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Abstract: Working memory impairments are common in neurodevelopmental conditions, potentially
impacting how neurodivergent students experience cognitive load during learning. We conducted
a survey with 231 participants focused on students with attention deficit/hyperactivity disorder
(ADHD), autism spectrum disorder (ASD), and dyslexia. Parametric tests and a regression analysis
were used to investigate the relationship between neurodiversity and perceived cognitive load in
online learning. Neurodivergent students reported significantly higher extraneous cognitive load
(ECL) in online learning compared to their neurotypical peers. However, no significant differences in
perceived intrinsic and germane cognitive load were found between the two groups. Neurodiversity,
and specifically ADHD, positively predicted perceived ECL in online learning. This study provides
novel insights into the association between neurodiversity and cognitive load in online learning,
suggesting a need for targeted support to help neurodivergent students reduce ECL in online learning
environments and highlighting the importance of promoting inclusive educational practices that
meet the needs of all students.
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1. Introduction

Coined initially in relation to autism in the late 1990s, the term “neurodiversity” has
come to encompass a number of neurodevelopmental conditions associated with varia-
tions in neurocognitive function, such as attention deficit hyperactivity disorder (ADHD),
autistic spectrum disorder (ASD), dyslexia, dyscalculia, dyspraxia, and Tourette’s Syn-
drome [1–3]. The term ‘neurodivergent’ describes individuals who exhibit such atypical
variations, while ‘neurotypical’ describes individuals who operate within the standard
parameters of neurocognitive functioning, as defined by prevalent societal norms and
expectations [4,5]. It is now well-established that neurodiversity impacts academic per-
formance [6–8]. Even though a growing number of neurodivergent students are enrolling
in higher education [9,10], they tend to show a lower degree of completion rates com-
pared to their neurotypical peers [11,12]. Given the often-unspoken institutional expecta-
tions, prior negative educational experiences, and the specific challenges related to their
conditions—such as difficulties with conventional assessment methods, managing indepen-
dent study, social integration, and the psychological distress associated with masking their
condition—neurodivergent students may face unique obstacles that significantly impact
their learning outcomes compared to their neurotypical peers [13]. However, the exact
mechanisms that lead to different learning outcomes for neurodivergent students remain
speculative and no research to date has examined this in the context of online learning.

Online learning has become an integral part of higher education, reshaping instruc-
tional strategies and the student experience as a result. Besides the need to adapt to the
constraints of the COVID-19 pandemic and external competition in a global market for
higher education, this growth has been fueled by the need to support student success,
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financial health, reputation, and relevance [14]. Studies have reported how the switch to
online learning has proven challenging to some students for several reasons, including
insufficient home-based learning support, diminished social interaction, and reduced moti-
vation to learn [15]. However, online learning also offers benefits such as time and monetary
savings resulting from not having to commute onto campus, as well as increased academic
independence, which can improve one’s employability [16]. Numerous factors, including
online learner characteristics, online instructor characteristics, online platform, and online
instructional design, can influence the online learning experience of students [17–19]. The
neurodiversity paradigm advocates for adapting environments to support those with atyp-
ical neurocognitive functioning associated with neurodevelopmental conditions [20,21].
However, considerations of neurodiversity are conspicuously lacking in research investi-
gating online learning environments in higher education [22,23].

Cognitive load, also known as working memory load, is one factor pertinent to online
learning that has attracted considerable research interest in neurotypical students [24,25].
Cognitive load is the amount of working memory resources used during a task [26,27].
Cognitive Load Theory posits that the cognitive capacity of working memory available to a
learner is limited and that the total cognitive load experienced by a learner consists of three
demands on working memory: intrinsic cognitive load (ICL), which refers to cognitive
processing needed to process the learning material and which depends on the inherent
difficulty of the material for the learner; extraneous cognitive load (ECL), which refers to the
cognitive processing caused by the way the material is presented and which is not relevant
to the learning goals; and germane cognitive load (GCL), which refers to the cognitive
processing associated with the learner’s effort to understand the material and construct
schemas in long-term memory [28–30]. The Cognitive Theory of Multimedia Learning
builds upon Cognitive Load Theory and suggests that learners process information through
two channels (auditory and visual) and that learning is enhanced when both channels are
effectively utilized while avoiding cognitive overload [31].

A growing body of literature recognizes the importance of cognitive load in online
learning, suggesting that the key to effective learning is not the learner’s behavior during
learning, but instead their cognitive processing [32]. Specifically, cognitive load directly
influences core learning outcomes such as knowledge retention, comprehension, and task
performance [24,33–35]. High extraneous cognitive load due to poor instructional design
might impede learning by overloading working memory resources [36–38]. Intrinsic load
can directly improve or impair learning gains depending on alignment with students’ prior
knowledge and experience; previous research suggests proper management of intrinsic
load may improve knowledge acquisition in online learning, while excessive levels impede
learning [39,40]. Thus, managing cognitive load through evidence-based instructional
design principles is critical for realizing the full potential of online learning [32,41].

Investigating the variations in the way students experience cognitive load in on-
line learning is particularly relevant to support students with learning differences as-
sociated with neurodiversity, as working memory impairments are common in several
neurodevelopmental conditions [42–44]. ADHD is most clearly associated with deficits in
working memory [43,45] and also frequently affected in ASD [46]. Dyslexia also has well-
documented deficits in phonological measures of working memory [42,47,48]. These im-
pairments exist independently of the learning setting and have been extensively studied in
the context of neurodiversity, with multiple meta-analyses supporting the robust evidence
base for the relationship between neurodiversity and altered working memory [46,49–51].

However, cognitive load, which refers to the demands placed on working memory dur-
ing a task, can vary depending on the learning environment and instructional design [26,27].
Despite the presence of working memory impairments in these neurodevelopmental con-
ditions and the rise of online learning, little attention has been paid to the relationship
between neurodiversity and cognitive load in online learning. A systematic review of cog-
nitive load in online learning found no investigation or report of neurodiversity in 92.2%
of the included studies [52]. The few studies that did include neurodivergent participants
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found that attention, linguistic complexity, and content redundancy may impact cognitive
load in online learning for this population [52]. Furthermore, a focus group study found
that neurodivergent students face specific challenges in managing their cognitive load
during online learning, particularly in domains such as listening, writing, and decision
making [53]. However, no large-scale quantitative study has to our knowledge investigated
the relationship between neurodiversity and cognitive load in online learning.

The aim of this study was to investigate how neurodiversity relates to perceived cogni-
tive load in online learning, with a focus on three of the most common neurodevelopmental
conditions: ADHD, ASD, and dyslexia [54,55]. We hypothesized that there would be a
significant difference in perceived cognitive load between ND and NT individuals (H1). We
also hypothesized that trait scores of ADHD, ASD, and dyslexia could significantly predict
perceived cognitive load (H2). This is the first study to investigate the interplay between
ADHD, ASD, dyslexia, and cognitive load in online learning. By understanding how neuro-
diversity traits relate to cognitive load in online learning, we hope to provide foundational
evidence that can inform the design of a more inclusive online learning environment and
provide a basis for future research using direct measures of cognitive load.

2. Materials and Methods

The study is based on data collected through an online survey which ran for three months
from November 2022 to February 2023. All experimental procedures were designed in
collaboration with a Research Advisory Board composed of neurodivergent students and
were approved by the institutional Research Ethics Committee.

2.1. Participants

A total of 231 students participated in the study. All participants were over 18 years
old and were UK-based English-speaking students. They needed to be enrolled full-time
in a campus-based higher education program requiring the use of an online learning
platform. In addition, potential participants who met the inclusion criteria but had been
diagnosed with a mental health condition such as major depressive disorder or generalized
anxiety disorder were not eligible to join the study. The sample size was determined a
priori. Sample size calculations were performed with statistical power analysis software
G*Power version 3.1 [56] and indicated that 210 participants in total would be required
for an independent sample t-test (d = 0.5, power = 0.95, α = 0.05, two-tailed). The planned
linear regression (f = 0.15, power = 0.95, α = 0.05) required 97 participants in total for six
predictors, less than the sample size necessary for the t-test. Participants who completed
the survey were offered the opportunity to enter a prize draw for three GBP 50 shopping
vouchers. The prize draw was deemed appropriate, as it can increase response rates while
maintaining data quality and minimizing the risk of bias [57]. All participants provided
written informed consent prior to participating in the study.

There was a significant association between gender and neurodiversity, X2 (2, n = 231) = 9.176,
p = 0.010, with more non-binary neurodivergent participants than would be expected. There
was also a significant association between study level and neurodiversity, X2 (2, n = 231) = 7.297,
p = 0.025, with more neurodivergent students at the doctoral level in our sample than ex-
pected. Most students were studying for a bachelor’s degree followed by a master’s degree.
There was no significant difference in age; the average age of our sample was 26 years old
(SD = 9) overall, 27 years old (SD = 11) for neurotypical students, and 26 years old (SD = 7)
for neurodivergent students. Table 1 summarizes the sample’s characteristics.
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Table 1. Sample characteristics.

Neurotypical
n = 129 (55.8%)

Neurodivergent
n = 102 (44.2%) Test Statistic (df) Significance

Age M = 27
(SD = 11)

M = 26
(SD = 7) t = −1.05 (229) 0.29

ASRS * M = 10.84
(SD = 4.88)

M = 17.03
(SD = 3.91) t = 10.44 (229) <0.001

ASQ * M = 3.24
(SD = 2.13)

M = 5.49
(SD = 2.40) t = 7.55 (229) <0.001

ARHQ * M = 28.57
(SD = 12.69)

M = 42.84
(SD = 14.97) t = 7.84 (229) <0.001

Gender X2 = 9.18 (2) ** 0.010
Male 54 36

Female 74 57
Non-binary 1 9

Study Level X2 = 7.30 (2) ** 0.02
Bachelor’s level 76 60
Master’s level 49 30
Doctoral level 4 12

* ASRS = Adult ADHD Self-Report Scale; ASQ = Autism Spectrum Quotient Test; ARHQ = Adult Reading History
Questionnaire. ** For gender and study level, the table presents the frequencies of participants in each category
and the results of chi-square tests comparing the distribution of these categorical variables between neurotypical
and neurodivergent groups.

The most common conditions were ADHD, ASD, and dyslexia; a total of 64 students
declared a diagnosis of ADHD (62.7%), 35 students declared a diagnosis of ASD (34.3%),
and 28 students declared a diagnosis of dyslexia (27.8%). Note that, as participants could
report more than one condition, the final total percentage is more than 100%.

2.2. Procedure

The survey was hosted on Qualtrics [58]. All scales showed acceptable levels of inter-
nal consistency as measured by Cronbach’s alpha [59]. In addition to basic demographic
questions (age, gender, ethnicity, study level), participants were asked to report any diagno-
sis of neurodevelopmental conditions (“Do you have a diagnosis for one or several of the
following neurodevelopmental conditions?”), where they could select any one or more of
these choices: “Attention deficit hyperactivity disorder (ADHD)”, “Autism spectrum disor-
der (ASD)”, “Dyslexia”, “Dyspraxia”, “Dyscalculia”, “Dysgraphia”, “Tourette’s syndrome”,
or “None of the above”. To further operationalize neurodiversity, three validated scales
were administered to assess ADHD, ASD, and dyslexia respectively: the 6-item Adult
ADHD Self-Report Scale or ASRS-v1.1 (internal reliability as measured by Cronbach’s
α = 0.844) [59], the 10-item short Autism Spectrum Quotient Test or ASQ (α = 0.706) [60–62],
and the 24-item Adult Reading History Questionnaire or ARHQ (α = 0.891) [63].

Lastly, the survey asked participants to recall the last time they participated in an
online learning class at their university and to complete a cognitive load instrument that
measures the different types of cognitive load [64]. The retrospective question was designed
to help increase contextual relevance and improve the accuracy of responses compared
to asking about general experiences over an undefined period [65]. Evidence suggests
that ICL, ECL, and GCL circularly influence each other [39]. As a result, some researchers
have questioned the validity of the triarchic nature of cognitive load, suggesting that
GCL, in contrast to ICL and ECL, is not imposed by the learning material and rather
constitutes germane resources allocated by the learner to deal with the inherent difficulty
of the learning material [30,66,67]. As such, GCL would be more related to the learner’s
motivation rather than to the cognitive load imparted by the inherent difficulty of learning
material and the way it is presented [68–70]. While some researchers support addressing
these issues by applying a two-factor model of cognitive load [70], others suggest that even
if the nature of germane load is questioned, it can be helpful to measure differentiated ICL,
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ECL, and GCL [64]. As the nature of GCL is still a topic of debate [71], the present study
used the latter approach to capture all loading aspects and determine, during analysis,
which load type(s) may be most relevant to explore the relationship between neurodiversity
and cognitive load in online learning. The ICL scale had two items (α = 0.603); the GCL scale
had three items (α = 0.609); and the ECL scale had three items (α = 0.819). The association
between gender and neurodiversity scales in our sample was in line with the existing
literature suggesting a relationship between gender diversity and neurodiversity, with the
inclusion of non-binary participants contributing to the study’s representativeness [72–74].

2.3. Data Analysis

All analyses were conducted using SPSS version 28 [75]. Descriptive data were gen-
erated for all variables, and a Pearson correlation matrix was created to explore potential
relationships between variables. All participants who declared a diagnosis of a neurodevel-
opmental condition were included in the neurodivergent group (ND), and all participants
who declared no neurodevelopmental condition were included in the neurotypical group
(NT). Skewness, kurtosis, and visual examination of the histogram and the QQ plots of
cognitive load measures for both neurotypical and neurodivergent students did not show
evidence of non-normality. Based on this outcome and Levene’s test of equality of error
variances, parametric tests were used to compare perceived ICL, GCL, and ECL levels in
online learning between NT and ND students, addressing H1. Then, where a significant
difference in any load type was observed in the first step of the analysis, a regression
analysis was performed to determine whether trait scores from the neurodiversity scales,
age, gender, and level of study can predict this type of perceived cognitive load in online
learning, addressing H2.

3. Results

A correlation matrix was created to explore relationships between variables in the data
(Table 2). As the aim of this correlation analysis was exploratory, and the matrix was not
used for testing a hypothesis, no correction for multiple comparisons was applied to avoid
the risk of missing a relationship that may exist (type II error) [76,77].

Table 2. Pearson correlation coefficients for study variables.

Age ICL GCL ECL ASRS ASQ ARHQ

All
Participants

Age 1 0.12 0.15 * −0.08 −0.18 ** −0.07 −0.11
ICL 1.00 0.21 ** 0.36 ** 0.18 ** 0.12 0.13 *
GCL 1.00 −0.23 ** −0.11 −0.13 * −0.17 *
ECL 1.00 0.41 ** 0.22 ** 0.32 **

ASRS 1.00 0.46 ** 0.55 **
ASQ 1.00 0.36 **

ARHQ 1.00

Neurotypical Participants

Age 1 0.18 * 0.28 ** −0.14 −0.24 ** −0.03 −0.22 *
ICL 1.00 0.27 ** 0.27 ** 0.12 0.08 0.12
GCL 1.00 −0.25 ** −0.030 ** −0.29 ** −0.26 **
ECL 1.00 0.47 ** 0.27 ** 0.39 **

ASRS 1.00 0.40 ** 0.57 **
ASQ 1.00 0.27 **

ARHQ 1.00

Neurodivergent Participants

Age 1 0.03 −0.09 0.09 0.02 −0.08 0.13
ICL 1.00 0.16 0.48 ** 0.19 0.08 0.05
GCL 1.00 −0.17 0.25 * 0.08 −0.04
ECL 1.00 0.10 −0.05 0.05

ASRS 1.00 0.12 0.19
ASQ 1.00 0.11

ARHQ 1.00

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed).

When considering all participants, ICL significantly correlated with ASRS and ARHQ
scores and GCL correlated with ASQ and ARHQ scores, albeit negatively. ECL significantly
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correlated with all scale measures of neurodiversity and was associated most strongly with
the ASRS score (r = 0.412). In addition, perceived ICL, GCL, and ECL all significantly
correlated with each other. However, when the neurotypical and neurodivergent groups
were considered separately, the majority of these correlations only held true for neurotypical
students (Table 2). Most interestingly, the different types of cognitive load did not all
correlate significantly in the neurodivergent group. It is worth noting that these correlations
are weak (0.2–0.39) to moderate (0.40–0.59) [78].

A one-way analysis of covariance (ANCOVA) with gender and study level as co-
variates was conducted to determine the difference in ECL between neurotypical and
neurodivergent students controlling for gender and study level, as these differed between
the groups. We found a significant effect of neurodiversity on ECL after controlling for
gender and study level, F(1, 227) = 14.69, p < 0.001. Compared to the 129 neurotypical
participants (M = 3.88, SD = 1.39), the 102 neurodivergent participants (M = 4.58, SD = 1.29)
reported significantly higher ECL in online learning (Figure 1).
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There was no statistically significant difference between the NT and ND groups when
controlling for the gender and study level for the other two types of cognitive load, ICL
or GCL (Table 3). These results indicate significantly higher levels of perceived ECL for
neurodivergent students in online learning, but no differences in ICL and GCL.

Table 3. One-way ANCOVA of perceived ICL, GCL, and ECL between NT and ND students control-
ling for gender and study level.

Neurotypical
(N = 129)

Neurodivergent
(N = 102)

M SD M SD F(1, 227) Sig.

ICL 4.51 1.21 4.80 1.00 3.60 p = 0.059
GCL 5.28 0.88 5.11 0.94 1.97 p = 0.161
ECL 3.88 1.39 4.58 1.29 14.69 * p < 0.001

* Significant at the 0.01 level.

A regression analysis was next performed to determine whether scores on the neuro-
diversity scales, age, gender, and level of study could predict ECL in online learning. The
results of the ANOVA were significant, F(7, 223) = 7.281, p < 0.001. The model showed a
moderate degree of correlation (R = 0.431), in which 18.6% of the total variation in perceived
ECL could be explained by scores on neurodiversity scales, age, gender, and study level.



Educ. Sci. 2024, 14, 516 7 of 13

When looking at the individual predictors, only the score on the ASRS actually significantly
positively predicted ECL in online learning (Table 4).

Table 4. Linear regression coefficients of scores on neurodiversity scales, age, gender, and study level
with perceived ECL as the dependent variable.

Unstandardized Coeff. 95% Confidence Interval
of the Difference

B Std. Error Beta t Sig. Lower Upper

(Constant) 2.46 0.41 6.05 <0.001 1.66 3.26
ASRS 0.08 0.02 0.32 3.99 <0.001 0.04 0.12
ASQ 0.02 0.04 0.03 0.41 0.68 −0.06 0.09

ARHQ 0.01 0.01 0.13 1.80 0.07 0.00 0.03
Female 0.18 0.18 0.07 1.03 0.30 −0.17 0.53

Non-Binary 0.14 0.45 0.02 0.31 0.76 −0.74 1.02
Age 0.00 0.01 −0.01 −0.18 0.86 −0.02 0.02

Study Level 0.06 0.14 0.03 0.38 0.70 −0.23 0.34

The results of the linear regression suggest that neurodiversity, and in particular
ADHD, is a significant positive predictor of ECL in online learning.

4. Discussion

The rise of online learning in higher education has reshaped instructional strate-
gies and the student experience [14]. However, despite the neurodiversity paradigm
advocating for adapting environments to support those with atypical neurocognitive func-
tioning [20,21], considerations of neurodiversity are conspicuously lacking in research
investigating online learning environments in higher education [22,23]. This is particularly
concerning given that working memory impairments, which can impact cognitive load,
are common in several neurodevelopmental conditions [42–44]. In this study, we aimed to
address this gap by uncovering differences in perceived cognitive load in online learning
in relation to neurodiversity.

Our main finding is that neurodivergent students reported significantly more extra-
neous cognitive load (ECL) in online learning than neurotypical students, which partly
supports hypothesis H1. This result corroborates the findings of a previously conducted
focus group study, where the qualitative analysis suggested higher perceived ECL for
neurodivergent students in online learning [53].

When considering the total sample, ICL, GCL, and ECL all significantly correlated
with each other. Many studies with neurotypical populations have found such significant
correlations between the three types of cognitive load, which has contributed to the debate
as to how many types of cognitive load there really are [52,64,66,79,80]. This was the first
study to explicitly explore these correlations in regard to neurodiversity, and the results
revealed that, in our sample, the correlations between the three types of cognitive load only
held true for neurotypical students. For neurodivergent students, only ICL significantly
correlated with ECL (Table 2). A possible explanation is that effect sizes are smaller due to
more variability in the neurodivergent group, necessitating a larger sample size to detect
relationships between variables [81]. This discrepancy could also be attributed to the ‘spiky’
profile of neurodivergent individuals, which features large disparities between cognitive
scores compared to the relatively ‘flat’ profile of neurotypical individuals [82]. Whether
the different types of cognitive load are more distinct in neurodivergent rather than in
neurotypical individuals could be an important issue for future research.

Intrinsic cognitive load (ICL) and germane cognitive load (GCL) did not significantly
differ between neurotypical and neurodivergent students. A key premise of Cognitive Load
Theory is that it cannot be manipulated through instructional design [69,83,84]. As for GCL,
it is possible that neurotypical and neurodivergent students in our sample experienced
a similar level of ‘self-perceived learning’—the individual’s perception that learning has
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occurred [85]. However, as discussed above, GCL remains a debated construct in cognitive
load research [66,68–70]. Because our analysis did not reveal any significant difference
between neurotypical and neurodivergent students when it comes to ICL and GCL, and
because it is unclear whether they can be manipulated through instructional design [79,84],
the remainder of this discussion focuses on ECL.

Regarding H2, perceived ECL was moderately correlated with ASRS scores but only
weakly correlated with ASQ and ARHQ scores. Variations in perceived ECL in online
learning can be explained in part by scores on neurodiversity scales, age, gender, and study
level. However, only ASRS scores significantly positively predicted perceived ECL in online
learning. Evidence indicates that ADHD may affect how individuals process multimedia
information and that students with ADHD are especially susceptible to distraction when
extraneous stimuli are added to multimedia environments [86]. Numerous studies have
linked ADHD with differences in executive function, such as working memory, planning,
vigilance, and response inhibition [87]. Neuroimaging research also suggests that ECL
can be characterized as the disruption in the activation of the sensory modality-specific
mechanisms underlying attentional modulation [88]. Considering that ADHD is most
strongly associated with difficulties in attentional modulation [89,90], this may explain why
ADHD traits are the only significant predictor of ECL in online learning in the present study.

Although the results only indicate a possible relationship between ADHD and per-
ceived ECL, they suggest that students with ADHD may be most likely to be affected
by poor instructional design in online learning compared to other neurodivergent stu-
dents [91]. Many interventions to reduce ECL have been tested in neurotypical students
with varying degrees of success, for instance, by providing integrated information to avoid
the split-attention effect or by teaching through worked examples [92]. However, there
is a paucity of research investigating the efficacy of these interventions in students with
ADHD [52]. Future research is needed to explore whether interventions that are shown
to reduce ECL in neurotypical students are also effective for students with ADHD, or
whether it might be necessary to adapt those interventions in order to support all students
in neurodiverse classrooms.

Although the current study provides novel insights into the experience of online
learning for neurodivergent students, it is not without limitations. First, a note of caution is
due here since there is considerable co-occurrence and symptom overlap between ADHD,
ASD, and dyslexia, complicating the interpretation of the findings based on each scale in
isolation [93,94]. However, the linear regression analysis allowed us to examine how differ-
ent neurodevelopmental traits of ADHD, ASD, and dyslexia could predict ECL without
relying on categorical definitions of these conditions. In addition, potential participants
who reported a diagnosis of a mental health condition such as major depressive disorder or
generalized anxiety disorder were not eligible to join the study. This decision was made to
limit confounding factors. However, depression and anxiety are prevalent co-occurring
conditions in neurodivergent populations [95]. As such, the findings of this study may
not be generalizable to all neurodivergent students. Another potential limitation of this
study is that the measures of neurodiversity and cognitive load both rely on survey data,
which are prone to self-report bias, for instance, due to memory recall errors and acqui-
escent responding [96–98]. Retrospective evaluation of cognitive load through subjective
cognitive load surveys may also be biased [99,100]. Those biases may be exacerbated in
neurodiversity studies, as the presence of self-perceptual biases among people with ADHD
and reduced self-reference effect in ASD could interfere with accurate assessment [101,102].
However, as the results focus specifically on perceived ECL in online learning environ-
ments, self-report measures capturing participants’ subjective experiences was considered
the most appropriate method of data collection in this instance. While perceptual biases
may influence how participants interpret and report their cognitive load, such biases are
inherent to the measurement of perceived cognitive load. Thus, this study offers valuable
data to support an initial exploration into the relationship between neurodiversity and
cognitive load in online learning.
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Due to the cognitive heterogeneity of the neurodevelopmental conditions included
under the neurodiversity umbrella and the complex patterns underlying cognitive load in
online learning suggested by the results in this study, considerably more work is needed
to understand the complex relationship of neurodiversity and cognitive load in online
learning. As cognitive load depends on the working memory resources allocated during a
task [26,27], fully capturing its multidimensional nature requires exploring both the subjec-
tive psychological experience and objective neurophysiological responses [103,104]. Future
research could build on these findings by incorporating objective measures of cognitive
load commonly used in research with neurotypical participants, such as pupillometry and
electroencephalography, among others [103–107].

The complex interplay between individual neurocognitive characteristics and the
attributes of the online learning environment itself supports the need for an integrative,
interdisciplinary approach combining psychological and neuroscientific methods to under-
stand the relationship between neurodiversity and cognitive load in online learning. By
suggesting a relationship between ADHD traits and ECL in online learning, the present
research offers preliminary evidence into the connection between neurodiversity and cog-
nitive load in online learning, which can be further investigated in future studies.

5. Conclusions

This research aimed to investigate the impact of neurodiversity on perceived cognitive
load in online learning, focusing on attention deficit hyperactivity disorder (ADHD), autism
spectrum disorder (ASD), and dyslexia. The findings revealed a significantly higher level
of perceived extraneous cognitive load (ECL) among neurodivergent students compared to
neurotypical students. Intrinsic cognitive load (ICL) and germane cognitive load (GCL)
were comparable between the two groups. ADHD traits, in particular, were identified
as a significant positive predictor of perceived ECL in online learning. The higher ECL
reported by neurodivergent students suggests they may face additional barriers to effective
online education due to the presentation of learning material rather than its inherent
difficulty or their effort to understand it. These findings highlight the importance of
considering neurodiversity in designing online learning environments, and suggest the
need for further research investigating the exact mechanisms underlying the relationship
between neurodiversity and cognitive load in online learning.
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