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Abstract: This quasi-experimental study investigated the impact of computational learning activities
on high school students’ computational thinking (CT) and computational modeling (CM) skills.
High school students (n = 90) aged 16 to 19 engaged in activities using computer models versus
textbook-based models in mathematics and social science. The results indicated that students using
computer models showed significant improvements in CT and CM skills compared to their peers in
conventional learning settings. However, a potential ceiling effect in the CT assessments suggests
that the test may not fully capture the extent of skill development. These findings highlight the
importance of integrating computational learning activities in education, as they enhance students’
abilities to apply these skills beyond the classroom.

Keywords: computational thinking; computational modeling; transfer of learning; computing educa-
tion; high school education; Bebras test; NetLogo

1. Introduction

High school education aims to prepare students to tackle new problems. This is
analogous to the phenomenon known as transfer of learning where knowledge, skills,
and attitudes acquired in one context are applied in another. Much educational research
has been undertaken to comprehend the transfer of learning [1,2]. Specifically, in the
context of computing education, learning computing skills seems to prepare students for
problem-solving across multiple disciplines [3].

This is particularly relevant when examining the relationship between computational
thinking (CT) and computational modeling (CM). CT involves problem-solving processes
that include abstraction, algorithm design, and data analysis, while CM refers to the cre-
ation and use of computational representations to simulate and study complex systems.
Understanding how students can transfer their learning between CT and CM can pro-
vide insights into designing more effective educational strategies that facilitate deeper
comprehension and broader application of computational skills.

Assessing the transfer of learning in computing education involves understanding
how students apply their knowledge and skills across different contexts. This assessment
provides insights into how students are equipped to apply their knowledge in diverse
scenarios, thereby supporting the development of their thinking and the improvement
of education [4]. The ability to generalize and apply computational skills across various
domains enhances students’ analytical and problem-solving abilities [5,6].

This article reports on a study of transfer of learning in high school education. High-
school students are at a pivotal stage in their development where the ability to transfer
learning can significantly influence their future. The objective of the study was to advance
understanding of the assessment of CT and CM and to explore the transfer of learning CT.
This has ramifications for assessment as well as how educators might prepare students for
real-world challenges in future studies and work.
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The research question was as follows: How do skills in Computational Thinking (CT)
transfer to skills in Computational Modeling (CM)? This question was explored through
an intervention study involving pre- and post-assessments of CT and CM skills among
high school students in both an intervention and a comparison group. The findings aim
to inspire further research in computing education and provide guidance to high school
teachers and researchers on preparing students for educational and career demands that
require computational skills. Based on the results, the study recommends integrating
computational learning activities into existing high school subjects, such as mathematics
and social sciences, to promote the transfer of students’ CT skills to CM.

Before presenting the results, Section 2 introduces and defines CT and CM in the
context of learning transfer. This section also discusses methods for measuring CT and
CM. Following this, in Section 3, the methods used in the study are detailed, including pre-
and post-measurements of students’ CT and CM skills. In Section 4, the results are then
presented, followed by a discussion in Section 5.

2. Background

CT refers to the thought processes in formulating and preparing a problem for a com-
putational solution [7–9]. CT involves fundamental concepts such as problem-solving by
decomposition, algorithmic and logical thinking, modeling, data, and pattern recognition,
system thinking, and abstraction [3,10].

CM involves creating and using abstractions to simplify, represent, and analyze com-
plex, dynamic, and emergent phenomena to predict outcomes and understand causal
effects [11]. Research has demonstrated that CM helps students master different subjects,
including computer science [12–14], physics [15], biology [16,17], and the liberal arts [18,19].

Various studies have investigated the validity of different tests and assessment meth-
ods relating to computing [20,21]. There are various methods for assessing CT and CM skills,
such as student drawings [22], think-aloud protocols [23], peer reviews [24], performance-
based tasks [25], portfolios [26], dynamic code analysis [27], concept inventories [28],
scenario-based assessments [29], coding assignments [30], and rubric-based evaluations [31].
Understanding the core components of CT and CM is essential for effectively assessing
these skill sets and teaching them in the high school curriculum.

Seminal research conducted by Selby and Woollard [32], Weintrop et al. [10], Barr and
Stephenson [33], and Grover and Pea [34] provide the basis for assessing and enhancing
students’ abilities in these critical areas. Table 1 presents an overview of the key components
of CT and CM.

Table 1. Components of CT and CM.

Component Definition

Computational Thinking (CT)

Abstraction Simplifying or hiding details to get at the essence of something of
interest.

Decomposition Breaking a problem into smaller parts that can then be solved
separately.

Logical Thinking Thinking clearly and precisely, including avoiding errors and
attention to detail.

Algorithmic Thinking Solving a problem in an efficient step-by-step manner, focusing
on selection, sequencing, and iteration.

Evaluation Examining a solution and judging whether it is doing what it is
designed to do and how it could be improved.

Generalizations Taking the solution, or parts of the solution, to a problem that
may be reused and reapplied to similar or unique problems.
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Table 1. Cont.

Component Definition

Computational Modeling (CM)

Model Creation Designing, constructing, using, and assessing computational
models to simulate real-world processes or phenomena.

Model Simulation Running computational models to test hypotheses and predict
outcomes.

Model Analysis Interpreting the results of model simulations to draw conclusions
or make predictions.

Model Validation Comparing model predictions with real-world data to assess
accuracy and reliability.

Model Refinement Improving models based on validation results and new
information.

As shown in Table 1, CT and CM are two interrelated domains that offer a framework
for understanding computational problem-solving in an educational context. CT focuses
on the thought processes involved when students formulate problems and devise solutions
that can be executed by a computer. It encompasses activities such as abstraction, decom-
position, logical and algorithmic thinking, evaluation, and generalization. CM, on the other
hand, applies these thinking skills to create and refine models that simulate real-world
phenomena. This includes model creation, simulation, analysis, validation, and refinement.
While CT is arguably a more foundational skill necessary for problem-solving, CM is a
subset or applied skill used to construct and refine models. In summary, CT serves as a
precursor, equipping students with the cognitive tools needed to think like a computer
scientist, whereas CM leverages this to address real-world scenarios. Both are essential in a
modern high school curriculum (in computing and other subjects), with research on CT
offering the conceptual framework and CM arguably delivering more specific applications.

Transfer of learning is a well-researched phenomenon in psychology and educational
science. Transfer of learning can be categorized into near and far. Near transfer of learning
occurs when the contexts or learned material are similar, facilitating easier application of
skills, such as applying math skills learned in class to solve similar problems in home-
work [2]. Far transfer of learning, on the other hand, involves applying skills to dissimilar
and more abstract contexts, such as using problem-solving strategies learned in mathemat-
ics to address issues in social sciences or real-world situations [1].

Table 2 illustrates the types of tests used in the transfer of learning, memory, knowl-
edge, and skills, and how the tests translate to the CT and CM contexts.

Table 2. Types of transfer of learning tests.

Test Type Description Translated to CT and CM Context

Near
Transfer Tests

Assess the ability to apply learned skills in
similar contexts. Example: applying
previously learned coding techniques to
solve similar computational problems, such
as debugging similar types of errors in the
same programming environment [1].

Students solve tasks that require them to
apply previously learned programming
skills to new but similar problems. Skills
include debugging different segments of
code that exhibit similar types of errors and
applying algorithmic thinking to new but
related contexts [34,35].

Far Transfer
Tests

Evaluate the ability to apply learned skills in
different and more abstract contexts.
Example: applying computational thinking
skills learned in a programming class to
solve real-world problems in different
domains, such as using algorithmic thinking
to optimize logistics or other processes [2].

Students apply computational thinking
skills acquired in a computer science class to
tackle problems in different domains, such
as optimizing a supply chain or creating a
model for social behavior. This demonstrates
the transfer of skills to varied subjects and
real-world contexts [36].
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Transfer of learning in the context of computing education can be evaluated through
various theoretical frameworks and practical approaches. Guzdial and Nelson-Fromm [37]
discuss the purpose-first theory of transfer, emphasizing that transfer occurs more readily
at the functional level rather than the structural or behavioral level. They suggest that the
motivation to learn programming plays a crucial role in facilitating transfer, especially for
students studying computing as a general education subject rather than for professional
development [37]. Guzdial and Nelson-Fromm used the structure–behavior–function (SBF)
model to analyze transfer among students. They found that knowledge transfer is more
likely to occur at the functional level, where students focus on the purpose and outcome of
the code rather than its syntactic details. This aligns with the findings that students who are
less motivated to learn programming for its own sake but are interested in its applications
in other domains may benefit from a purpose-first approach to teaching programming [37].

Saba et al. [38] explored the relationship between CT, systems understanding, and
knowledge transfer. Their study found that engaging students in constructing computa-
tional models significantly improved their conceptual understanding of science, systems
thinking, and CT. They also showed that such activities promoted both near and far trans-
fers, with a medium effect size for far transfer of learning, interpreted following Cohen’s
guidelines, where an effect size (d) below 0.2 is considered small, around 0.5 is medium,
and 0.8 or above is large [39]. This suggests that integrating CT with domain-specific
content can enhance the transfer of learning across different contexts [37].

Ye et al. [40] conducted a systematic review and meta-analysis on the transfer effects
of CT across various subject areas beyond computer science. Their findings indicated that
CT skills positively impact learning outcomes in mathematics, science, and engineering.
The review study identified several instructional elements that promote transfer, including
engaging students with new information, enabling them to demonstrate competence, and
applying skills to real-world problems. These elements align with constructivist principles,
emphasizing active learning and the application of knowledge in different contexts [37,40].

Based on the research described above, we chose to include pre- and post-assessments
of students’ CT skills and assessments of students CM skills continuously throughout the
study to investigate learning transfer.

3. Methods
3.1. Study Design

The study was designed as a quasi-experimental intervention-control study employing
pre- and post-intervention assessments to evaluate students’ CT and CM skills in two
groups of high school students: an intervention and a comparison group.

The chosen quasi-experimental design incorporates a passive control group to enhance
the evaluation of different instructional approaches, specifically comparing conventional
methods versus computational learning activities. Conventional methods refer to standard
instruction using established textbooks, teacher-led lectures, and discussions to explore
mathematical and social science phenomena, with the same duration of teaching hours as
the intervention group.

This design facilitates a direct comparison of students’ CT and CM skills between
those exposed to innovative teaching methods and those following existing approaches.
In this setup, the passive control group, which continues with conventional teaching
methods, serves as a baseline. This comparison helps establish the extent to which existing
education fosters the development of CT and CM skills, which are increasingly crucial in
both academic and everyday contexts.

In the fields of mathematics and social sciences, models are fundamental tools for un-
derstanding key phenomena. Students typically encounter these models through textbooks.
This study aimed to investigate how well this existing approach prepares students for the
computational models they are likely to encounter in their everyday lives, identifying any
potential gaps in current educational practices. Additionally, the study sought to determine
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whether integrating CT and CM skills into mathematics and social sciences education better
equips students to engage with computational models in real-world scenarios.

The quasi-experimental design, with its passive control group, is well-suited for this
investigation as it allows researchers to measure the impact of computational learning
activities on students’ competencies, highlighting any significant improvements compared
to conventional methods. This design is both practical and ethically sound, as it does
not withhold educational opportunities from any group but instead leverages existing
classroom practices to evaluate the effectiveness of new teaching methods. By comparing
results between the experimental group and the passive control group, the study design
can provide evidence of the potential benefits of integrating CT and CM skills into the
high-school curricula, ultimately enhancing educational outcomes and better preparing
students for the challenges they will face in the 21st century.

The interventions are described in detail in Section 3.3. Students in the intervention
group participated in both a math intervention and a social science intervention, one to
two weeks apart, as shown in Figure 1.
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Both interventions included computational learning activities involving computer
models of domain-specific phenomena. As shown in Figure 1, students in the comparison
group participated in interventions that followed conventional teaching methods. The
conventional teaching class served as a control group to establish a baseline for comparison.
By contrasting the outcomes of students engaged in existing instructional methods with
those participating in computational learning activities, we aimed to evaluate the added
value and effectiveness of the new instructional approaches. This quasi-experimental
design ensures that any observed differences in CT and CM skills are attributable to the
intervention itself, rather than to variations in teaching methods, as outlined by Campbell
and Stanley [41]. Consequently, the conventional teaching control group provides a robust
context for assessing the true impact of computational learning interventions.

Students’ CT and CM skills were assessed before, immediately after, and 3–4 weeks
following the interventions (see Figure 1). There is likely convergent validity between the
tests for CT and CM, given the close relationship between these two phenomena. The
learning activities and models used in this study can be found on this website: https:
//graspit.dk/.

3.2. Participants

The study included 90 Danish high school students (16–19 years old, average age
17.8) from four schools, with a gender distribution of 40% female and 60% male. Over 75%
had no programming experience, and only 1% had extensive experience. None had prior
computing education.

Students were divided into intervention and comparison groups based on their classes,
which were randomly assigned by the school. The intervention group participated in CT
learning activities of a 120 min duration in mathematics and in social science, guided by
two key principles.

https://graspit.dk/
https://graspit.dk/
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First, the Use–Modify–Create Principle [42] involved students initially using a com-
puter model to learn about a phenomenon. They then modified the code to improve the
model and finally created new procedures to further enhance the model.

Second, the CMC Approach [43] integrated coding activities with modeling the phe-
nomenon and connected these activities to the students’ existing knowledge of the subject
matter.

In the intervention group, students first tinkered with the models’ interfaces and
then modified the code to better represent content within mathematics or social science.
This constructivist approach allowed students to experiment with the models before being
assigned specific tasks.

Students in the comparison group received conventional instruction, which was of
equal duration (120 min each session) and covered the same mathematical and social
science concepts, utilizing textbooks. Table 3 presents an overview of the two groups and
their respective teaching methods.

Table 3. Overview of study groups.

Group Teaching Method

Intervention group
Two teaching lessons (conducted by teachers, 120 min each).
Learning activities with NetLogo 6.1 models, modifying code,
changing variables, loops, and introduce new procedures.

Comparison group
Two conventional teaching lessons (conducted by teachers,
120 min each) using textbook models, answering subject-related
questions.

Students’ content knowledge in mathematics and social science was evaluated by the
teachers after the interventions and reported to researchers. Both groups participated in
pre-intervention (Test 0), immediate post-intervention (Tests 1 and 2), and follow-up assess-
ments (Test 3) administered 3–4 weeks after the interventions (see Figure 1). Figure 2 below
shows student participants working individually with computer models in mathematics.
Apart from the students, eight teachers (two female, six male) participated.
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Informed consent was obtained from all participants, and the study was exempt from
Aarhus University Ethical Committee approval due to its non-invasive nature. Participants
were assured of anonymity and informed about the research purpose, data usage, and the
absence of risks. The study adhered to all local and national research laws, with rigorous
data management protocols. Written consent for the use of pictures was obtained from all
participants.
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3.3. Interventions

The interventions in this study for both groups lasted 120 min, involving students, in
the intervention group, interacting with and modifying computer models of mathematical
or social science phenomena designed in NetLogo, an agent-based modeling environ-
ment [44]. During these sessions, students engaged in active exploration, experimentation,
and problem-solving requiring CT [45,46]. These interventions were conducted by the
students’ regular teachers in math and social science, respectively.

The interventions combined activities within the concept of CT with content in mathe-
matics or social science, focusing on CM. The goal was for students to engage, interact, and
communicate with each other on both subject matter and computing activities, mediated by
the computer. This approach was inspired by Seymour Papert’s constructionist perspective,
where students actively construct their own knowledge and skills [45]. The approach is
illustrated in Figure 3.
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Material

All students, in both the intervention and comparison groups, were taught the SIR
model in mathematics, a compartmental model that describes the development of diseases
through coupled differential equations. The SIR model is a common topic and one of the
learning objectives of high school mathematics education at the highest level. Typically,
this topic is introduced using textbook materials, with students in the comparison group
solving a set of exercises using spreadsheets.

In contrast, students in the intervention group were introduced to a NetLogo model
simulating disease development with various adjustable variables. These students used
the computer model to solve a similar set of exercises by modifying the code within the
model and simulating how a disease develops.

In social science, both groups were introduced to the same topic “The economic cycle”,
a central learning objective in this field. The intervention group again used a NetLogo
model to simulate the economic cycle, adjusting variables by modifying the code to solve a
set of problems related to the values of these variables. The comparison group, on the other
hand, learned the topic through textbook materials, models, and exercises that addressed
the same problems as those posed to the intervention group.

3.4. Teaching the Teachers

Mathematics and social science teachers participated in a professional development
(PD) course for STEM and social science education, led by the first author. Six out of
eight teachers in the intervention group developed their own computer models, while the
remaining two taught the comparison group and did not participate in the PD course.
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During two seminar days, teachers were introduced to the NetLogo programming
environment and paired up to help each other prepare the interventions. They designed
their computer models and learning activities with assistance from teaching assistants.
Subsequently, the interventions were conducted by the teachers using their developed
activities without the presence of researchers. Students engaged with the models and
modified the code to solve tasks.

3.5. Measuring Instruments

For assessment, we used selected questions from the Bebras test and a computational
modeling test in the form of NetLogo programming tasks [36,47]. The Bebras test assesses
CT skills through context-rich problems, while NetLogo tasks assess students’ ability to
construct, implement, and evaluate computational models. This dual approach aimed to
measure students’ CT and CM skills in different contexts.

Pre- and post-intervention assessments included quantitative data (multiple-choice
questions) and qualitative data (open-ended questions). Together with Figure 1 shown in
Section 3.1, Table 4 outlines our assessment approach.

Table 4. Assessment approach with two assessment methods.

Assessment Method Description CT Skills Assessed CM Skills Assessed Context

Adapted Bebras Test,
used before and after
the interventions in test
0 and test 3 (See
Figure 1 in Section 3.1
Study design)

Uses modified Bebras
questions to assess CT
skills such as
algorithmic thinking,
pattern recognition,
and debugging [48,49].

Algorithmic thinking,
pattern recognition,
debugging

- Computer-based,
problem-solving tasks

NetLogo Programming
Tasks, used in test 0, 1,
2, and 3 (See Figure 1 in
Section 3.1 Study
design)

Students use and
modify models in the
NetLogo environment
to explain and solve
problems and
demonstrate
understanding of
computational concepts
and models [27,36,45].

Abstraction,
decomposition,
algorithmic thinking

Use and modification
of model creation,
simulation, abstraction

Simulation and
modeling tasks in
NetLogo

To investigate the gains in students’ CT skills, we used pre- and post-intervention
assessments with multiple-choice questions from the Bebras CT test [47,48], which has
previously been applied to high school students by Lee et al. in Taiwan [50]. The CT test
questions focused on algorithmic and logical thinking, including the ability to decompose
and pattern recognition. These cognitive skills have been widely identified by researchers
as important components of CT [51,52].

Five questions from the Bebras test [35] were selected and used for testing students’ CT
skills in this study. The five questions were selected based on what the researchers and one
former high school teacher perceived as easy (CT1, CT2, and CT5) and difficult (CT3 and
CT4) questions. These questions were chosen because they focus on algorithmic thinking
and visual as well as conceptual-based thinking [48,49]. The wording of the questions is
shown in Table 5.

To evaluate the transfer of learning between students’ CT and CM skills, we also
included a CM test in the study. The CM test, developed for a similar age group in STEM
classrooms [36,53], included open-ended questions as shown in Table 6.
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Table 5. CT test with five questions.

Multiple Choice Question Wording

CT1
A chemistry teacher puts five bottles on a table. He places them so that each bottle is visible. He
places the first bottle at the back of the table, then places each new bottle in front of those already
placed on the table. What is the correct order of bottles from first to last?

CT2 Help the green robot to get out of the maze by using a sequence of the proposed movements.

CT3

Kasper is having a party and has a roll of colored paper he wants to hang up as a decoration. The
paper has colored squares in three different colors (yellow, red, blue) in a repeating pattern. Kasper’s
friend, Mathias, has torn out some of the paper, as can be seen in the diagram below. Mathias says
that he will give Kasper the missing piece of paper back if he can work out how many-colored
squares have been torn out. How many squares are missing?

CT4

Kamilla has discovered five different magic potions for cats:
One potion makes the ears of cats grow longer.
The second potion makes the teeth of cats grow.
A third potion curls the whiskers.
A fourth potion colors the cats’ noses white.
The fifth potion changes the color of the eyes to white.
Kamilla pours each of the potions into a separate mug and pours clean water into her personal mug
so there are now six mugs in total. The mugs are labeled A, B, C, D, E, F. Unfortunately, Kamilla has
forgotten to note which mug contains which drink. Can you help her?

CT5

The agents Billy and Berta write secret messages to each other. Billy would like to send Berta the
following secret message: MØDAGENTENBILLYKL6 He writes each character in a table with 4
columns from left to right and row by row starting from the top. He puts an X in the fields that are
not used. The result can be seen below.
Berta used the same method to write back to Billy. The secret message she sends him is:
OGE!KMRXJØOXEDPX
What message does Berta send back?

Table 6. CM test with six questions.

Open-Ended Question Wording

CM1 (open question) Start the model and let it run for 1000 steps. Describe what happens to the number of strawberry
pickers and strawberries during the 1000 steps:

CM2 (open question) Describe the relationship between the number of strawberries and the number of strawberry pickers:

CM3 (open question)
Start the model again. This time try pressing the ‘Frost’ button while the model is running.
Describe what happens to the number of strawberry pickers when the frost destroys half of the
strawberries.

CM4 (open question) What do you think would happen to the number of strawberry pickers if frost destroyed 90% of all
the strawberries instead of 50%?

CM5 (open question) Write instructions that could be followed by a computer to simulate how birds can remove some of
the strawberries in the model.

CM6 (open question) All computational models are only approximations of reality. What are some ways in which this
model is different from reality?

The test was translated using the back-translation method and piloted with four
students before administration. The test addressed topics unrelated to the phenomena
and models taught in the interventions. As already shown in Figure 1, the tests were
administered before the interventions (test 0), immediately after each of the interventions
(test 1 and test 2), and 3–4 weeks after the interventions (test 3). Specific questions relating to
real-world phenomena and the ability to problem-solve with a computer were included in
the pre- and post-intervention assessments. The CM5 question was included to investigate
students’ ability to transfer CT skills to similar CM problems, and the CM6 question was
included to investigate students’ transfer of CT skills to real-world settings.
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3.6. Data Analysis

Data analysis was conducted using Microsoft Excel. Quantitative data from CT test
scores and qualitative data from student answers to open-ended questions were analyzed
to determine the effectiveness of the interventions and the near transfer of learning. All data
were found to be normally distributed by assessing the values of skewness and kurtosis
as suggested by Holmes et al. [54]. Statistical methods, including two-factor ANOVA,
and paired t-tests with measured effect size, Cohen’s d [39], as elaborated by Haden [55],
were used to evaluate improvements in CT and CM skills. A Cronbach’s Alpha value of
0.973 was estimated, indicating high internal consistency of the survey, as interpreted by
Brown [56] and Tavakol and Dennick [57].

For details about the CM questions, we refer to Table 6. For the multiple-choice
questions in the CT tests, each answer was scored as either 1 for a correct response or 0 for
an incorrect one. The open-ended questions in the CM tests were independently coded by
two researchers, with scores assigned as 2, 1, or 0 based on the accuracy of the answers. A
score of 2 was awarded if the response included all aspects of a correct answer, while a score
of 1 was given for partially correct answers. A score of 0 was assigned when the response
lacked any correct elements. For example, in response to the question, “Describe the
relationship between the number of strawberries and the number of strawberry pickers”, a
score of 1 was given for an answer like “When there are many strawberry pickers, there
are fewer strawberries”, as it only partially addressed the relationship. A complete answer
would need to consider the impact of the number of strawberries on the number of pickers
over time. For other questions, such as CM6, a maximum score of 2 was given for answers
that included all relevant simplifications and model elements. Similarly, in question CM5,
a score of 2 was awarded for a comprehensive sequence of instructions for removing
strawberries, with partial instructions receiving a score of 1. The mean score for each
question within each group was then calculated.

4. Results
4.1. Students’ CT Skills

The results obtained from administering the CT test before and 3–4 weeks after the
interventions revealed a statistically significant variance in means within both the inter-
vention and comparison groups, as determined by a two-factor ANOVA [F(3, 232) = 6.043,
p = 5.593 × 10−4 for the intervention group and F(3, 112) = 7.932, p = 8.483 × 10−5 for the
comparison group].

In the intervention group, post-intervention assessments revealed higher mean scores
for most questions (CT1, CT2, CT3, and CT5). This contrasted with lower scores observed
in the comparison group for questions CT2, CT3, CT4, and CT5, indicating students in the
intervention group improved their CT skills.

Figure 4 illustrates the mean scores for each of the five CT-questions.
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Figure 4. Mean scores in each of the five CT questions (CT1, CT2, CT3, CT4, CT5) in the CT test.
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Both groups demonstrated proficiency in selecting correct answers for the multiple-
choice questions, especially in the three questions (CT1, CT2, and CT5) categorized as easy
by the researchers (see Section 3.5 Assessment). The high scores in general could indicate a
“ceiling effect” in which there is an upper limit on responses in a survey or questionnaire,
and a large percentage of respondents score near this upper limit [58]. The ceiling effect
could have produced false-positive outcomes and might have deflated the effect in the
questions.

4.2. Students’ CM Skills

When investigating students’ CM skills, there was no statistically significant difference
in the scores between the intervention and comparison groups across the first three tests.
The results of the t-tests were as follows: Test 1 (t(358) = 1.648, p = 0.460, d = 0.11), Test 2
(t(358) = 1.648, p = 0.075, d = 0.13), and Test 3 (t(358) = 1.649, p = 0.163, d = 0.14). However,
three to four weeks after the interventions, the test scores differed statistically significantly
between the intervention and comparison groups, indicating a retention of CM skills
learned by students in the intervention group. The results showed a medium effect size
(t(358) = 1.649, p = 0.0125, d = 0.29).

Figure 5 depicts the development of students’ CM skills.
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Figure 5. Development of students’ CM skills: Mean scores of students’ answers to all questions in
the CM test.

Overall, students in the intervention group demonstrated a higher frequency of correct
responses compared to the comparison group (see Figure 5). The intervention group
exhibited a 14% increase in CM skills from test 0 to test 3, whereas the comparison group
showed only a 1% improvement.

4.3. Students’ Transfer of CT and CM Skills
4.3.1. Comparing a Computer Model to a Real-World Phenomenon

Students from both groups were given an open-ended question (see CM6 in Table 6)
as part of test 0 and test 3. This question addressed two aspects: reflections on how a
specific computer model represented a real-world phenomenon and any simplifications
included in the model. The question, which was new to all students, was as follows: “All
computational models are only approximations of reality. What are some ways in which
this model is different from reality?”. Figure 6 shows students’ answers when comparing
computer models to real-life phenomena (maximum score 2).
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Figure 6. Mean scores of students’ answers pre- and post-interventions.

The students in the intervention group showed statistically significant improvement
in their ability to identify elements and simplifications in the model related to the real-life
phenomenon from pre- to post-intervention (t(118) = 1.658, p = 0.0004, d = 0.66), indicating
a medium effect size, d. In contrast, the students in the comparison group did not show
significant improvement (t(58) = 1.675, p = 0.3517, d = 0.71). Furthermore, when comparing
the answers from the two groups after both interventions (test 3), there was a statistically
significant difference in the mean scores between the two groups, with the intervention
group performing better than the comparison group (t(88) = 1.663, p = 0.0015, d = 0.64),
indicating a medium effect size. This difference was not observed before the interventions
(test 0), suggesting that students from the intervention group gained expanded CT skills
during the interventions compared to the comparison group, which they could transfer to
their answers in the CM test.

4.3.2. Communication with a Computer

Before the interventions and 3–4 weeks after (during CM tests 0 and 3), all students
were asked to describe a procedure as a sequence of instructions related to a problem within
a specific computer model as part of the CM test. This task, like question CM6, aimed to
assess students’ expanded CT skills. The question was: “Write instructions that could be
followed by a computer to simulate how birds can remove some of the strawberries in the
model” (see CM5 in Table 6). This question was new to all students in both groups.

Figure 7 shows scores of students’ instruction sequences before and after the interven-
tions.
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Figure 7. Mean scores of students’ instruction sequence descriptions: pre- and post-interventions.

Figure 7 shows that no statistically significant difference existed between the two
student groups before the interventions (t(88) = 1.659, p = 0.2908, d = 0.61). However, after
the interventions, students in the intervention group demonstrated statistically significant
improvement in describing sequences of instructions compared to the students in the
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comparison group, with a large effect size (t(88) = 1.664, p = 0.0177, d = 3.43). This indicates
that the intervention group gained expanded CT skills through their participation in
computational modeling activities and were able to transfer these skills.

Students’ answers to the CM test question described above (see CM5 in Table 6)
were examined further and assessed for inclusion of loops, sequences, and a specific
programming syntax in the answers.

Figure 8 shows the percentage of students using loops, NetLogo syntax, and problem-
solving strategies in their instruction sequences, both before and after the learning activities.
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Figure 8. The percentage of students using loops, NetLogo syntax, and problem solving by describing
a sequence of instructions before and after the learning activities.

As shown in Figure 8, the number of students able to describe the instructions using
loops and sequences was low for both groups before the interventions (30% and 24%).
After the interventions, a higher percentage (44%) of the students from the intervention
group used loops and sequences in their descriptions, compared to the comparison group
of students (22%).

Around half of all students (51% and 54%, respectively, see Figure 8), in both groups,
were able to solve the problem by describing a sequence of instructions before the inter-
ventions. After the interventions, more than three-quarters of all students (78%) in the
intervention group were able to describe a sequence of instructions for a computer to carry
out, while approximately half of the students (57%) in the comparison group were able
to do the same. Hence, the results presented in Figure 8 indicate that students gained CT
skills from participating in the interventions and were able to transfer them from the CM
learning activities.

A subgroup of students (16%) from the intervention group used specific NetLogo
syntax in their answers after having participated in the interventions, although they were
not asked to do so. No students from the comparison group used a specific syntax in
answering the question.

In summary, students who used computational models and participated in computa-
tional learning activities during the interventions performed significantly better in both
evaluating a computer model in relation to a real-world phenomenon and writing instruc-
tions that can be followed by a computer compared to students who used a textbook model.
Overall, the intervention group showed a significant increase in their ability to understand
and explain the modeled phenomenon. After the interventions, teachers evaluated and
reported on students’ content knowledge in mathematics and social science. They esti-
mated that the learning gains among students in the intervention group were equal to those
achieved through existing teaching.
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5. Discussion

Transfer of learning is essential for problem-solving. Ensuring that students can
transfer CT skills to different contexts prepares them to tackle real-world challenges and
pursue advanced studies [49]. Assessing the transfer of learning effectively requires a
combination of qualitative and quantitative methods. As demonstrated in this study,
tools such as adapted Bebras test questions and NetLogo programming tasks offer a
comprehensive evaluation of students’ abilities.

The findings from this study suggest that targeted computational interventions for
high school students, particularly those with little prior knowledge of computing (see
Section 3.2, Participants), can significantly enhance their CT and CM skills. Specifically, the
integration of computational activities in teaching mathematics and social science enabled
students to develop CT and CM.

The effect for transfer of learning was robust when examining students’ expanded
CT skills (see Figures 6 and 7). The post-test administered up to four weeks after the last
intervention (see Figure 1) assessed retention and indicated sustained learning. Moreover,
students in the intervention group demonstrated an increased awareness of how computer
models can represent real-world phenomena. Notably, more students were willing and
able to communicate with computers by framing problems as a sequence of instructions
to a computer after participating in CM-related learning activities (see Figure 8). This
task, as highlighted by Curzon et al. [59] and Weintrop et al. [10], can be classified as CT,
supporting the integration of CM in various high school subjects, such as mathematics and
social science. This approach could engage a diverse group of students, including those
who are either more or less motivated in computing.

An analysis of students’ initial CT skills revealed that most students were already
scoring high, indicating a possible ceiling effect. A ceiling effect occurs when a large
proportion of participants achieve high pre-test scores, limiting the observable gains during
the intervention [58]. This phenomenon is common in studies involving students with a
strong interest in and knowledge of the subject. In this study, students from both groups
had elected to study mathematics at the highest level, suggesting a pre-existing proficiency
in logical and algorithmic thinking—the primary focus of the CT test.

Consequently, most students achieved near-perfect scores. Future research should
ensure that the Bebras problems used are sufficiently challenging or consider alternative
CT tests that allow for a broader distribution of responses.

Another challenge in traditional pre-post designs is the response shift bias, which
can lead to inaccurate pre-test ratings. This bias occurs when students overestimate their
knowledge and abilities at the start of a course or intervention [60]. Post-test scores,
therefore, often provide more accurate assessments as students gain a better understanding
of the questions or benchmark themselves against their peers. This response shift might
inflate the perceived effect of the intervention [61]. To mitigate this bias, this study used
multiple methods to assess students’ CT skills, including Bebras questions and tasks such
as describing sequences of instructions for a computer to execute (see Figures 7 and 8).

Perkins and Salomon [62] describe low road transfer as the automatic triggering of
well-practiced routines in similar contexts, relying on surface characteristics. In contrast,
high road transfer requires mindful abstraction and deliberate effort to apply learned
principles to new and different contexts. Perkins advocates for a whole approach to
teaching, emphasizing the integration of authentic experiences and reflection to foster both
types of transfer [63].

In our study, it is possible that students improved their CM skills simply through
participation, leading to better scores over time. Analysis of the CM test scores revealed
that students in both groups performed better on subsequent tests, potentially indicating a
low road transfer, where test conditions activated well-practiced routines like those in the
learning context. However, the final test (Test 3) showed a statistically significant difference
in scores, with the intervention group outperforming the comparison group. This suggests
that the intervention effectively facilitated the learning and retention of CM skills.
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5.1. Future Directions

This study aimed to measure students’ ability to apply CT and CM skills in both
theoretical and practical contexts closely related to their initial learning experiences. Future
research could explore far transfer, which involves applying these skills in more distant and
unrelated contexts. For example, far transfer might include learning algorithmic thinking
in biology and then using that skill to optimize supply chain logistics. Similarly, it could
involve assessing the impact of learning CT in computing on students’ critical thinking
in philosophy, or examining how CT enhances creativity in social sciences, ultimately
helping students solve real-world problems. However, measuring far transfer is often more
challenging than near transfer and may require longitudinal research designs, which are
beyond the scope of this study.

As we continue our research on the transfer of CT and CM skills in high school
education, future studies could focus on the underlying mechanisms that lead to either
high or low road transfer. CT and CM are not unidimensional constructs and do not
function as entirely separate processes.

Our goal is to understand how CM can enhance both students’ CT and their com-
prehension of real-world phenomena. Far transfer tests evaluate the ability of students to
apply learned skills in different and more abstract contexts—such as applying CT skills
acquired in a programming class to solve problems in various domains, like optimizing
logistics or other processes. This exemplifies high road transfer, where skills learned in
one context are applied to diverse subjects and real-world challenges. In this study, we
focused on the near transfer of learning between CT and CM rather than the far or high
road transfer (see Table 2).

5.2. Limitations

The design of the learning activity may have limited the students’ ability to fully
express their CT and CM skills. The concept of generalization, which is known to be
particularly challenging to master [48,64], was not clearly observed, as students lacked the
opportunity to apply parts of their code to different models. Moreover, certain elements of
the assessment methods, including visual and written expressions, did not adequately sup-
port the systematic multimodal representations that are integral to computational modeling
tasks (e.g., shapes and arrows). Previous research has indicated that the ability to express
one’s ideas can be both supported and constrained by the choice of medium and the nature
of a task [64,65]. Future research on students’ transfer of learning between CM and CT
should consider incorporating broader assessment methods. These methods should involve
procedural, semantic, visual, multimodal, and embodied forms such as gestures [66,67] to
better capture the range of students’ computational skills and understanding.

To ensure effective transfer of learning, high school teachers should incorporate CT
and CM in social science, mathematics, and other subjects. Integrating CT and CM can
help students apply their understanding in diverse contexts, enhancing their ability to
solve complex problems. This approach not only builds students’ confidence and sense
of accomplishment, but also fosters a deeper understanding of the subject matter [3,68].
Furthermore, as mentioned in the introduction, learning theorists as David Perkins and
Jeanne Ormrod have asserted that teaching principles to students seem more easily to lead
to transfer of learning than teaching discrete facts [63,69]. Therefore, to enhance students’
self-efficacy [68], it is important to incorporate activities that improve their understanding
of the principles underlying CT and CM. Assessments should evaluate how students
engage in logical and algorithmic thinking using these principles, ensuring they can apply
their knowledge effectively across different subjects.

Integrating principles of CT and CM into high school education might enhance stu-
dents’ transfer of learning and lead to expanded CT skills. By focusing on teaching the
principles and encouraging practical application, teachers can help students develop the
computational skills and confidence needed to succeed in various challenging tasks beyond
the classroom.
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Teaching CM can enhance students’ initial understanding of CT, particularly in areas
like abstraction and decomposition. For example, in social science, students can simplify
the understanding of urban development by focusing on key factors such as housing
and breaking down social segregation into causes and effects. In math, they can abstract
population growth to essential elements like birth rates and decompose it into growth
rate calculations and factor analysis. In physics, they can simplify projectile motion by
focusing on gravity and initial velocity and breaking it down into horizontal and vertical
components.

Through CM, the initial understanding of elements of CT might lead to a fuller, ex-
panded understanding of CT and the social science curriculum or social phenomena in
question. For instance, integrating CT and CM in social science can help students model
and analyze complex issues by teaching them decomposition. Students can decompose
social segregation by examining its causes (such as economic disparity, housing policies,
and educational inequality) and effects (like community division and unequal opportu-
nities). In urban development, they can break down the topic into components such as
infrastructure, transportation, housing, and economic factors. For social unrest, they can
analyze contributing factors (political instability, economic hardship, and social injustice)
and resultant impacts (protests, policy changes, and societal disruption).

Through computational modeling, students learn to break down problems into man-
ageable parts, facilitating a deeper understanding of each element’s role and interaction.
In mathematics, they identify patterns and apply CM to real-world problems. In natural
science, CT principles guide experimental design, while CM helps students visualize and
model natural phenomena.

6. Conclusions

This study highlighted the importance of transfer of learning in high school education
and demonstrates the effectiveness of targeted interventions using NetLogo to enhance
students’ CT and CM skills. Further research is needed to gather and triangulate a broader
range of evidence and assessment strategies on the transfer of learning between CT and
CM. Implementing robust assessment strategies and targeted interventions in high school
education can enhance students’ analytical skills and their understanding of scientific
methodologies through computational thinking and computational modeling. This ap-
proach supports the development of flexible and adaptive students who become prepared
for advanced studies, for interesting careers, and to participate as citizens in a complex
society.
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