Embodied Simulations of Forces of Nature and the Role of Energy in Physical Systems
Abstract
:1. Introduction and Overview
1.1. Claims and Aims
1.2. Forces of Nature
1.3. Imagination and Figurative Thought
1.4. Energy in Physical Systems and Processes
1.5. Embodied Simulations
1.6. Forces-of-Nature Theater and Energy
1.7. Summary and Outlook
2. Forces of Nature in Macroscopic Physics and Cognitive Science
2.1. Characteristics of Forces of Nature and Analogical Structures
2.1.1. Primary Forces of Nature
2.1.2. The Scientific Category of Basic Forces of Nature
2.1.3. Analog Characteristics of Forces of Nature
2.1.4. Dynamical and Steady-State Models of Systems and Processes
2.2. Experiencing and Imagining Forces of Nature
2.2.1. The Origin of the Notion of Force of Nature in Experience
2.2.2. Embodied Imaginative (Figurative) Structures
2.2.3. Imaginatively Structuring Forces of Nature
2.2.4. An Animated Story of Interacting Forces of Nature
2.3. Energy in Science and Teaching
3. Embodied Simulations—The Dynamics of a Single Force of Nature
3.1. Scientific Background: Tensions, Storage, and Flow
3.1.1. Dynamical Model
3.1.2. Filling and Discharging the Aorta
3.2. Designing Embodied Simulations
3.2.1. Simulating Fluid Tension
3.2.2. Simulating the Flow of Blood Resulting from Hydraulic Tension
3.2.3. Simulating the Process of Keeping Track of Amounts of Blood
3.3. A Dynamical System as a Board Game
3.3.1. Bookkeeping as a Board Game
3.3.2. Combining Bookkeeping with Modeling Flows
3.3.3. Tension in a Board Game
3.3.4. Advantages and Disadvantages
4. Forces-of-Nature Theater—The Interaction of Several Forces
4.1. The Physics of Forces Interacting
Processes Interacting: Process Diagrams
4.2. Designing Forces-of-Nature Theater Performances
4.2.1. Couplers and Paths
4.2.2. Agents and Patients, and Their Interactions
4.2.3. Tensions
4.2.4. Energy
4.2.5. A Chain of Couplers and Processes
4.2.6. Summary
4.2.7. Experiencing (“Feeling”) Embodied Logic
4.3. Transmission or Construction of Knowledge?
- Experiencing the activity (agency) of Forces of Nature directly in nature and in machines.
- Discussing such experience directly with their teacher.
- Hearing and discussing (and maybe even creating) stories of FoN, allowing for narrative experience of FoN as agents.
- Studying a physical element and its activity (or several interacting elements) such as a leaf, an incandescent bulb, or a motor-propeller driven by a solar cell; discussing, with the teacher, the system, its physical parts, its processes and the FoN that make their appearance.
- Designing a FoN-T performance under the guidance of the teacher.
- Discussing and representing, in various communicative acts, the nature of Forces of Nature as experienced in the play.
5. Concrete Didactic Experience, General Considerations, and a Research Agenda
5.1. On the Appropriateness of ES and FoN-T for Primary Education
5.2. Educating Student Teachers of Primary School Levels
5.3. Some General Didactic Considerations for Primary Education
5.4. A Research Agenda
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallagher, S.; Hutto, D. Understanding others through Primary Interaction and Narrative Practice. In The Shared Mind: Perspectives on Intersubjectivity; Zlatev, J., Racine, T., Sinha, C., Itkonen, E., Eds.; John Benjamins: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Fuchs, H.U. From image schemas to dynamical models in fluids, electricity, heat, and motion. Examples, practical experience, and philosophy. In Proceedings of the 2006 GIREP Conference, Istanbul, Turkey, 1–6 July 2012; University of Amsterdam: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Fuchs, H.U. Force Dynamic Gestalt, metafora e pensiero scientifico. In Innovazione Nella Didattica delle Scienze Nella Scuola Primaria: Al Crocevia fra Discipline Scientifiche e Umanistiche; English Version: Force Dynamic Gestalt, Metaphor, and Scientific Thought; Corni, F., Mariani, C., Laurenti, E., Eds.; Artestampa: Modena, Italy, 2011; Available online: www.hansfuchs.org/LITERATURE/Literature.html (accessed on 8 November 2021).
- Corni, F. (Ed.) Le Scienze Nella Prima Educazione. Un Approccio Narrativo a un Curricolo Interdisciplinare; Erickson: Trento, Italy, 2013. [Google Scholar]
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics. In Encyclopedia of Physics; v. III/3; Flügge, S., Ed.; Springer: Berlin, Germany, 1965. [Google Scholar]
- Malvern, L.E. Introduction to the Mechanics of a Continuous Medium; Prentice-Hall: Hoboken, NJ, USA, 1969. [Google Scholar]
- Müller, I. Thermodynamics; Pitman: Boston, MA, USA, 1985. [Google Scholar]
- Fuchs, H.U. The Dynamics of Heat, 2nd ed.; Graduate Texts in Physics; First Edition; Springer: New York, NY, USA, 1996. [Google Scholar]
- Jou, D.; Casas-Vazquez, J.; Lebon, G. Extended Irreversible Thermodynamics, 4th ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Fuchs, H.U. The Narrative Structure of Continuum Thermodynamics. In Proceedings of the ESERA 2013 Conference, Nicosia, Cyprus, 2–7 September 2013; Constantinou, C.P., Papadouris, N., Hadjigeorgiou, A., Eds.; ESERA: Kaunas, Lithuania, 2013. [Google Scholar]
- Varela, F.J.; Thompson, E.; Rosch, E. The Embodied Mind; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Corni, F.; Fuchs, H.U. Primary Physical Science for Student Teachers at Kindergarten and Primary School Levels: Part II—Implementation and Evaluation of a Course. Interchange 2021, 52, 203–236. [Google Scholar] [CrossRef]
- Corni, F.; Fuchs, H.U.; Dumont, E. Conceptual metaphor in physics education: Roots of analogy, visual metaphors, and a primary physics course for student teachers. J. Phys. Conf. Ser. 2019, 1286, 012059. [Google Scholar] [CrossRef]
- Fuchs, H.U. Il significato in natura. In Le Scienze Nella Prima Educazione. Un Approccio Narrativo a un Curricolo Interdisciplinare; English Version: Meaning in Nature—From Schematic to Narrative Structures of Science; Corni, F., Ed.; Erickson: Trento, Italy, 2013. [Google Scholar]
- Fuchs, H.U. Costruire e utilizzare storie sulle forze della natura per la comprensione primaria della scienza. In Le Scienze Nella Prima Educazione. Un Approccio Narrativo a un Curricolo Interdisciplinare; English Version: Designing and Using Stories of Forces of Nature for Primary Under-standing in Science; Corni, F., Ed.; Erickson: Trento, Italy, 2013. [Google Scholar]
- Corni, F.; Fuchs, H.U. Primary Physical Science for Student Teachers at Kindergarten and Primary School Levels: Part I—Foundations of an Imaginative Approach to Physical Science. Interchange 2020, 51, 315–343. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.U. From Stories to Scientific Models and Back: Narrative framing in modern macroscopic physics. Int. J. Sci. Educ. 2015, 37, 934–957. [Google Scholar] [CrossRef]
- Fuchs, H.U.; Dumont, E.; Corni, F. Narrative minds in the construction and use of theories of forces of nature—A model of experience at different scales. In Narrative, Cognition and Science; ELINAS Series; Sinding, M., Heydenreich, A., Mecke, K., Eds.; De Gruyter: Berlin, Germany.
- Wise, M.N. Science as (historical) narrative. Erkenntnis 2011, 75, 349–376. [Google Scholar] [CrossRef]
- Morgan, M.S. Models, stories, and the economic world. J. Econ. Methodol. 2001, 8, 361–384. [Google Scholar] [CrossRef]
- Morgan, M.S. The World in the Model. How Economists Work and Think; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; Wiley & Sons: New York, NY, USA, 1985. [Google Scholar]
- Fuchs, H.U.; Corni, F.; D’Anna, M. Entropy and the experience of heat. Nat. Entropy Its Direct Metrol. 2022, Forthcoming. [Google Scholar]
- Fuchs, H.U. A surrealistic tale of electricity. Am. J. Phys. 1986, 54, 907–909. [Google Scholar] [CrossRef]
- Wu, G.; Wu, Y. A new perspective of how to understand entropy in thermodynamics. Phys. Educ. 2020, 55, 015005. [Google Scholar] [CrossRef]
- Fox, R. The Caloric Theory of Gases. From Lavoisier to Regnault; Clarendon Press: Oxford, UK, 1971. [Google Scholar]
- Calendar, H.L. The Caloric Theory of Heat and Carnot’s Principle. Proc. Phys. Soc. London 1911, 23, 153–189. [Google Scholar] [CrossRef] [Green Version]
- Falk, G. Entropy, a resurrection of caloric—A look at the history of thermodynamics. Eur. J. Phys. 1985, 6, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.U. Entropy in the teaching of introductory thermodynamics. Am. J. Phys. 1987, 55, 215–219. [Google Scholar] [CrossRef]
- Mareš, J.J.; Hubík, P.; Šesták, J.; Špička, V.; Krištofik, J.; Stávek, J. Phenomenological approach to the caloric theory of heat. Thermochim. Acta 2008, 474, 16–24. [Google Scholar] [CrossRef]
- Gentner, D. Structure-mapping: A theoretical framework for analogy. Cogn. Sci. 1983, 7, 155–170. [Google Scholar] [CrossRef]
- Herrmann, F.; Wu, G.; Pohlig, M.; Fuchs, H.U.; D’Anna, M.; Rosenberg, J. Analogies: A Key to Understanding Physics. In Proceedings of the 2010 GIREP Conference on Physics Education, Reims, France, 22–27 August 2010. [Google Scholar]
- Carnot, S. Réflexions sur la Puissance Motrice du Feu et Sur les Machines Propres à Développer cette Puissance. In Annales scientifiques de l’École Normale Supérieure; Bachelier: Paris, France, 1824; Volume 1, pp. 393–457. [Google Scholar]
- Corni, F.; Fuchs, H.U.; Landini, A.; Giliberti, E. Visual and gestural metaphors for introducing energy to student teachers of primary school and kindergarten levels. J. Phys. Conf. Ser. 2019, 1287, 012043. [Google Scholar] [CrossRef]
- Deichmann, M. Im übertragenen Sinne. Metaphern und Bildvergleiche in der Wissernschaft. Bachelor’s Thesis, Zürcher Hochschule der Künste, Zurich, Switzerland, 2014. Available online: http://vimeo.com/98311515 (accessed on 8 November 2021).
- Johnson, M. The Body in the Mind; University of Chicago Press: Chicago, IL, USA, 1987. [Google Scholar]
- Hampe, B. From Perception to Meaning: Image Schemas in Cognitive Linguistics; Mouton de Gruyter: Berlin, Germany, 2005. [Google Scholar]
- Lakoff, G.; Johnson, M. Metaphors We Live By; University of Chicago Press: Chicago, IL, USA, 1980. [Google Scholar]
- Lakoff, G.; Johnson, M. Philosophy in the Flesh; Basic Books: New York, NY, USA, 1999. [Google Scholar]
- Grady, J. Foundations of Meaning: Primary Metaphors and Primary Scenes. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1987. [Google Scholar]
- Koevecses, Z. Metaphor: A Practical Introduction, 2nd ed.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Contini, A. Metaphors, stories, and knowledge of the world. In Proceedings of the International Exploratory Workshop, Weissbad, Switzerland, 7–9 July 2015; Swiss National Science Foundation: Bern, Switzerland, 2015. [Google Scholar]
- Amin, T.G.; Jeppsson, F.; Haglund, J. Conceptual metaphor and embodied cognition in science learning. Introduction to the special issue. Int. J. Sci. Educ. 2015, 37, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.U.; Contini, A.; Dumont, E.; Landini, A.; Corni, F. How metaphor and narrative interact in stories of forces of nature. In Narrative and Metaphor in Education; Hanne, M., Kaal, A., Eds.; Routledge: London, UK, 2018. [Google Scholar]
- Caracciolo, M. The Experientiality of Narrative; An Enactivist Approach de Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Fuchs, H.U.; Corni, F.; Dumont, E. Narrativity in complex systems. In Science|Environment|Health—Towards a Science Pedagogy of Complex Living Systems. Contributions from Science Education Research; Zeyer, A., Kyburz-Graber, R., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Fuchs, H.U.; Dumont, E.; Corni, F. The power of forces of nature—How narrative introduces us to the notion of energy. In Proceedings of the Innovazione nella Didattica Delle Scienze nella Scuola Primaria: Al Crocevia fra Discipline Scientifiche e Umanistiche, Reggio Emilia, Italy, 1–2 February 2019. To be published. [Google Scholar]
- Tyreus, B. Dominant Variables for Partial Control. 1. A Thermodynamic Method for their Identification. Ind. Eng. Chem. Res. 1999, 38, 1432–1443. [Google Scholar] [CrossRef]
- Richards, D.E. Basic Engineering Science—A Systems, Accounting, and Modeling Approach; Rose-Hulman Institute of Technology: Terre Haute, IN, USA, 2001; Available online: https://scholar.rose-hulman.edu/cgi/viewcontent.cgi?article=1722&context=mechanical_engineering_fac (accessed on 8 November 2021).
- Heron, P.R.L. Teaching goals for energy: What should students learn about what energy is? In Proceedings of the Roundtable Discussion at the GIREP-ICPE-EPEC Conference, Dublin, Ireland, 3–7 July 2017. [Google Scholar]
- Lindsey, B.A.; Heron, P.R.L.; Shaffer, P.S. Student understanding of energy: Difficulties related to systems. Am. J. Phys. 2012, 80, 154–163. [Google Scholar] [CrossRef]
- Scherr, R.E.; Close, H.G.; McKagan, S.B.; Vokos, S. Representing energy. I. Representing a substance ontology for energy. Phys. Rev. Spec. Top. Phys. Educ. Res. 2012, 8, 020114. [Google Scholar] [CrossRef] [Green Version]
- Scherr, R.E.; Close, H.G.; Close, E.W.; Vokos, S. Representing energy. II. Energy tracking representations. Phys. Rev. Spec. Top. Phys. Educ. Res. 2012, 8, 020115. [Google Scholar] [CrossRef] [Green Version]
- Kubsch, M.; Opitz, S.; Nordine, J.; Neumann, K.; Fortus, D.; Krajcik, J. Exploring a pathway towards energy conservation through emphasizing the connections between energy, systems, and fields. Discip. Interdiscip. Sci. Educ. Res. 2021, 3, 2. [Google Scholar] [CrossRef]
- Close, H.G.; Scherr, R.E. Enacting Conceptual Metaphor through Blending: Learning activities embodying the substance metaphor for energy. Int. J. Sci. Educ. 2015, 37, 839–866. [Google Scholar] [CrossRef]
- Keenan, J.H. Availability and Irreversibility in Thermodynamics. Br. J. Appl. Phys. 1951, 2, 183–192. [Google Scholar] [CrossRef]
- Bejan, A. Advanced Engineering Thermodynamics; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Corning, P.A.; Kline, S.J. Thermodynamics, Information and Life Revisited, Part I: ‘To Be or Entropy’. Syst. Res. Behav. Sci. 1998, 15, 273–295. [Google Scholar] [CrossRef]
- Amin, T.G. Conceptual Metaphor Meets Conceptual Change. Hum. Dev. 2009, 52, 165–197. [Google Scholar] [CrossRef]
- Lancor, R. Using Metaphor Theory to Examine Conceptions of Energy in Biology, Chemistry, and Physics. Sci. Educ. 2014, 23, 1245–1267. [Google Scholar] [CrossRef]
- Harrer, B.W. On the origin of energy: Metaphors and manifestations as resources for conceptualizing and measuring the invisible, imponderable. Am. J. Phys. 2017, 85, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Heron, P.R.L.; Michelini, M.; Stefanel, A. Teaching and Learning the Concept of Energy in Primary School. In Physics Curriculum Design, Development and Validation, GIREP 2008 Proceedings; Constantinou, C.P., Papadouris, N., Eds.; The Learning Science Group: Nicosia, Cyprus, 2009; Available online: http://lsg.ucy.ac.cy/girep2008/intro.htm (accessed on 8 November 2021).
- Heron, P.R.L.; Heylon, B.S.; Michelini, M.; Lehavi, Y.; Stefanel, A. Report of the workshop in GIREP Conference in France—Reims 2010 Teaching about Energy. Which Concepts should be Taught at Which Educational Level? Proceedings of The World Conference on Physics Education 2012, Istanbul, Turkey, 1–6 July 2012; Tasar, F., Ed.; Pegem Akademiel: Ankara, Turkey, 2014; pp. 519–530, ISBN 978-605-364-658-7. Available online: http://iupap-icpe.org/publications/proceedings/WCPE2012_proceedings.pdf (accessed on 8 November 2021).
- Falk, G.; Herrmann, F. Neue Physik. Das Energiebuch; Herrmann Schroedel Verlag KG: Hannover, Germany, 1981. [Google Scholar]
- Fuchs, H.U. Modeling of Uniform Dynamical Systems; Orell Füssli: Zurich, Switzerland, 2002; Available online: http://www.hansfuchs.org/MUDS/MUDS_TOP.html (accessed on 8 November 2021).
- Mariani, C.; Laurenti, E.; Corni, F. Hands-on, minds-on activities to construct the concept of energy in primary school: Experiments, games and group discussions. Lat. Am. J. Phys. Educ. 2012, 6, 105–111. [Google Scholar]
- Mariani, C.; Corni, F.; Fuchs, H.U. A didactic approach to and curricular perspectives of the construction of the energy concept in primary school. In Proceedings of the GIREP-EPEC Conference 2011, Jyvāskylā, Finland, 1–5 August 2012; Lindell, A., Kühkünen, A.-L., Viiri, J., Eds.; pp. 248–253. [Google Scholar] [CrossRef]
- Casey, E. Imagining: A Phenomenological Study; Indiana University Press: Bloomington and Indianapolis, IN, USA, 2002. [Google Scholar]
- Falk, G.; Herrmann, F.; Schmid, G.B. Energy forms or energy carriers? Am. J. Phys. 1983, 51, 1074–1077. [Google Scholar] [CrossRef]
- Hutto, D. The narrative practice hypothesis: Origins and applications of folk psychology. R. Inst. Philos. Suppl. 2007, 82, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Hutto, D. Folk Psychological Narratives; The MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- GDSU. Perspektivrahmen Sachunterricht; completely revised and extended edition; Verlag Julius Klinkhardt: Bad Heilbrunn, Germany, 2013. [Google Scholar]
- Dumont, E.; Fuchs, H.U.; Corni, F.; Contini, A.; Altiero, T.; Romagnoli, M.; Karwasz, G.P. FCHgo: Fuel Cells HydroGen educatiOnal model for schools, an imaginative approach to hydrogen and fuel cell technology for young students and their teachers. J. Phys. Conf. Ser. 2021, 1229, 012019. [Google Scholar] [CrossRef]
- Karwasz, G.; Wyborska, K.; Altiero, T.; Cesari, M.; Corni, F.; Dumont, E.; Fuchs, H.U.; Hagen, A. Fuel Cells Hydrogenm Educative Model Goes to Schools—First Results are Encouraging. In Proceedings of the 8th International Conference on Researh in Didactics of the Sciences DIDSCI 2020, Krakow, Poland, 17–19 June 2020. [Google Scholar]
- Landini, A.; Giliberti, E.; Corni, F. The Role of Playing in the Representation of the Concept of Energy: A Lab Experience for Future Primary School Teachers. In Concepts, Strategies and Models to Enhance Physics Teaching and Learning; McLoughlin, E., van Kampen, P., Eds.; Springer: Berlin, Germany, 2019; pp. 125–137. [Google Scholar] [CrossRef]
- Corni, F.; Dozza, L. Max’s Worlds: An Innovative Project for K-6 Science Education. In Teaching-Learning Contemporary Physics, From Research to Practice; Jarosievitz, B., Sükösd, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 237–249. [Google Scholar]
- Pahl, A. Teaching Physics in Kindergarten and Primary School: What do Trainee Teachers Think of This? J. Phys. Conf. Ser. 2021, in press. [Google Scholar]
- Pahl, A.; Tschiesner, R.; Adamina, M. The ‘Nature-Human-Society’—Questionnaire: Psychometric Properties and Validation. ICERI2019 Proc. 2019, 12, 3196–3205. [Google Scholar] [CrossRef]
- Tschiesner, R.; Pahl, A. Trainee Teachers’ Preferences in the Subject ‘Nature-Human-Society’: The Role of Knowledge. ICERI2019 Proc. 2019, 12, 3167–3176. [Google Scholar] [CrossRef]
- Corni, F.; Giliberti, E.; Fuchs, H.U. Student Teachers Writing Science Stories: A Case Study. In Proceedings of the ESERA 2013—Science Education Research for Evidence-Based Teaching and Coherence in Learning, Nicosia, Cyprus, 2–7 September 2013; Constantinou, C.P., Papadouris, N., Hadjigeorgiou, A., Eds.; 2014; pp. 2494–2505. [Google Scholar]
- Spreckelsen, K. Phänomenkreise als Verstehenshilfen. In Kinder auf dem Weg zum Verstehen der Welt; Köhnlein, W., Marquardt-Mau, B., Schreier, H., Eds.; Klinkhardt: Bad Heilbrunn, Germany, 1997; pp. 111–127. [Google Scholar]
- Pahl, A. Diagnostik und Förderung Naturwissenschaftlicher Kompetenzen Durch Differenzierte Experimentiereinheiten; Cuvellier: Göttingen, Germany, 2015. [Google Scholar]
- Herman, D. Basic Elements of Narrative; Wiley-Blackwell: Chichester, UK, 2009. [Google Scholar]
- Kleickmann, T. Kognitiv Aktivieren und Inhaltlich Strukturieren im Naturwissenschaftlichen Sachunterricht; IPN Leipniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik an der Universität Kiel: Kiel, Germany, 2012. [Google Scholar]
- Pahl, A. Research Methods for Investigating Young Children’s Learning with Science Experiments—An overview. ICERI2019 Proc. 2019, 12, 3177–3186. [Google Scholar] [CrossRef]
Field (Force of Nature) | Extensive Quantity | Intensive Quantity |
---|---|---|
Fluids | Volume | Pressure |
Electricity (and magnetism) | Charge | Electric potential |
Heat | Entropy | Temperature |
Chemical processes | Amount of substance | Chemical potential |
Gravitation | Gravitational mass | Gravitational potential |
Linear (translational) motion | Momentum | Velocity |
Rotational motion | Spin (angular momentum) | Angular velocity |
Scientific Elements | Animation | Forces-of-Nature Theater |
---|---|---|
Physical elements (devices and connectors) | Drawings of physical objects | Spaces and paths on floor |
Extensive aspect of force of nature (amount of fluidlike quantity) … …and its flow | Drawings of “spirits” Speed at which spirits move through scenes | Bodies of actors Speed at which columns of actors move along paths (or rate at which they are “born” or “killed”) |
Intensive aspect of force of nature … …and its change | Demeanor of spirits (expression of tension) Tensing and relaxing | Demeanor of actors (expression of tension) Tensing and relaxing |
Energy and power | Dust and rate of exchange of dust | Confetti or sand and rate of exchange of confetti or sand |
Interaction | Meeting of spirits and exchange of dust | Meeting of actors and exchange of confetti or sand |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, H.U.; Corni, F.; Pahl, A. Embodied Simulations of Forces of Nature and the Role of Energy in Physical Systems. Educ. Sci. 2021, 11, 759. https://doi.org/10.3390/educsci11120759
Fuchs HU, Corni F, Pahl A. Embodied Simulations of Forces of Nature and the Role of Energy in Physical Systems. Education Sciences. 2021; 11(12):759. https://doi.org/10.3390/educsci11120759
Chicago/Turabian StyleFuchs, Hans U., Federico Corni, and Angelika Pahl. 2021. "Embodied Simulations of Forces of Nature and the Role of Energy in Physical Systems" Education Sciences 11, no. 12: 759. https://doi.org/10.3390/educsci11120759
APA StyleFuchs, H. U., Corni, F., & Pahl, A. (2021). Embodied Simulations of Forces of Nature and the Role of Energy in Physical Systems. Education Sciences, 11(12), 759. https://doi.org/10.3390/educsci11120759