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Abstract: We estimate the effect of large dams on malaria incidence in India between 1975 and
1995. We combine instrumental variables approach with a panel model with unobserved common
factors allowing us to fully capture the endogeneity of dam location and unobserved time-varying
heterogeneity. Dams result in increased malaria incidence in districts where dams are located and in
downstream areas. We find that the construction of a large dam increases a district’s annual malaria
incidence by about 0.9 to 1.4 percent, and by about 1 to 1.5 percent in downstream districts. We
also find that this malaria-increasing effect of dams persists over time. Our results imply that the
construction of dams in malaria-sensitive areas should be coupled with direct interventions, such
as the wide deployment of insecticide-treated nets or the roll-out of future vaccines. Furthermore,
we examine the contribution of agricultural development to this malaria-increasing effect of dams.
We find that dam construction benefits agriculture in the vicinity of dams, as well as in downstream
areas. These positive effects are driven by increased irrigation and cultivation in the vicinity of dams,
while they are driven by changes in cropping patterns in downstream areas, where the cultivation of
high-yielding variety crops increases. Finally, a back-of-the-envelope calculation suggests that the
agricultural production gains from dam construction dominate the economic losses resulting from
increased malaria.
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JEL Classification: Q19; O20

1. Introduction

Large irrigation dams play a vital role in the implementation of several key Sustainable
Development Goals (SDG), because they potentially provide a range of benefits, from pre-
venting river floods, improving access to electricity and reliable clean water, strengthening
the resilience of agricultural systems in the face of climate change, reducing poverty and
food insecurity, to promoting economic and social development (e.g., Duflo and Pande
2007b; Kibret 2018; Dillon and Fishman 2019).

However, large dam construction has been met with strong opposition from economists
and environmentalist groups. For instance, dams are criticized for contributing to local
inequality because (most of) the gains associated with dams may largely benefit the com-
mand area, typically downstream, while the costs might be concentrated in areas where
dams are located, or the catchment area (e.g., Singh 1990; Duflo and Pande 2007b). Dams
might come with a range of negative environmental and economic impacts, e.g., increased
silting, salinity, or pollution risks (e.g., Mettetal 2019), because they fragment rivers and
disrupt their flows, eventually threatening ecosystems that people and wildlife depend on
for their survival (McCartney and Sally 2007; FitzHugh and Vogel 2011; Wildi 2010).

Furthermore, research into the health impacts of large dams has also heightened
through recent case studies and anecdotal evidence (e.g., Dillon and Fishman 2019). This
line of research particularly focuses on the impact that large dams have on food and
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water scarcity, communicable diseases, social disruption, and vector-borne diseases such as
schistosomiasis and malaria (e.g., Lerer and Scudder 1999; Kibret 2018; Mettetal 2019). In
particular, an increasing body of anecdotal reports and case studies suggest large dams are
associated with increased malaria cases and deaths (e.g., Yewhalaw et al. 2013; Dejenie et al.
2012). This paper focuses on the causal link between large dams and malaria incidence.

Malaria is a life-threatening disease caused by parasites that are transmitted to people
through the bites of infected female Anopheles mosquitoes. Once constructed, large
dams can create small pools of standing water, which is an ideal breeding and egg-laying
ground for adult female Anopheles mosquitoes, the primary vector of malaria transmission
(International Water Management Institute 2018; Sadoff 2018). These small pools of water
where predators to mosquitoes may be absent (e.g., fish or tadpoles) (e.g., Kibret 2018),
often caused by flooding within the vicinity and upstream of the dam, create a year-round
habitat for Anopheles mosquitoes, extending the period of malaria transmission in some
regions to include both the rainy and dry seasons (Mbakop et al. 2019). Furthermore, the
slope of the dam can also affect the Anopheles population in the area. In fact, dams with
gentle and shallow slopes allow pools of water to easily form, which further increases the
probability of Anopheles habitat formation.

Conversely, large dams can disrupt the formation of Anopheles breeding habitats that
are located downstream of the dam by reducing river flows and decreasing the amount
of water discharge in the area (Lee et al. 2019; Larinier 2001). This reduction in the water
volume downstream of the dam limits the possibility of Anopheles habitat formation,
which can greatly reduce the transmission of malaria in the area. This effect is especially
prominent during the dry season.

Large dams can also exacerbate the impact that agricultural development has on
malaria transmission in a variety of ways (e.g., Janko et al. 2018). First, dams can greatly
expand the role of irrigation as an agricultural practice in nearby farmlands. If these
irrigation systems lack efficient drainage, water can accumulate into small standing pools,
providing additional breeding grounds for Anopheles mosquitoes (GBCHealth 2012). Other
mechanisms by which dams can facilitate an increase in malaria incidence through agricul-
ture expansion include deforestation, increased crop cover, and agriculture encroachment
in highland regions (Asenso-Okyere et al. 2009; MacDonald and Mordecai 2010; Guerra
et al. 2006). Finally, migrants from malaria endemic areas seeking work or food and water
security can travel to these newly developed farmlands, which could also greatly facilitate
the transmission of malaria (Falavigna-Guilherme et al. 2005).

While more than 200 million people are affected by malaria worldwide1, the World
Health Organization aims at reducing global malaria cases and mortality rates by at least 90
percent by 2030. The push to end malaria is also recognized in the Sustainable Development
Goals Target 3.3 “By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical
diseases and combat hepatitis, water-borne diseases and other communicable diseases”. Given this
policy background, this paper examines the impact of large dams on malaria incidence.

Against this conceptual background, the empirical literature has mainly consisted of
case studies and anecdotal evidence that come up with mixed conclusions. For example,
Lautze et al. (2007) analyze the impact that the Koka dam had on malaria incidence in
the Rift Valley of Ethiopia from 1994 to 2002. They find that malaria case rates among
people living within 3 km of the Koka reservoir were 1.5 times greater than those living
between 3 and 6 km from the reservoir and 2.3 times greater than those living 6–9 km from
the reservoir. Additionally, Ghebreyesus et al. (1999) find that the incidence of malaria is
significantly higher in children who live in villages close to dams (within 3 km) than in
children who live further away (between 8–10 km). Recently, Kibret et al. (2019a) found
that distance to reservoir shoreline and malaria incidence were negatively correlated in
their analysis of three dams in Ethiopia2 from 2010–2014.

In contrast, Yewhalaw et al. (2013) study the impacts that an Ethiopian dam, the
Gilgel-Gibe dam, had on malaria incidence from 2008 to 2010 but found no statistically
significant relationship between malaria incidence and proximity to the dam. However,
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the authors do find that the malaria vector (Anopheles arbiensis) was more abundant in
villages closer to the reservoir. Likewise, in their study of six dams in Ethiopia’s Tigray
Region, Dejenie et al. (2012) find that malaria prevalence did not increase in villages within
4 km of a dam compared to villages further away3.

Ndiath et al. (2012) study the impact of agricultural development on malaria transmis-
sion in the Senegal River basin after the construction of two dams along the Senegal River.
They find that malaria transmission was low and seasonal during their two-year study
period. Interestingly, the authors also find that Anopheles densities were significantly
correlated with the presence of ditch water (for activities like animal watering and brick
manufacturing) but not correlated with proximity to the river. Furthermore, Janko et al.
(2018) find that rural children under the age of 5 in the Democratic Republic of Congo
were particularly vulnerable to malaria transmission resulting from similar agricultural
development. Falavigna-Guilherme et al. (2005) find that the construction of the Itaipu
Dam on the Paraná River resulted in the proliferation of the Anopheles mosquito in the
area and the subsequent malaria outbreak.

In their extensive analysis of the impact dams have on malaria incidence in sub-
Saharan Africa, Kibret et al. (2019b) suggest that between 0.7 and 1.6 million malaria
cases per year were attributable to large dams from 2000–2015. Further, in their univariate
correlation analysis, the authors find that the slope of the reservoir explained 46.8 percent of
the variation in malaria incidence around large dams, more than any other environmental
factors, including rainfall, temperature, and humidity. They also find that the slope of a
reservoir significantly impacted the malaria incidence in communities less than 5 km from
a dam.

An important limitation of the literature is that existing studies remain descriptive and
vulnerable to several biases, among which is the endogeneity bias due to the non-random
nature of dam location, and thus only provide non-causal evidence (e.g., Duflo and Pande
2007b; Dillon and Fishman 2019)4. To establish potential causality between dams and
malaria is indeed challenging from an econometric standpoint, and virtually all existing
studies have failed to do so.

A notable exception is Duflo and Pande (2007b)—DP thereafter—who provide a viable
causal identification strategy by relying on various geographical features of the district. To
be more specific, they exploit variation in dam construction induced by differences in river
gradient across districts within Indian states to construct instrumental variable estimates
and find no effect of large dams on malaria incidence in India.

Overall, due to the regional focus, the somewhat mixed results, and existing method-
ological limitations in the literature, there is little convincing evidence that dams cause
malaria incidence. In fact, extensive systematic reviews of the literature also confirm the
lack of evidence (e.g., Keiser et al. 2005). For example, Keiser et al. (2005) conclude that
“no clear relationship emerges from this literature review between the risk factor “develop-
ment and operation of water projects” [sic] and malaria risk”. Dillon and Fishman (2019)
suggest that “the pathway of higher malaria incidence related to increased hydrological
investments is not well substantiated”. These reviews also highlight the dearth of evidence
in the empirical literature and call for additional research5.

While DP’s identification strategy deals with the endogeneity bias, they rely on state-
year fixed effects to partially account for time-varying omitted variables. Doing so imposes
that the impact of unobservable common shocks is homogenous on malaria across all
districts within a state. This is unlikely to be valid for several reasons because state-level
common shocks, for example, climate shocks or input/output price shocks, would likely
have differentiated effects on malaria incidence across districts within a state, dependent
on the district’s topology, type of agricultural practices and systems, health systems and
infrastructures, and existing mitigation and adaptation capacities (e.g., Skoufias 2003;
Kuriakose et al. 2013; Asfaw et al. 2017).

More generally, there is no reason to assume that the impact of such common shocks
would not be heterogeneous across districts. Assuming otherwise may result in biased
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estimates. For example, Mary (2022) shows that restrictive identification assumptions with
respect to modelling time dependence, including the use of state-year fixed effects, may
create an omitted variable bias and lead to largely misguided policy implications in the case
of the mitigating impact of dams on ethnic conflict in the face of rainfall shocks in India.

Recently, models with unobserved common factors or interactive fixed effects have
been increasingly proposed to solve similar issues in the general economics literature. Such
an approach captures time-varying heterogeneity via a set of factor loadings and requires
the imposition of a factor structure. While common factors or interactive effects models
are somewhat more complicated than fixed effects models, they have increasingly become
commonplace in the empirical economics literature (e.g., Gobillon and Magnac 2016).

The literature has provided several modeling approaches to estimate panel models
with unobserved common factors or interactive effects: common correlated effects (CCE)
(Pesaran 2006), interactive principal components (IPC) (Bai 2009; Bai and Li 2014), and
general two-stage IV (G2SIV) approaches (Norkutė et al. 2021; Cui et al. 2022). All these
approaches have benefits and drawbacks. However, the latter may be a preferred option
because it combines the attractive features of both the CCE and IPC approaches (Kripfganz
and Sarafidis 2021).

In this paper, we build on Duflo and Pande (2007b) and combine their instrumental
variables (IV) approach with the G2SIV approach for estimating panel models with un-
observed common factors from Norkutė et al. (2021) and Cui et al. (2022) to control for,
respectively, the endogeneity of dam placement, and time-varying unobserved heterogene-
ity. Given our modeling approach, we assess the effect of technologically feasible dams on
malaria.

Our paper provides evidence that large irrigation dams increase malaria incidence.
We find that dams increase malaria incidence in districts where dams are located and in
downstream districts. Our estimates imply a one-dam increase in the number of dams
in the district increases annual malaria incidence by about 0.9 to 1.4 percent on average.
The effect in downstream districts is about 1 to 1.5 percent. This confirms the multiple
anecdotal and descriptive reports that have suggested a potential link between dams and
malaria (e.g., Kibret et al. 2019b; Lautze et al. 2007; Ghebreyesus et al. 1999).

To understand the mechanisms linking dams and malaria, we provide a second set of
agriculture-focused results. These results suggest that dam construction benefits agriculture
in the vicinity of dams, as well as in downstream areas. These positive effects are driven
by increased irrigation and cultivation in the vicinity of dams, while they are driven by
changes in cropping patterns in downstream areas. In particular, the cultivation of high-
yielding variety (HYV) crops6, which require more water, increases in downstream areas.
These agricultural results highlight the potential mechanisms between dam construction,
irrigation area, cropping patterns, and malaria incidence.

Overall, we contribute to the literature on irrigation dams in three important ways.
First, from an empirical standpoint, we show that large dams affect malaria incidence in
India. Second, we show that dam construction benefits agriculture in the vicinity of dams,
as well as in downstream areas. These findings are novel in the empirical literature and will
contribute to a re-assessment of the distributional cost-benefit analyses linked to the con-
struction of large dam infrastructures from both health and economic perspectives. Third,
from a methodological perspective, we highlight the role of time-varying heterogeneity
in empirical studies examining the impact of irrigation infrastructures, the limitation of
state-year fixed effects to account for unobserved time-varying heterogeneity in this context,
and finally demonstrate the usefulness of common factors approaches.

The rest of the paper is structured as follows. Section 2 describes the identification
strategy. Section 3 presents the data. Section 4 analyses the empirical results while Section 5
concludes.
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2. Empirical Strategy
2.1. Empirical Model

To examine the impact of dams on malaria incidence, we can start with the following
model that has been used in previous studies:

yist = βDist + αDU
ist + γZist + δZU

ist + χCist + θi + ρst + εist (1)

where yist is the outcome of interest, i.e., malaria incidence, in district i in state s at time t;
Dist is the number of dams in the district; DU

ist is the number of dams located upstream of
the district; Zist and ZU

ist is a vector of controls for the district and for upstream districts. In
an extended model, Cist is a vector of climatic variables, namely rainfall and temperature
shocks. θi are district fixed effects, controlling for time-invariant characteristics. ρst are
state-year (interacted) fixed effects partially controlling for time-varying heterogeneity with
homogenous common shocks across districts in a state. β captures the impact of a dam
on malaria in the district where the dam is located (i.e., the own district effect), while α
describes the downstream impact of a dam.

There are two main problems with this model. First, the literature has recognized
that dam construction may not be random. Indeed, local governments may target areas
that are already more productive (but perhaps associated with higher malaria burden7) or
politically better-connected (Mettetal 2019). By contrast, the construction of dams may be
seen as an engine of growth in poorer districts.

To control for this endogeneity issue, several studies have used the IV strategy de-
signed by Duflo and Pande (2007b)8. They exploit variation in dam construction induced
by differences in river gradient across districts within states to construct IV estimates.
Following their approach, we estimate:

Dist = α + ∑4
k=2 ϕk

(
RGki ∗ Dst

)
+ ω

(
Mi ∗ Dst

)
+ ∑4

k=2 πk(RGki ∗ lt) + θi + ρst + εist (2)

where Dist is the number of dams in the district; RGki are the river gradient variables; Dst
is predicted dam incidence in the state; Mi is a vector of district-specific time invariant
variables, i.e., district elevation, overall gradient measures, river length, and district area.
Equation (2) also includes district fixed effects and state-year fixed effects. The interaction of
river gradient variables with country-level common shocks RGki ∗ lt accounts for national-
time varying effects of river gradient on the outcomes of interest. The river gradients
capture the proportion of the river with a gradient between 1.5 and 3%, 3 and 6%, and
above 6%.

The parameters from Equation (2) can be used to predict the number of dams in the
district, D̂ist, that is used as an instrument for Dist. DP also rely on Equation (2) to predict
the number of dams upstream, arguing that their approach is more efficient because it uses
all available variation to predict the relationship between river geographic features and the
number of dams (rather than only those upstream). If a district does not have an upstream
district, D̂U

ist is replaced with 0.
The next step of the empirical strategy comes down to estimating a marginally modi-

fied version of Equation (1):

yist = βD̂ist + αD̂U
ist + γZist + δZU

ist + χCist + θi + ρst + εist (3)

where Zist and ZU
ist include, respectively, all controls from Equation (2) but the interacted

river gradient variables with predicted dam incidence in the state. Estimating Equation (3)
captures the local average treatment effect (LATE) of technologically feasible dams (or in
other words, the LATE of dams constructed for geographical reasons).

The second problem, which has been much less discussed in the literature, relates to
how unaccounted time-varying heterogeneity (TVH) may affect estimates (e.g., Blanc and
Strobl 2014). To control for TVH, the literature related to dams has used a variety of fixes.
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Duflo and Pande (2007b) use state-year fixed effects. Sarsons (2015) uses state-level time
trends. Mettetal (2019) uses a combination of year fixed effects and district-level trends.

In the face of such diverse modeling choices, it is critical to understand their impli-
cations. Mary (2022) shows that restrictive assumptions with respect to modeling time
dependence to partially capture time-varying heterogeneity may result in largely biased
findings in the case of the links between rainfall shocks, dams, and ethnic conflict in India.
Therefore, we argue that state-year fixed effects are not sufficient to fully address concerns
about time-varying heterogeneity.

Ideally, one would like to replace state-year fixed effects with district-year fixed
effects. This is of course in practice impossible due to the incidental parameter problem
leading to biased and inconsistent estimates. To circumvent this challenge, common
factor approaches9 have been increasingly used to account for rich sources of unobserved
heterogeneity. Following the introduction of common factor approaches, we can modify
Equation (3):

yist = βD̂ist + αD̂U
ist + γZist + δZU

ist + χCist + θi + ρst + µiFst + εist (4)

where Fst is a set of common factors and µi a vector of factor loadings. µi represents the
heterogeneous impact of unobservable common shocks within a state on each district. Let’s
finally note that estimating Equation (4) is exactly equivalent to estimating Equation (3) if
common shocks have homogenous effects on the outcome of interest across districts within
a state, µi = µ.

Furthermore, if we ignore the endogeneity of dam location, we estimate a modified
version of Equation (4) where the numbers of dams in the district and upstream are not
instrumented:

yist = βDist + αDU
ist + γZist + δZU

ist + χCist + θi + ρst + µiFst + εist (5)

In other words, this latter model accounts for time-varying heterogeneity but ignores
the non-random allocation of dams. The estimations of Equations (4) and (5), in essence,
provide respectively IV- and OLS-like estimates in a common factors framework.

Last, we transform the models in Equations (4) and (5) by introducing a lagged
dependent variable to account for the existence of persistence in malaria. We obtain, in the
case of Equation (4):

yist = σyist−1 + βD̂ist + αD̂U
ist + γZist + δZU

ist + χCist + θi + ρst + µiFst + εist (6)

where σ captures persistence in malaria cases. In the case of Equation (5), we get:

yist = σyist−1 + βDist + αDU
ist + γZist + δZU

ist + χCist + θi + ρst + µiFst + εist (7)

2.2. Estimation

The literature has provided several modeling approaches to estimate panel models
with unobserved common factors or interactive effects: common correlated effects (CCE)
(Pesaran 2006), interactive principal components (IPC) (Bai 2009; Bai and Li 2014), and
general two-stage IV (G2SIV) approaches (Norkutė et al. 2021; Cui et al. 2022).

All these approaches have benefits and drawbacks. However, the latter may be a
preferred option because it combines the attractive features of both the CCE and IPC
approaches (Kripfganz and Sarafidis 2021). First, unlike CCE or IPC, the G2SIV approach
does not suffer from incidental parameters bias and thus does not require bias correction.
Second, the IV approach is robust and computationally inexpensive. Third, the approach
allows for endogenous regressors (if external instruments are available). Fourth, it can be
applied with unbalanced panels.

In the first stage, the IV approach10 projects out the common factors from exogenous
covariates using principal components analysis and constructs instruments from defactored
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covariates. In the second stage, the entire model is defactored based on factors extracted
from the first-stage residuals, and IV regression is implemented again using the same
instruments. This approach removes the common factors from the error term and the
regressors separately in two stages.

There are a few practical choices to be made for the implementation of the IV approach.
We mainly rely on the Ahn and Horenstein (2013) eigenvalue ratio test to compute the
number of factors jointly. We set the maximum number of factors to 4 for each estimation
stage and each set of instruments. Finally, note we double down on our common factors
approach and also introduce common factors in Equation (2) to make the entire estimation
strategy consistent. We also provide supporting evidence for why this is needed given
the data.

3. Data

Data is mainly taken from the dataset compiled by (Duflo and Pande 2007a). The
dataset we use includes information on district geography, dam placement, river gradient,
and malaria incidence, between 1975 and 1995 for a sample of 358 Indian districts. While
we refer the reader to DP for more details, we summarize key information about each
variable below. Descriptive statistics can be found in Table A1 in Appendix A.

Data on dams come from the World Registry of Large Dams. A large dam is defined
as a dam having a height of 15 m from the foundation, or, if the height is between 5 and 15
m, having a reservoir capacity of more than 3 million cubic meters. The registry lists the
nearest city to the dam and allows for allocating dam to district.

The malaria incidence data used was collected by India’s National Malaria Eradication
Program (NMEP). Malaria incidence is measured as the log of annual parasite incidence
(API), where API is defined as the number of smears positive for P. faliciparum out of the
population under NMEP’s surveillance. Malaria data is only available from 1975 and 1995.

Rainfall data comes from the University of Delaware’s Center for Climatic Research,
which provides rainfall estimates at 0.5◦ longitude and latitude nodes across the world.
A rainfall shock is measured as the fractional deviation of rainfall from its average level
(calculated over 1916–1995), summed over all months. We also add temperature data to
this dataset. Data are taken from the (India Water Portal 2020). This data is derived from
the publicly available Climate Research Unit TS2.1 dataset from the Tyndall Centre for
Climate Change Research, School of Environmental Sciences, University of East Anglia
in Norwich, UK. Temperature shocks are defined using the same methodology described
above for rainfall shocks. Data on district area, river kilometers, elevation, overall gradient,
and river gradients come from CIESIN, Earth Institute Columbia University.

As in previous studies relying on India data (e.g., Sarsons 2015; Duflo and Pande
2007b), the unit of analysis is the district as the most disaggregated data is only available at
this level. A district is an administrative unit immediately under a state (Census 1981 used
as a reference). Duflo and Pande (2007b) argue that the district in which a dam is located
includes most or all of its catchment area, and a portion of the command area, while most
of the command area is in the downstream district. They suggest that the effect of a dam
will be unambiguously positive downstream (and likely underestimated). By contrast, it is
not clear what to expect overall for the district in which a dam is located (as the positive
‘command’ effects could dominate the negative ‘catchment’ effects, or vice versa).

4. Empirical Results
4.1. The Importance of Geography in Large Dam Construction

Table 1 displays the G2SIV estimation results of Equation (2) in column 1, where
the number of dams in the district is the dependent variable and regressed against river
gradients and a set of geographical variables that are all interacted with the predicted
dam incidence at the state level. District fixed effects, state-year fixed effects, and common
factors are included. The estimation includes 358 districts between 1975 and 1995.
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Table 1. The importance of geography in large dam construction.

Interacted with Predicted Number of Dams in the State

Number of dams (1)

Fraction river gradient 1.5–3% 11.619 ***
(4.117)

Fraction river gradient 3–6% −12.671 *
(7.622)

Fraction river gradient above 6% 11.785 ***
(2.436)

River length −0.000
(0.001)

District area 0.000 ***
(0.000)

Elevation 250–500 m −0.414
(1.025)

Elevation 500–1000 m 2.881 *
(1.484)

Elevation above 1000 m −4.771
(5.661)

District gradient 1.5–3% 10.500 *
(6.073)

District gradient 3–6% 3.528
(9.504)

District gradient above 6% 1.126
(5.792)

F-test for river gradient, p-val. (stat.) 0.000 (97.38)
N 6937
Number of districts 358
Common factors YES
District FE YES
Rho 0.763
J-test 0.53
Number of instruments 44
Number of common factors 1
Number of lags 3

Notes: Robust standard errors in parentheses. *** p-val. <0.01, ** p-val. <0.05, * p-val. <0.1, # p-val. < 0.15. All
regressors are interacted with predicted dam incidence at the state level. Rho is the fraction of the variance of the
error term that is explained by the factor component. Note these estimations are based on a full sample ranging
from 1975 to 1995. All G2SIV estimates. The sample includes 358 districts.

All covariates are defactored based on a common set of factors estimated jointly. We
use 3 lags of all covariates as defactored instruments, up to a maximum of 1 factor following
the Ahn and Horenstein (2013) criteria. We control for district-specific and state-year fixed
effects by eliminating them prior to the estimation. The p-value of the J test statistic (0.53)
indicates that the over-identifying restrictions (instruments) are valid. The estimated
number of factors in the first and second steps both equal 1.

The rho is about 0.76 in column 1, suggesting that most of the variation in the composite
error term is due to the single unobserved factor, conditional on district fixed effects, and
state-year fixed effects. Put simply, estimators that do not control for common shocks
are likely to be severely biased. In essence, our results in column 1 mimic those of Duflo
and Pande (2007b) and support the importance of engineering considerations for dam
construction. We find that a gentle river gradient (1.5–3%) and a very steep river gradient
(3–6%) increase the number of dams. Interestingly, a steep river gradient (3–6%) has a
negative effect on dam construction. The p-value for the F-test for the joint significance of
all river gradient variables is 0.00 (F-stat: 97.38). In addition, the district area seems to be a
positive factor in building dams in upstream districts.
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4.2. The Impact of Large Dams on Malaria Incidence

Table 2 displays G2SIV estimates of the impact of large dams on malaria incidence
both in the district where they are located (“Dams”) and downstream (“Upstream dams”)
for the baseline model. Columns 1, 2, and 3, respectively, display G2SIV estimates where
the number of common factors changes from 3 to 1. We rely on several selection criteria to
choose the number of common factors and they suggest this number to be either 1 (based
on Ahn and Horenstein 2013) or 3 (based on Onatski 2010).

Table 2. Baseline results.

Malaria, log (1) (2) (3)

Malaria, log, t − 1 0.654 *** 0.523 *** 0.524 ***
(0.006) (0.007) (0.009)

Dams 0.913 *** 1.096 *** 1.461 ***
(0.301) (0.349) (0.401)

Upstream dams 1.085 *** 1.462 *** 1.041 **
(0.309) (0.384) (0.430)

N 2845 2845 2845
Number of districts 355 355 355
Geographical controls YES YES YES
Common factors YES YES YES
District FE YES YES YES
Rho 0.396 0.355 0.213
J test 0.582 0.429 0.356
Number of instruments 140 140 140
Number of common factors 3 2 1
Number of lags 6 6 6

Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15. Dams
and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term that
is explained by the factor component. Note these estimations are based on a sample ranging from 1975 to 1995.
All G2SIV estimates. The sample includes 355 districts, instead of 358, due to missing data. All geographical
variables (interacted with predicted dam incidence at the state level) from Table 1 are included except for the river
gradient variables.

In our baseline specification, the two dam variables are defactored based on a common
set of factors estimated separately, based on its own estimated factors, from the one for
all the other variables. We use 6 lags of covariates as defactored instruments, and up to a
maximum of 3 factors. The number of lags is chosen to minimize the variance of the model’s
standard error. We control for district-specific and state-year fixed effects by eliminating
them prior to the estimation. In our baseline model, the estimated number of factors in the
first step equals 1 throughout the columns. In robustness analyses, we test whether our
main results hold to alternative specifications. We discuss these results later.

Finally, as explained earlier, all columns use the predicted number of dams (in their
own district and downstream) as instruments for the actual number of dams. The J test
statistic in column 1 does not reject the null hypothesis as the p-value equals 0.582. This
implies that the additional instruments, i.e., predicted numbers of dams in own district and
upstream, may be valid instruments.

The rho across columns in Table 2 is between 0.2–0.4, suggesting that a substantial
part of the variation in the composite error term is due to the single unobserved factor,
conditional on district fixed effects and state-year fixed effects. Put simply, estimators that
do not control for common shocks may be likely biased.

The main message from Table 2 is that an increase in the number of dams in a district
increases malaria incidence both in the district and in downstream areas. Our baseline
estimate in column 1 implies that a one-dam increase in a district would increase malaria
incidence by about 0.9 percent. Overall, according to columns (1)–(3), a one-dam increase in
a district would increase malaria incidence by between 0.9 to 1.4 percent. The construction
of a dam in the district likely creates additional breeding grounds for Anopheles mosquitoes
that facilitate the development of malaria transmission.
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Furthermore, we find some evidence that dams also increase malaria incidence in
downstream districts in all columns. According to columns (1)–(3), a one-dam increase in
a district would increase malaria incidence by between 1 to 1.5 percent. We assume this
could be due to agricultural development in downstream areas. We will examine potential
agricultural mechanisms later in the paper.

These findings are the first evidence of the link between dams and malaria incidence
in the empirical literature (that accounts for the endogeneity of dam location). While our
results are in contrast with Duflo and Pande (2007b) who find no effect of dams on malaria
incidence, they fit the increasing body of anecdotal evidence suggesting dams have been
associated with malaria (e.g., Kibret et al. 2019b). Last, the coefficients for the lagged
dependent variable are statistically significant and positive in all columns, and range from
0.5 to 0.6, suggesting some persistence of malaria.

Next, we examine how our findings change if we change the number of lags in the
G2SIV estimation. Table 3 confirms our baseline findings on the impact of dam construction
on malaria in the district in which a dam is located. According to columns (1)–(6), a
one-dam increase in a district would increase malaria incidence by approximately 0.9 to
1.5 percent. The impact of dam construction on malaria in downstream areas seems to be
more sensitive to the number of lags used in the IV estimation. Columns 1 to 4 suggest
there is no impact of a dam on malaria in downstream areas. If we use further lags in
columns 5 and 6, the estimates confirm our baseline results. As explained earlier, the lag
selection is chosen to minimize the variance of the standard error, so our baseline results
are our preferred specification.

Table 3. Changing the number of lags used in the G2SIV estimation.

Malaria, log (1) (2) (3) (4) (5) (6)

Malaria, log, t − 1 0.713 *** 0.702 *** 0.606 *** 0.605 *** 0.536 *** 0.539 ***
(0.021) (0.022) (0.013) (0.013) (0.2165) (0.001)

Dams 0.883 *** 1.374 *** 0.892 ** 0.945 ** 1.284 *** 1.541 ***
(0.293) (0.456) (0.436) (0.444) (0.289) (0.215)

Upstream dams 0.195 −0.658 # 0.443 0.332 1.135 *** 1.620 ***
(0.416) (0.420) (0.406) (0.375) (0.263) (0.237)

N 4177 4177 3508 3508 2186 2186
Number of districts 357 357 356 356 352 352
Geographical controls YES YES YES YES YES YES
Common factors YES YES YES YES YES YES
District FE YES YES YES YES YES YES
Rho 0.142 0.350 0.166 0.396 0.221 0.467
J test 0.218 0.386 0.046 0.040 0.435 0.530
Number of instruments 100 100 120 120 160 160
Number of common
factors 1 3 1 3 1 3

Number of lags 4 4 5 5 7 7

Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15. Dams
and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term that
is explained by the factor component. Note these estimations are based on a sample ranging from 1975 to 1995.
All G2SIV estimates. The sample includes 355 districts, instead of 358, due to missing data. All geographical
variables (interacted with predicted dam incidence at the state level) from Table 1 are included except for the river
gradient variables.

4.3. Alternative Specifications

We test the robustness of our baseline findings to several alternative specifications.
Table A2 in Appendix A provides estimates from extended and reduced-form models. In
the extended model, we include rainfall and temperature shocks, as is sometimes done in
the literature. The use of reduced-form models allows examining whether bad controls
drive our estimates. Across columns, the “dams” estimates are positive and statistically
significant (except for the dam estimate in column 4 which is somewhat imprecise). The
range of estimates implies a one-dam increase would increase malaria prevalence by about
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0.5–1.5 percent. Furthermore, when we look at the downstream effect of dams on malaria,
we find evidence in support of our baseline results. In columns 1 and 2 (extended models),
we find that dams do have a downstream effect on malaria. Similarly, the “upstream dams”
estimates are positive, and statistically significant, and are respectively 1.145 and 1.192 in
columns 5 and 6.

Table A3 drops years in the estimation sample, as common factor approaches can be
somewhat sensitive to sample selection. Columns 1 and 2 (3 and 4) exclude the first 3 (last 3)
years of the dataset. In most cases, the estimates are in line with that of Table 2. They imply
a one-dam increase in the number of dams in a district would increase malaria prevalence
by about 0.9–1.9 percent. We find less consistent evidence for the downstream effect of
dams on malaria. For instance, the “upstream dam” estimate in column 2 is however
negative and statistically insignificant.

Table A4 uses one to five-year lagged dams and upstream dams variables in the
baseline model, instead of contemporaneous dam variables. This specification examines
whether there are large lags in the effect of dam construction on malaria, especially in
downstream areas. There are two reasons why this specification is necessary. First, there
might have been discrepancies in the administrative reporting with respect to the end of
dam construction. Perhaps, local administrators have an incentive to report an earlier end
date than the actual end date to appear compliant with expectations from federal or state
authorities that often mainly contribute to the funding of dam infrastructures. Second, it
may be important to consider that the spatial disease spread is likely going downstream
due to the flight paths of Anopheles mosquitoes, and thus the lagged specification can
inform how dam construction can have delayed effects on malaria transmission, especially
in downstream areas, as we consider the likely disease spread across the geography of
districts over time.

The estimates from Table A4 are particularly interesting because they confirm the
malaria-increasing effect of dams persists over time in the district where the dam is located,
as well as in downstream areas. In Table A5, we present estimation results relying on a
slightly modified model than the one presented in Table 1. In particular, the number of
common factors is equal to 4, following the selection criteria from Onatski (2010). Table A5
shows the main pattern of results remains the same. The dams coefficients remain positive,
statistically significant, and in line with estimates from Table 2.

4.4. Agricultural Mechanisms

What is the contribution of agricultural development to the increase in malaria inci-
dence due to dam construction? Table 4 examines several pathways between the dam and
agricultural development. In particular, Table 4 estimates the impact of dam construction
on several agricultural outcomes, i.e., agricultural production (i.e., value of the production
of main crops, i.e., rice, wheat, sugarcane, jowar, bajra, maize), yield of the main crops,
gross irrigated area, gross cultivated area, and high yielding variety (HYV) crop cultivated
area. Sample size varies across these outcomes but typically starts earlier than 1975. More
details can be found in the notes below in Table 4.

First, we find that dam construction benefits agriculture in the areas in which they are
built. For example, the “dams” estimates in columns 1 and 2 are positive and statistically
significant. This suggests that a one-dam increase in a district would increase agricultural
production by about 0.2 percent.

The increase in agricultural production seems to be driven by the dam construction
effect on irrigated and cultivated areas. A one-dam increase in a district would increase
irrigated (cultivated) areas by about 0.2–0.3 (0.1) percent. Put simply, dams expand the
role of irrigation as an agricultural practice in nearby farmlands in our context. The extent
to which irrigation systems lack efficient drainage amplifies the existence of additional
breeding grounds for Anopheles mosquitoes.
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Table 4. Agricultural mechanisms.

Dependent Variable Agricultural
Production, log Yield, log Irrigated Area, log Cultivated

Area, log HYV Area, log

(1) (2) (3) (4) (5) (6) (7) (8)

Lagged dependent
variable 0.435 *** 0.428 *** 0.105 *** 0.947 *** 0.547 *** 0.522 *** 0.381 *** 0.396 ***

(0.011) (0.010) (0.0066) (0.037) (0.001) (0.010) (0.010) (0.008)
Dams 0.232 ** 0.247 ** 0.198 # 0.207 ** 0.314 *** 0.107 *** 0.022 0.036

(0.090) (0.096) (0.136) (0.0834) (0.051) (0.030) (0.090) (0.082)

Upstream dams 0.286 *** 0.361 *** 0.258 ** −0.003 −0.045 −0.098
*** 0.566 *** 0.597 ***

(0.072) (0.068) (0.102) (0.076) (0.054) (0.030) (0.106) (0.101)
N 5561 5561 5561 5280 3912 3902 3882 3882
Number of districts 266 266 266 266 266 265 264 264
Geographical controls YES YES YES YES YES YES YES YES
Common factors YES YES YES YES YES YES YES YES
District FE YES YES YES YES YES YES YES YES
Rho 0.224 0.355 0.377 0.211 0.639 0.642 0.292 0.516
p-val J test 0.176 0.642 0.075 0.440 0.403 0.298 0.725 0.578
Number of instruments 120 120 120 40 140 140 140 140
Number of common
factors 1 3 1 1 2 1 1 3

Number of lags 5 5 5 1 6 6 6 6

Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15. Dams
and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term that is
explained by the factor component. The sample includes 268 districts, instead of 358, due to missing data. Note
these estimations are based on a sample ranging from 1966 to 1995, but the sample size varies across columns
due to missing data. All G2SIV estimates. All geographical variables (interacted with predicted dam incidence at
the state level) from Table 1 are included except for the river gradient variables. Lag selection is determined to
minimize the variance of the model’s standard error. Description of agricultural outcomes used in Table 4 (source:
Duflo and Pande 2007b). Agricultural production: the value of the production of main crops, includes rice wheat,
sugarcane, jowar (sorghum), bajra (pearl millet), maize in rupees per thousand tons (average prices for crops
1960–65 are used). Yield: yield of the main crops: rice wheat, sugarcane, jowar (sorghum), bajra (pearl millet),
maize, the yield being measured as the number of rupees per hectare (average prices for crops 1960–65 are used).
Gross irrigated area: gross irrigation area, in thousand hectares. Gross cultivated area: gross cultivation area being
measured in thousands hectares. HYV area: area under HYV crop cultivation.

These additional results portray a very different picture than the previous literature
that often finds only negative or no effect on agriculture in the vicinity of dams (e.g., Strobl
and Strobl 2011; Blanc and Strobl 2014; for a review, see Dillon and Fishman 2019). In
particular, our results directly contradict Duflo and Pande (2007b) in the India context, but
are also in line with more descriptive analyses (e.g., Singh 1990; Pradhan and Srinivasan
2022). To contextualize our results in the face of the literature, let’s note that all the above-
mentioned studies typically rely on state-year fixed effects in their modeling. We argued
earlier why this modeling choice may lead to biased estimations.

In addition, in downstream areas, dam construction increases agricultural production
(0.2–0.4%), yield (0.3%), and the cultivation of HYV crops (0.6%). The existence of positive
benefits in downstream areas is in line with the literature. However, we do not find that
irrigated areas or cultivated area11 respond to dam construction, so the benefits seem to
be driven by changes in cropping patterns. In particular, the cultivation of HYV crops
increases. These cropping patterns can arguably be conducive to the reproduction of
mosquitoes and may explain the increase in malaria incidence in downstream areas.

4.5. A Back-of-the Envelope Comparison of the Malaria Costs and Agricultural Production Gains

Finally, we present an additional set of empirical results that might shed light on
quantifying the costs of malaria and the agricultural production gains resulting from dam
construction, because malaria will lead to illnesses and deaths that eventually reduce
productivity and production. In essence, we use the same model as displayed in Table 4 col-
umn 1 but we now include malaria incidence in the model as an independent variable. We
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account for the endogeneity of malaria by using 3 lags of malaria incidence as instruments.
Results can be found in Table A6 in Appendix A. Following column 1 (preferred specifi-
cation), we find that a 1% increase in malaria reduces agricultural production by 0.007%.
Note the coefficient is significant at 10.9 percent, so marginally insignificant at 10 percent.
We also find that a one-dam increase in a district (upstream) would increase agricultural
production by about 0.3 (0.5) percent, in line with Table 4. It is noteworthy that the malaria
coefficient is statistically different from the dams and upstream dams coefficients.

If we combine these results with our baseline estimates in Table 2 (that is, a one-dam
construction in a district would result in about 0.9–1.5 percent increase in malaria), the
estimate from Table A6 column 1 would suggest that the agricultural gains dominate the
losses from malaria (expressed in agricultural production).

However, it is important to remind the reader that the estimates from Tables 2 and A6
are based on different samples, and therefore any comparison should be taken with caution.
Similarly, we do not take into account the fact that gains and losses may differ over time;
this would arguably affect any comparison of gains and losses.

5. Conclusions

The empirical literature on the links between large irrigation dams and malaria inci-
dence mainly consists of case studies and anecdotal evidence. The few econometric studies
regarding this topic remain vulnerable to several biases, among which the endogeneity
bias due to the non-random nature of dam allocation and the omitted variable bias due to
(unaccounted) time-varying heterogeneity.

Once we account for these biases, we find that large dams increase malaria incidence in
districts where they are located, as well as in downstream areas. Our estimates imply a one-
dam increase in the number of dams in the district increases annual malaria incidence by
about 0.9 to 1.4 percent, while the effect on malaria is about 1 to 1.5 percent in downstream
districts. This paper provides evidence that large irrigation dams increase malaria incidence
and confirms an increasing literature based on case studies and anecdotal reports. We also
find this malaria-increasing effect of dams lasts over time.

Furthermore, we examine the effect of dam construction on agricultural outcomes to
highlight potential mechanisms between dam and malaria incidence. We find that dam
construction benefits agriculture in the vicinity of dams, as well as in downstream areas.
These positive effects are driven by increased irrigation in the vicinity of dams, while they
are driven by changes in cropping patterns in downstream areas, where the cultivation of
HYV crops (with larger water requirements) increases.

Both results related to malaria incidence and agricultural outcomes are novel in the
empirical literature and should substantially alter future distributional cost-benefit analyses
on large dam construction. They have clear implications for policymakers and researchers,
especially within the context of the SDG agenda. From a policy standpoint, the construction
of dams in malaria-sensitive regions should be coupled with targeted interventions, such
as the wide deployment of insecticide-treated nets or the roll-out of future vaccines. From a
methodological perspective, our paper highlights the role of time-varying heterogeneity in
empirical studies analyzing the impact of irrigation infrastructures. Our results suggest the
use of common factors approaches can be beneficial to researchers.

Finally, it is important to state one limitation of our paper. Our results are based on
a period 1975–1995 in which the government of India was implementing a specific set of
actions and interventions to control and eradicate malaria. It is noteworthy that government
actions to reduce and eradicate malaria have substantially changed over time in India.
The period covered by the dataset starts at a time when India was facing a resurgence of
malaria. After the launching of the National Malaria Control Programme (NMCP) in 1953
and the National Malaria Eradication Programme (NMEP) in 1958, substantial progress
had been reached in the 1950–1960s, and deaths due to malaria were completely eliminated
(Sharma 1998).
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However, in the early 1970s, a sense of complacency following the successful efforts of
the 1950s–1960s, dichlorodiphenyltrichloroethane (DDT) shortages, and the increasingly
widespread mosquito’s resistance to DDT used for spraying and the parasite’s resistance
to anti-malaria drugs led to a resurgence of malaria cases and deaths countrywide. The
national programmes continued to face technical, financial, and administrative problems
during the period covered by the dataset, including insecticide shortages, refusal for
spraying, insecticide resistance, inadequate surveillance, and dismantling of research on
malaria (Sharma 1998).

After the mid-90s, authorities shifted their focus from the eradication and control
of malaria to the prevention, early detection, and treatment of human cases. They have
progressively relied on more targeted indoor spraying, biological control via the use of
larvivorous fish and bio-larvicides, and personal protection strategies, mainly insecticide
treated bed nets. Government actions have also been increasingly targeting vulnerable
populations and malaria-endemic areas. India’s efforts have resulted in a substantial
decline in cases and deaths over the last two decades.

Given this discussion, it is likely that the link between dam construction and malaria
is now weaker than it was over the period covered by the dataset. However, India’s
improvement in the face of the disease has required large public investments and it is not
clear whether other countries, especially in Africa, have the public finances to support
such policies.
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Appendix A

Table A1. Descriptive statistics of baseline sample.

Obs. Mean Std. Dev. Min. Max.

Variables (1) (2) (3) (4) (5)

Malaria incidence 2845 3.725 6.711 0 95.51
Malaria incidence, log 2845 0.0753 1.814 −4.605 4.559
Rainfall shock 2012 0.0461 0.241 −0.773 1.281
Temperature shock 1911 0.00473 0.311 −1.127 1.259
Number of dams in district 2845 7.682 14.24 0 90
Number of dams upstream 2845 13.53 27.99 0 246.0
Elevation 250–500 m 2845 0.846 1.636 0 7.348
Elevation 500–1000 m 2845 0.513 1.228 0 7.680
Elevation above 1000 m 2845 0.0483 0.263 0 2.806
Fraction of river gradient 1.5–3% 2845 0.193 0.301 0 1.893
Fraction of river gradient 3–6% 2845 0.118 0.240 0 2.489
Fraction of river gradient above 6% 2845 0.127 0.356 0 2.720
District area 2845 22,100 30,552 0 288,978
River length 2845 1503 3720 0 46,303
Fraction of district gradient 1.5–3% 2845 0.273 0.426 0 2.414
Fraction of district gradient 3–6% 2845 0.160 0.289 0 2.159
Fraction of district gradient above 6% 2845 0.147 0.353 0 2.746
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Table A2. Robustness analyses: alternative models.

Extended Model Reduced form Models

Malaria, log (1) (2) (3) (4) (5) (6)

Malaria, log, t − 1 0.541 *** 0.605 *** 0.542 *** 0.677 *** 0.508 *** 0.635 ***
(0.003) (0.002) (0.010) (0.718) (0.009) (0.006)

Rainfall shock 0.068 *** 0.039 *
(0.022) (0.020)

Temperature shock 0.113 *** 0.069 ***
(0.010) (0.017)

Dams, own district 0.586 ** 0.865 *** 1.543 *** 0.486 #
(0.256) (0.255) (0.434) (0.326)

Upstream dams 0.650 *** 0.821 *** 1.145 ** 1.192 ***
(0.246) (0.185) (0.447) (0.312)

N 1886 1886 2845 2845 2845 2845
Number of districts 241 241 355 355 355 355
Geographical controls YES YES YES YES YES YES
Common factors YES YES YES YES YES YES
District FE YES YES YES YES YES YES
Rho 0.192 0.430 0.202 0.388 0.221 0.404
J test 0.520 0.322 0.397 0.673 0.570 0.562
Number of instruments 154 154 126 126 126 126
Number of factors 1 3 1 3 1 3
Number of lags 6 6 6 6 6 6

Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15. Dams
and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term that
is explained by the factor component. Note these estimations are based on a sample ranging from 1975 to 1995.
All G2SIV estimates. The sample includes 355 districts, instead of 358, due to missing data. All geographical
variables (interacted with predicted dam incidence at the state level) from Table 1 are included except for the river
gradient variables.

Table A3. Robustness analyses: dropping years in the estimation sample.

1978–1995 1978–1995 1975–1992 1975–1992

Malaria, log (1) (2) (3) (4)

Malaria, log, t − 1 0.422 *** 0.441 *** 0.524 *** 0.654 ***
(0.002) (0.000) (0.009) (0.006)

Dams 1.884 *** 0.992 *** 1.461 *** 0.913 ***
(0.534) (0.227) (0.401) (0.301)

Upstream dams 0.415 * −0.056 1.041 ** 1.085 ***
(0.2176) (0.090) (0.430) (0.309)

N 1907 1907 2845 2845
Number of districts 354 354 355 355
Geographical controls YES YES YES YES
Common factors YES YES YES YES
District FE YES YES YES YES
Rho 0.290 0.639 0.213 0.369
J test, p-val. 0.259 0.622 0.356 0.582
Number of instruments 140 140 140 140
Number of common
factors 1 3 1 3

Number of lags 6 6 6 6
Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15. Dams
and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term that is
explained by the factor component. Note these estimations are based on a sample ranging from 1975 to 1995. All
G2SIV estimates. The sample includes 355 districts, instead of 358, due to missing data. All geographical variables
(interacted with predicted dam incidence at the state level) from Table 1 are included except for the river gradient
variables. Columns 1 and 2 drop the first 3 years of the sample, while columns 3 and 4 drop the last 3 years of
the sample.
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Table A4. Robustness analyses: Lagging the dams coefficients.

t − 1 t − 2 t − 3 t − 4 t − 5

Malaria, log (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Malaria, log 0.699
***

0.562
***

0.717
***

0.571
***

0.531
***

0.484
***

0.553
***

0.579
***

0.676
***

0.670
***

(0.009) (0.014) (0.015) (0.018) (0.019) (0.032) (0.020) (0.044) (0.074) (0.089)

Dams, lagged 0.589 # 1.779
*** 0.746 # 1.193 # 2.264

***
0.030

***
1.693

*** 1.342 * 0.121 0.894 *

(0.401) (0.458) (0.499) (0.7581) (0.419) (0.009) (0.398) (0.725) (0.419) (0.459)

Upstream dams, lagged 0.715 ** 0.836 * 0.978 ** 0.823 * 1.294
***

0.021
*** 0.795 # 1.612 ** 0.980 ** 1.413 **

(0.285) (0.446) (0.380) (0.499) (0.446) (0.006) (0.494) (0.663) (0.406) (0.628)
N 2845 2845 2845 2845 2483 3144 2141 2798 3115 3778
Number of districts 355 355 355 355 353 356 352 354 355 356
Geographical controls YES YES YES YES YES YES YES YES YES YES
Common factors YES YES YES YES YES YES YES YES YES YES
District FE YES YES YES YES YES YES YES YES YES YES
Rho 0.387 0.201 0.383 0.200 0.447 0.231 0.514 0.169 0.373 0.148
p-val J test 0.632 0.560 0.559 0.266 0.418 0.254 0.663 0.319 0.479 0.405
Number of instruments 120 120 100 100 100 80 100 80 60 40
Number of common factors 3 1 3 1 3 1 3 1 3 1
Number of lags 5 5 4 4 4 3 4 3 2 1

Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15. Dams
and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term that is
explained by the factor component. Note these estimations are based on a sample ranging from 1975 to 1995. All
G2SIV estimates. The sample includes 355 districts, instead of 358, due to missing data. All geographical variables
(interacted with predicted dam incidence at the state level) from Table 1 are included except for the river gradient
variables. Dams coefficients are replaced by their lagged values. For example, columns 1 and 2 lag the dams
coefficients by one period, while column 9 and 10 lag the dams coefficients by 5 periods.

Table A5. Robustness analyses: baseline results based on different estimation than in Table 1 (change
in common factors to 4).

Malaria, log (1) (2)

Malaria, log, t − 1 0.646 *** 0.514 ***
(0.006) (0.009)

Dams 0.853 *** 1.350 ***
(0.307) (0.401)

Upstream dams 1.106 *** 0.946 **
(0.309) (0.420)

N 2845 2845
Number of districts 355 355
Geographical controls YES YES
Common factors YES YES
District FE YES YES
Rho 0.398 0.385
J test 0.555 0.218
Number of instruments 140 140
Number of common factors 3 1
Number of lags 6 6

Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15. Dams
and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term that
is explained by the factor component. Note these estimations are based on a sample ranging from 1975 to 1995.
All G2SIV estimates. The sample includes 355 districts, instead of 358, due to missing data. All geographical
variables (interacted with predicted dam incidence at the state level) from Table 1 are included except for the river
gradient variables.
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Table A6. Evaluating the costs of malaria on agricultural production.

Dependent Variable Agricultural Production, log

(1) (2) (3) (4) (5)

Lagged dependent variable, 0.241 *** 0.107 *** 0.171 *** 0.212 *** 0.272 ***
(0.069) (0.037) (0.024) (0.018) (0.013)

Dams 0.302 * 0.349 ** 0.276 * 0.220 * 0.253 **
(0.177) (0.170) (0.141) (0.120) (0.105)

Upstream dams 0.481 *** 0.705 *** 0.647 *** 0.629 *** 0.532 ***
(0.153) (0.145) (0.001) (0.112) (0.090)

Malaria, log −0.007 # −0.002 −0.001 −0.006 * −0.004 #
(0.004) (0.004) (0.004) (0.003) (0.003)

N 3025 2943 2897 2894 2891
Number of districts 261 261 261 261 261
Geographical controls YES YES YES YES YES
Common factors YES YES YES YES YES
District FE YES YES YES YES YES
Rho 0.398 0.401 0.395 0.390 0.391
p-value, J test 0.418 0.093 0.122 0.113 0.091
Number of instruments 64 84 104 124 144
Number of common factors 1 1 1 1 1
Number of lags 2 3 4 5 6

Notes: Robust standard errors in parentheses. *** p-val. < 0.01, ** p-val. < 0.05, * p-val. < 0.1, # p-val. < 0.15.
Dams and upstream dams coefficients are multiplied by 100. Rho is the fraction of the variance of the error term
that is explained by the factor component. The sample includes 261 districts, instead of 358, due to missing data.
Note these estimations are based on a sample ranging from 1975 to 1995. All G2SIV estimates. All geographical
variables (interacted with predicted dam incidence at the state level) from Table 1 are included except for the river
gradient variables. Lag selection is determined to minimize the variance of the model’s standard error.

Notes
1 While the largest share of the malaria burden falls on Africa, the majority of people living in close proximity of the reservoirs of

large dams in malaria-endemic areas are in India.
2 Koka dam, Kesem dam, Koga dam.
3 However, they also report that the population of adult Anopheles mosquitoes increased in villages closer to a dam than those

further away.
4 The non-random location of dams may confound estimates. For example, local governments may target areas whose agriculture

is either already productive.
5 The case for reliable research on large dams is even more compelling because of their controversial nature (e.g., Duflo and Pande

2007b; Strobl and Strobl 2011; Dillon and Fishman 2019).
6 Crops that have been bred or fertilized and can be produced by genetic modifications to increase the rate of production. They are

more resistant to insects and disease and have played a key role in India’s Green Revolution.
7 It could also be lower as wealthier districts may be better prepared to fight the disease with larger human, financial, and medical,

infrastructures and resources.
8 This strategy (or a variant of) has been used implicitly or explicitly in Strobl and Strobl (2011), Sarsons (2015), Blanc and Strobl

(2014) or Mettetal (2019).
9 To validate the use of factor models, we use the cross section dependence test from Pesaran (2015). The hypothesis of null cross

section dependence is rejected at the 1 per cent level in our application. This suggests that the presence of common factors
influencing malaria across districts and explicitly validates the factor model approach.

10 We use the Stata command xtivdfreg designed by Kripfganz and Sarafidis (2021) to implement the approach, and the command
xtnumfac from Ditzen and Reese (2022).

11 The negative effect on cultivated area is economically small.
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