulation of the general model is in the form of an elliptic quasivariational inequality
for the displacement field of the contacting body. We prove the well-posedness of this
inequality with respect to a specific Tykhonov triple, and we use this result to deduce
convergence results of the solutions with respect to the parameters. Finally, this unified
theory for dealing with the variants of the model with the various contact conditions
and these convergence results provides the framework that clearly shows the links and
relationships among the weak solutions of the different contact settings and conditions.
We also provide a “simple” example with four cases that make the theory transparent and
the various concepts about the continuous dependence of the solutions on the data easier
to follow. This example has interest in and of itself as it may be used as a benchmark for
computer simulations of “real” problems.

Our results in this work can be extended in several directions. First, a more general
elastic constitutive law of the form σ = Fε(u), in whichF is a strongly monotone Lipschitz
continuous nonlinear operator, can be studied. In such a case, the proof of Theorem 1 can
be recovered by using pseudomonotonicity arguments. Second, the dependence of the
solution on the density of body forces, density of surface tractions, and coefficient of friction
can be obtained, under appropriate assumptions, by using an appropriate choice of εn in
(44). Extensions to quasistatic contact problems with viscoelastic or viscoplastic materials
or to contact problems with nonsmooth interface boundary conditions can also be obtained.
Steps in this direction have been made in [19,29], where the concept of Tykhonov triple and
Tykhonov well-posedness have been used. It also may be of considerable interest to extend
the current methodology to include additional processes on the contacting surfaces such
as adhesion of damage [7]. Finally, numerical analysis and computer simulations of these
theoretical convergence results would be welcome.

Besides the novelty of the results in this paper, we illustrate the use of the new math-
ematical tools in the variational analysis of contact problems with unilateral constraints.
This is an additional reinforcement of one of the main features of the Mathematical Theory
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of Contact Mechanics, which is the substantial cross fertilization between the models and
applications, on one hand, and the nonlinear functional analysis, on the other hand.
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