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Abstract: Inertial technology has been used in a wide range of applications such as 

guidance, navigation, and motion tracking. However, there are few undergraduate courses 

that focus on the inertial technology. Traditional inertial navigation systems (INS) and 

relevant testing facilities are expensive and complicated in operation, which makes it 

inconvenient and risky to perform teaching experiments with such systems. To solve this 

issue, this paper proposes the idea of using smartphones, which are ubiquitous and 

commonly contain off-the-shelf inertial sensors, as the experimental devices. A series of 

curriculum experiments are designed, including the Allan variance test, the calibration test, 

the initial leveling test and the drift feature test. These experiments are well-selected and 

can be implemented simply with the smartphones and without any other specialized tools. 

The curriculum syllabus was designed and tentatively carried out on 14 undergraduate 

students with a science and engineering background. Feedback from the students show that 

the curriculum can help them gain a comprehensive understanding of the inertial 

technology such as calibration and modeling of the sensor errors, determination of the 

device attitude and accumulation of the sensor errors in the navigation algorithm. The use of 

inertial sensors in smartphones provides the students the first-hand experiences and intuitive 
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feelings about the function of inertial sensors. Moreover, it can motivate students to utilize 

ubiquitous low-cost sensors in their future research. 

Keywords: MEMS inertial sensors; smart phones; curriculum experiments; inertial navigation 

 

1. Introduction 

Inertial technology has been used in a wide range of applications such as guidance, navigation, and 

motion tracking. However, there are few undergraduate courses that focus on inertial technology. This 

creates a potential mismatch between knowledge acquisition of inertial navigation technology and 

teaching curriculum. Also, this phenomenon leads to lack of the necessary knowledge when students 

start their research on navigation during their graduate programs. Some of the reasons for this fact are 

that traditional inertial systems are bulky, have a complicated data collection process, and require a 

special power supply, which makes the education process hard to implement. With the development of 

manufacturing and electrical technologies, the inertial measurement units (IMU) have become much 

cheaper. However, even a low-end IMU can cost almost one thousand dollars, which is still expensive 

when used for teaching. Furthermore, expensive inertial equipment may be broken because of  

incorrect use. 

Smartphones are prevalent among college school students and much research has investigated the 

use of smartphones as teaching devices [1–6]. The smartphones are equipped with Micro-Electro-

Mechanical System (MEMS) inertial sensors including gyroscopes (gyros) and accelerometers [2]. 

These embedded inertial sensors have brought about better user experience and boosted the 

development of smartphones [7]. From the perspective of teaching, smartphones with off-the-shelf 

inertial sensors are ideal candidates for teaching experiments because they are light-weight and easy to 

operate. It is also convenient to collect the inertial sensor data since many free data collection Apps are 

available in the App stores and no extra infrastructure needs to be installed. It is possible to use them 

for teaching experiments and the in-class budget for hardware cost can be significantly reduced. 

Therefore, this paper proposes the idea of using smartphones for teaching inertial navigation 

technology and designs a curriculum with well-selected experiments, which solves the issues 

mentioned previously. 

The MEMS inertial sensors have been used in various fields that relate to motion, not only in the 

latest devices such as smart glasses, watches and gyro-stabilized cameras, but also in the motion 

tracking of objects such as athletes and electric wires in the wind. The MEMS inertial sensors in 

consumer electric products are low-cost and have low power consumption but suffer from significant 

sensor errors. As an example, the inertial sensor errors used in iPhone 4 are trial-axis gyroscopes and 

trial-axis accelerometers produced by STMicroelectronics. Their performance specifications are shown 

in Table 1 [8]. 

The gyro and accelerometer biases can reach thousands of deg/h and thousands of mGal. Such 

errors, if not compensated for, will accumulate and lead to attitude and position drifts due to the 

integration process in the inertial navigation algorithm. For 2-D navigation, the uncompensated gyro 

and accelerometer biases will result in position errors of approximate 3(1/ 6) ( )gb T g t    and 
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2(1/ 2) ( )ab T t  , respectively, where ( )gb T  and ( )ab T  are the gyro and accelerometer biases at 

temperature T, t is the time that INS works alone, g is the value of the local gravity. Also, the 

uncompensated sensor scale factor errors may introduce position errors proportional to time squared. 

Therefore, proper calibration and modeling of sensor errors becomes a key point when using low-cost 

inertial sensors. 

Table 1. Specifications of inertial sensors in iPhone 4 smartphone. 

Sensor feather 
STMicroelectronics 

Gyro (L3G4200D) Accelerometer (LIS331DLH) 

Operating temperature range −40 °C ~ 85 °C  −40 °C ~ 85 °C 

Measurement range ±2000deg/s  ±2 g 

Scale factor 0.07deg/s/digit  1mg/digit  

Scale factor error N/A ±10% 

Bias error ±75deg/s  ±20 mg 

Non-linearity 0.2% FS N/A 

Noise density 144deg/ h  8 m/s/ h  

The courses are designed based on several key principles. First, the courses should be able to 

provide students an overall understanding of the inertial navigation technology. Second, the courses should 

combine fundamental theories and practices, and place more emphasis on the latter. The fundamental 

theories should be interspersed with practice instead of being instilled to the students directly. In 

addition, what the students get from the courses should benefit their further learning of inertial navigation 

technology. Moreover, the experiments contained in the courses should be easy to implement. Based on 

the above principles, a curriculum containing four experiments is designed to help students acquire 

knowledge of inertial navigation technology. The experiments include the Allan variance test, the 

calibration test, the initial leveling test and the drift feature test. The Allan variance test can help the 

students learn components of the stochastic errors in inertial sensor outputs and thus enhance their 

understanding of the sensor error modeling in applications such as the GNSS/INS integrated 

navigation. The calibration test is designed to help the students learn the most commonly used method 

of determining deterministic sensor errors (i.e., the six-position calibration method). The initial 

leveling test can lead the students to a basic understanding of attitude determination. Finally, the drift 

feature test can help the students understand the drift features of the navigation solutions (including 

position, velocity, and attitude) from inertial navigation systems. 

All of the four experiments are designed on the principle that no specialized equipment is required, 

which can greatly reduce teaching expenses. Moreover, they are flexible and convenient to carry out 

and are suitable for class teaching purposes. Example tests are also provided as a reference. The 

smartphone used in example tests was an iPhone 4. The data collection App used in the test was the 

Sensor Data which can record the 3-D gyro and accelerometer data with configurable sample rates 

from 1–100 Hz. In each example test, the data sampling frequency was set as 100 Hz. 

The rest of the paper is organized as follows: Section 2 introduces the curriculum design principles, 

Section 3 presents the detailed contents of the courses, Section 4 presents the course arrangement, 

Section 5 described the curriculum implementation, and Section 6 draws the conclusion. 
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2. Curriculum Design Principles 

The courses are designed for higher grade undergraduate students with a science and engineering 

background, especially for those who want to further study the inertial navigation technology. In other 

words, the courses are prepared for the students who intend to study inertial navigation technology in 

depth, instead of all students. Hence, the courses are defined as elective. When designing the course, 

the following principles are followed: 

 The courses should be able to help students have an overall understanding of the inertial 

navigation technology. Also, the courses should help students realize the importance of the 

algorithms (e.g., the Allan variance analysis algorithm, the calibration algorithm, and the initial 

leveling algorithm) in the inertial navigation technology. 

 The courses should combine the fundamental theories and practices, and place more emphasis 

on the latter.  

 The courses should be fundamental but enlightening. The knowledge gained from the courses 

should help students get prepared for a deeper learning of inertial technology. 

According to these principles, the courses containing fundamental theories and well-designed tests 

are developed. In each course, the fundamental theories are used to guide the experiment 

implementation and help the students understand the outcomes of the tests. The experiments can in 

turn help the students master the theories. 

3. Curriculum Design 

In this section, the details of the curriculum experiments are presented. Example tests and results are 

also provided as a reference. Subsection 3.1 introduces the Allan variance analysis method and 

presents the detailed analysis steps, Subsection 3.2 presents the inertial sensor error models and shows a 

calibration procedure without the need for any specialized tools, Subsection 3.3 presents the initial 

leveling test, and Subsection 3.4 introduces the drift test and the results. 

3.1. Allan Variance Test 

The sensor outputs are influenced by deterministic errors and stochastic errors [9]. The 

requirements for accurate estimation of navigation information necessitate proper modeling of the 

stochastic errors. To identify the component and determine the coefficient of the stochastic errors 

contained in the sensor outputs is very important for optimizing the performance of these sensors. 

Allan variance analysis is an effective tool to identify stochastic errors, such as quantization noise, white 

noise, correlated noise, sinusoidal noise, random walk, and flicker noise [10,11]. The computation of 

Allan variance can be described as follows.  

First, divide the entire collection of data into K = N/T clusters, where N is the length of the data and 

T is the cluster length or cluster time, and calculate the average for each cluster: 

1

1
( ) 1, ,

T

k ki

i

y T y k K
T 

    
(1) 
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Then, change the cluster time T from small to large to get a series of variances related to T. For each 

T, the Allan variance can be calculated as follows: 

1
2 2

1

1

1
( ) ( )

2( 1)

N

k k

k

T y y
N








 

  

(2) 

where 2 ( )T  is the value of Allan variance value when the data collection is divided into T clusters.  

Finally, draw the log-log plot of the Allan variance (i.e., the square root of the Allan variance versus 

the cluster length T) and analyze the error characteristics. 

The accuracy of the Allan variance increases with the number of independent clusters. The accuracy 

of the computation for K cluster averages can be written as [12]: 

1
( )

2( 1)

T
N

T

 



 

(3) 

The detailed definition and analysis procedure of the Allan variance method can also be found  

in [13]. A typical Allan variance plot with different noise types is shown in Figure 1 [13]. 

 

Figure 1. Sample plot of Allan variance analysis results.  

The noise parameters of different stochastic errors can be determined by the Allan variance analysis 

method. These parameters can also be used to calculate the power spectral density (PSD) values of the 

corresponding noises [14]. The Allan variance and PSD values of some typical stochastic errors contained 

in the inertial sensor outputs are listed in Table 2. 

The sensor errors components can be determined by inspecting the log-log Allan variance plot because 

different components show different behaviors. For instance, the valley bottom in the Allan-variance plot 

corresponds to the bias instability error; white noise is represented by a slope of −1/2 in a log-log Allan 

variance plot, and the magnitude of this noise can be read off the slope line at = 3 . 

  



Educ. Sci. 2015, 5 31 

 

 

Table 2. Features of typical stochastic error sources in inertial sensors. 

Noise Types Allan Variance Noise Coefficient Curve Slope   

Quantization Noise 

2

2

3Q


 Q −1 3  

White Noise 

2

2

N


 N −1/2 1 

Flicker Noise (Bias Instability) 

22 ln 2B


 B 0 -- 

Angular Rate/Acceleration Random Walk 

2

3

K 
 K +1/2 3 

Ramp Noise 

2 2

2

R 
 R +1 2  

3.1.1. Test Description 

To get reliable analysis results, the tested smartphone should be placed on a stable platform to 

isolate external disturbances. In this paper, the example test was carried out in a laboratory at Wuhan 

University. Eight hours of static data was collected at room temperature (25 °C). 

3.1.2. Test Results 

Figure 2 shows the Allan variance curves of the sensors in the tested iPhone 4. For both the 

accelerometer and gyro curves, a straight line with a slope of −1/2 fit to the beginning of the curves. 

This outcome indicated that white noise was the dominant noise for the short cluster times. The 

coefficients of the stochastic errors contained in the sensor outputs were calculated and are listed  

in Table 3. 

 

(a) (b) 

Figure 2. Allan variance curves of the accelerometers and gyros in iPhone 4.  

Result shows that the white noise coefficients of the x-, y- and z-axis accelerometers were 5.7, 6.1, 

and 7.7 / /m s h , respectively. These results fit the reference values in the product specification. Also, 

the calculated gyro white noise coefficients fit the reference values in the product specification. The 
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valley bottom points indicate that the accelerometer bias instability is about 30 mGal. The gyro Allan 

variance curve shows no valley bottom, which means the identification of the long-term gyro 

stochastic errors such as bias instability requires longer static time. 

Table 3. Coefficients of noises contained in the sensor outputs. 

Sensor 
Noise Coefficient 

White Noise Flicker Noise (Bias Instability) 

Accel_X 5.7 / /m s h  25 mGal 

Accel_Y 6.1 / /m s h  30 mGal 

Accel_Z 7.7 / /m s h  35 mGal 

Gyro_X 94.2 deg/ h  -- 

Gyro_Y 106.3 deg/ h  -- 

Gyro_Z 123.1 deg/ h  -- 

Since the Allan variance algorithm is difficult for beginners, an Allan variance analysis function 

should be provided by the lecturer. After the collection of static data, the students can draw the Allan 

variance plots with the analysis function. With the Allan variance plots, the students can be guided to 

think about the following questions: (a) what are the dominate noises in the sensors outputs? and (b) how 

to estimate the parameters of the noises based on the Allan variance plots? After the students have 

calculated the parameters, the lecturer can guide the students to investigate if the analysis results match 

the product specification or not. Through this experiment the students can learn different types  

of stochastic errors contained in inertial sensors. Additionally, they can master the method of 

determining the coefficients of typical stochastic errors with the Allan variance analysis method, thus 

enhancing their understanding of the sensor error modeling in applications such as the GNSS/INS 

integrated navigation. 

3.2. Calibration Test 

MEMS sensors are small-sized, light-weighted, and with low power consumption. However, they 

suffer from significant sensor errors due to manufacturing imperfections. The major deterministic error 

sources in inertial sensor outputs are biases, scale factor errors and non-orthogonalities [15]. In this 

section, we will first introduce the sensor error models and the six-position calibration method, and 

then present the calibration test and the results. 

3.2.1. Sensor Error Models 

The output of accelerometers and gyros can be written as: 

^

a a a af =[I+S ]f+N f+b +w  (4) 

^

g g g gω=[I+S ]ω+N ω+b +w  (5) 

Where 
^
f  and 

^
ω  are the error vectors of the accelerometer-derived specific forces and the gyro-derived 

angular velocities, f  and ω  are the true specific forces and the true angular velocities, I  is the identity 

matrix, 
aS  and 

gS  are the diagonal matrices containing the scale factor errors, 
ab  and 

gb  are the 
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accelerometer and the gyro biases, 
aN  and 

gN  are the skew-symmetric matrix containing the  

non-orthogonalities, and aw  and 
gw  represent the accelerometer and gyro noises. 

3.2.2. Six-Position Calibration Method 

Calibration is known as a fundamental way to remove the majority part of the deterministic sensor 

errors [16]. Among many of the calibration methods, the six-position static and rate tests method is 

most commonly used due to its reliability and simplicity of implementation. The six-position static and 

rate tests can be used together to get a full set of sensor errors (i.e., biases, scale factor errors and  

non-orthogonalities).  

The six-position static and rate tests require each of the accelerometer sensor axes to be pointed 

alternately upwards and downwards (see Figure 3) and each of the gyro sensor axes to be rotated both 

clockwise and anti-clockwise with known angles (see Figure 4). All the accelerometer errors and the 

gyro bias can be estimated using the two-position static tests in the zenith direction, while the gyro 

scale factor errors and the gyro non-orthogonalities can be estimated using the rotation test data [17]. 

Since the accelerometer scale factor errors are calibrated by comparing the vertical accelerometer 

output with the local gravity, a quasi-horizontal platform is required to keep the axis vertical.  

 

Figure 3. Two static positions for the calibration of accelerometer errors. 

 

Figure 4. Rotations for the calibration of gyro scale factor errors and non-orthogonalities. 

In principle, the Earth’s rotation whose magnitude is 15 deg/h can be used as the reference signal 

for the calibration of gyro scale factor errors and non-orthogonalities. However, MEMS gyros have 

significant noise, which will mask the Earth’s rotation rate. Hence, the reference signal for the 

calibration of gyro scale factor errors should be provided artificially. Syed et al. introduced a turntable to 

provide strong rotation signals for the gyro calibration [18]. However, it is inconvenient and costly to 

calibrate low-end inertial sensors in smartphones with such specialized tools for the class teaching 

purpose. To reduce the calibration cost and improve the simplicity of the implementation, the required 
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rotations can be performed by hand with an alignment tool such as a leveled platform with a flange or 

any flat with a right corner. The platform is used to provide a leveled plane for the accelerometer 

calibration while the flange can be used to provide an orientation reference for the gyro calibration. With 

this tool, a rotation with known angles can be performed as follows: first, align one edge of the 

smartphone closely to the flange; then, rotate the smartphone anti-clockwise around its vertical axis on 

the surface of the platform until the smartphone is back to its initial orientation with the help of the 

flange; finally, perform a clockwise rotation using the same method. The process is shown in Figure 5. 

The scale factor errors and non-orthogonalities can be estimated by comparing the gyro-derived angles 

with the reference angle (i.e., 2π ).  

 

(a) (b) (c) 

Figure 5. Reference rotation performed by hand with simple alignment tools (a) Original 

position; (b) Rotate the smartphone around its z-axis; (c) Back to its original orientation. 

After the static and dynamic data collection, the full set of deterministic sensor errors (i.e., 

accelerometer and gyro biases, scale factor errors, and non-orthogonalities) can be calculated. The 

detailed calculation procedure can be found in Appendix A. 

3.2.3. Error Compensation 

Neglecting sensor noises, Equations (1) and (2) can be transformed into the following form: 

^

a a af =[I+S +N ]f+b  (6) 

^

g g gω=[I+S +N ]ω+b  (7) 

Then, the compensated sensor outputs can be represented as: 

^
-1

a a af=[I+S +N ] f -b
 
 
 

 
(8) 

^
-1

g g gω=[I+S +N ] ω-b
 
 
 

 
(9) 

Each sampling data of gyro and accelerometer can be compensated with Equations (8) and (9) to 

provide more reliable navigation solutions. 

3.2.4. Test Description 

Each sensor axis of the inertial sensors was kept pointing upwards and downwards for a period of  

7 min, respectively. The smartphone was also rotated both clockwise and counter-clockwise around its 

x-, y-, and z- axis for an angle of 2 . The gyro and accelerometer outputs are shown in Figure 6. 
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(a) 

 

(b) 

Figure 6. Sensor outputs in six-position static and rate tests. 

3.2.5. Test Results 

The calibration results of the accelerometer and gyro errors are shown in Tables 4 and 5, respectively. 

It can be seen from the tables that the accelerometer biases reached 8000 mGal . This error will cause a 

position drift of 150 meters in 60 s. The scale factor errors and non-orthogonalities of both gyros and 

accelerometers reached more than ten thousand ppm. This outcome shows the necessity of the 

calibration of the scale factor errors and non-orthogonalities. The uncompensated gyro errors will 

introduce systematic errors in the estimation of attitude and further affect the estimation of velocity and 

position. The gyro biases obtained from the calibration were not as significant as those demonstrated in 

specification, which were beyond our expectation. This might be because of the on-site calibration from 

the smartphone company. Generally speaking, these calibrated sensor errors meet the performance of 

the low-end MEMS inertial sensors. 

Table 4. Accelerometer errors in the tested iPhone 4. 

 Bias ( )mGal  Scale Factor ( )ppm  Non-Orthogonality ( )ppm  

Error axb  ayb
 azb  xm  ym

 zm  xym
 xzm  yxm

 yzm
 zxm  zym

 

Value 2061 416 8066 14,030 −605 −800 5100 16,914 −2010 −2960 −16,686 8186 

Table 5. Gyro errors in the tested iPhone 4. 

 Bias ( )deg / h  Scale Factor ( )ppm  Non-Orthogonality ( )ppm  

Error axb  
ayb  azb  

xm  
ym  

zm  xym  xzm  yxm  yzm  zxm  zym  

Value 13 3 −25 17,826 18,511 23,512 10,411 12,419 −8317 5625 −16,546 2812 

Before the implementation of the test, the lecturer should introduce the definition of deterministic 

errors (i.e., biases, scale factor errors, and the non-orthogonalities) and guide students to think about 

questions such as (a) the effects of deterministic errors on the navigation solution and (b) the benefits 

of using “two positions” (e.g., making an accelerometer pointing upwards and downwards when 

calibrating it) in the calibration scheme. Through this course, students should be able to master both the 

calibration scheme and the calculation of deterministic errors. Also, they can learn the magnitude of the 

deterministic errors in different grades of IMUs. 
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These calibrated sensor errors were then used to compensate the sensor outputs in the drift tests. 

Results show that the navigation drifts were effectively reduced after compensation using these errors. 

3.3. Initial Leveling Using Accelerometers 

Low-end MEMS accelerometers are widely used for tilt sensing in consumer electronics and industrial 

applications, such as entertainment, screen rotation, and automobile security alert systems. The 

orientation of a smartphone can be defined by its roll, pitch, and heading rotations from an initial 

position, as show in Figure 7 [19]. The tilt of a device can be expressed by the roll and pitch angles [20]. 

Initial leveling using accelerometer is the process to determine roll and pitch angles.  

 

Figure 7. Definition of rotation angles. 

3.3.1. Pitch and Roll Estimation 

Accelerometer measures the composition of linear acceleration and the local gravity. When there is 

no acceleration, the accelerometer output is a measurement of projections of the local gravity and can 

be used to determine the accelerometer pitch and roll orientation angles. 

The roll, pitch, and heading can be described in mathematical method using rotation matrices.  

The rotation matrices describing the pitch, roll and heading rotations are: 

1 0 0

( ) 0 cos sin

0 sin cos

xR   

 

 
 

  
  

 
(10) 

cos 0 sin

( ) 0 1 0

sin 0 cos

yR

 



 

 
 

  
 
 

 (11) 

cos sin 0

( ) sin cos 0

0 0 1

zR

 

  

 
 

  
 
 

 (12) 

Different ordering of these three rotation matrices will result in different composite rotation matrix 

R. Here, we use the sequence of heading, roll and finally pitch rotation. The according composite 

rotation matrix can be expressed as: 
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( ) ( ) ( )

cos cos cos sin sin

cos sin sin cos sin cos cos sin sin sin cos sin

cos cos sin sin sin cos sin sin cos sin cos cos

x y zR R R R  

    

           

           



 
 

   
   

 
(13) 

The composite rotation matrix describes the orientation relationship between the local geographic 

coordinate system and the smartphone body frame. The projection of the local gravity to the three-axis 

accelerometers can be expressed by: 

~

~ ~

~

f
0 sin

f f 0 cos sin

cos cos
f

x

b y

z

R g

g



 

 

 
     
     

        
    
    

 

 
(14) 

Then, the roll and pitch angles can be calculated as follows: 

~

~

f
arctan

f

y

z



 
 
  
 

 
(15) 

~

f
arcsin x

g


 
  
 
 

 
(16) 

where g is the local gravity value and 
~

f x , 
~

f y
,and 

~

f z  are the average output of the x-, y-, and z-axis 

accelerometer, respectively.  

3.3.2. Test and Results 

In the example experiment, the smartphone was used to measure the tilt of an inclined plane.  

A turntable was used to provide known orientation reference to investigate the accuracy of leveling using 

the smartphone. However, the turntable is not necessary and can be replaced by any inclined platform 

in real class teaching experiments. The smartphone was fixed on the turntable platform, and the 

horizontal axis was changed to the place of 10 degrees, 20 degrees and finally 30 degrees for four 

minutes. The accelerometer outputs during the tests are shown in Figure 8. 

 

Figure 8. Outputs of accelerometers in the tilt measuring test at three positions. 

0 200 400 600 800
-10

-5

0

5

10

Time (Sec)

A
c
c
e
l 

D
a
ta

 (
m

/s
2
)

Accel Output

 

 

x-axis

y-axis

z-axis

Position1

Position3

Position2



Educ. Sci. 2015, 5 38 

 

 

The orientation angles calculated using Equations (15) and (16) are shown in Table 6. 

Table 6. Results of initial leveling. 

Position 
Roll (deg) Pitch (deg) 

Measured Reference Error Measured Reference Error 

Position 1 10.7061 10.0254 0.6807 −0.4680 −0.3826 −0.0754 

Position 2 20.3614 20.0254 0.3360 −0.4892 −0.3826 −0.0066 

Position 3 30.0755 30.0254 0.0501 −0.4930 −0.3826 −0.0104 

The max errors of the roll and pitch angles are 0.6807 deg and −0.0574 deg, respectively. This 

accuracy is acceptable in applications such as electronic device orientation sensing.  

In the course, the students can be guided to learn the definition of the roll, pitch, and heading angles 

and the determination of these angles using the accelerometer outputs. Students can learn the basic 

attitude determination algorithm through this experiment.  

3.4. Drift Features of INS 

An INS utilizes gyros and accelerometers to maintain an estimate of the position, velocity, and 

attitude of vehicles such as aircrafts, surface ships, and submarines [21]. The INS is independent from 

external references once initialized, which makes it immune to most external interference such as 

jamming or decoy signaling. However, the accuracy of INS may degrade rapidly with time and 

distance due to accumulation of sensor errors [22]. Therefore, the drift experiment is designed to lead 

the students to learn the drift features of the inertial navigation. 

3.4.1. Test Description and Results 

The smartphone was placed on a stable platform and kept static for about 2 min. To investigate  

the effectiveness of calibration, the sensor outputs were also compensated with the deterministic errors 

(i.e., biases, scale factor errors, and non-orthogonalities) obtained in Section 3.2.5. The uncompensated 

and compensated sensor outputs are shown in Figures 9 and 10, respectively. 

 

Figure 9. Uncompensated accelerometer and gyro outputs in the drift tests. 
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Figure 10. Compensated accelerometer and gyro outputs in the drift tests. 

Since the smartphone was placed on a quasi-level platform with the z-axis pointing upwards, the 

input for the z-axis should be the local gravity and the input for the x- and y-axis accelerometer should 

be zero. However, it can be seen from Figure 9 that the uncompensated x-axis and y-axis accelerometer 

outputs had an offset of zero, which was probably caused by biases and non-orthogonalities. Figure 10 

shows that the offset was eliminated after compensation, which illustrated the validity of calibration. 

3.4.2. Result of INS Algorithm 

The sensor outputs were used to derive the navigation solution. Since the smartphone was kept  

static on a platform, the reference for position and attitude were the initial position and orientation, and 

the reference for velocity was zero. Two sets of navigation solutions were obtained with the compensated 

and uncompensated sensor outputs, respectively. The derived navigation solutions are shown in Figure 

11a–c. In each figure, the reference navigation information is illustrated as the red lines. The derived 

navigation solution with the compensated and uncompensated sensor outputs are represented by the 

green and blue lines, respectively.  

 

(a) 

Figure 11. Cont. 
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(b) 

 

(c) 

Figure 11. Navigation solutions and drifts. 

The navigation solutions with sensor error compensation had much smaller drifts than those without 

compensation. The velocity drifts without compensation reached more than 10 m/s. After 

compensation, the velocity drifts reduced to less than 5 m/s. The position drifts were also reduced from 

the 1 km level to 100~200 m. The attitude compensation effect was less remarkable, which should be 

due to the fact that the original gyro biases were relatively small. The results further verified the 

effectiveness of calibration. Figure 11 also shows that the attitude estimation derived by inertial sensors 

had relatively small drifts and can maintain an accuracy of half a degree after 2 min of reckoning. 

However, the velocity and position still show relatively large drifts even after compensation. This may 

be caused by the instabilities of the MEMS sensor errors due to factors such as the temperature 

variation [23]. The stochastic errors, which are impossible to eliminate, might also contribute to the 

drifts. Another reason is that the velocity and position errors are affected by not only the accelerometer 

errors but also the attitude errors. Due to the existence of the attitude errors, both the acceleration and 

the local gravity will be projected in the wrong direction. The drift errors of the MEMS inertial 

navigation solutions in this test meet the level of the low-end MEMS inertial sensors in the smartphone 

in general. 

In this course, the students are led to calibrate the deterministic errors in the sensor outputs and  

make a comparison between the sensor outputs before and after compensation to examine the effect of 

compensation. An INS algorithm functions package should be provided by the lecturer. Before the data 

collection, the orientation of the smartphone should be determined to provide initial attitude for the 

INS algorithm. After the students get the navigation solution, they are guided to explore the error 

sources in the navigation solution and to think about why velocity and position drift faster than attitude. 
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Through this experiment, the students can understand the drift features of INS and learn the importance of 

compensating for deterministic errors. They can also be guided to obtain an awareness to optimize the 

performance of inertial sensors. 

4. Course Arrangement 

The practice in the curriculum consists of the Allan variance test, the calibration test, the initial 

leveling test, and the drift feature test. A navigation software package containing the Allan variance 

analysis function and the INS mechanization function should be included in the curriculum. The static 

data for the Allan variance analysis can be collected during the night before the class to save class 

hours. Considering the contents of the courses, each of the courses is taught during one day (six class 

hours). The detailed arrangement for the courses is listed in Table 7 as a reference. The courses can be 

tailored based on the requirements of the lecturer and the students. 

Table 7. Course arrangement. 

Course Course Length Course Objectives & Arrangement 

Allan 

variance test 

1 day  

(6 class hours) 

Objective:  

Understand the principle of the Allan variance method Master the 

method of identifying different stochastic errors and determining their 

parameters with the Allan variance analysis method  

Arrangement: 

Get familiar with the Allan variance package and draw the Allan 

variance plots (3 class hours) 

Pick out the main error components of errors and determine the 

parameters of the errors (3 class hours) 

Calibration 

test 

1 day  

(6 class hours) 

Objective: 

Understand the sensor error models and the compensation models 

Master the calibration of deterministic errors with the six-position 

calibration method 

Arrangement: 

Data collection (3 class hours) 

Calculate the sensor errors (3 class hours)  

Initial 

leveling 

1 day  

(6 class hours) 

Objective: 

Learn about the initial leveling algorithm and obtaining an basic 

concept of the attitude angles 

Arrangement: 

Data collection (3 class hours) 

Calculate the pitch and roll angles (3 class hours) 

Drift feature 

test 

1 day  

(6 class hours) 

Objective: 

Investigate the contribution of the IMU compensation  

Master the INS navigation solution method 

Get experience about the drift features of the INS solutions 

Arrangement: 

Collect IMU data and compensate for the sensor errors (3 class hours) 

Process the IMU data to get the navigation solution (i.e., attitude, 

velocity, and position) with both the compensated and 

uncompensated data (3 class hours) 
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5. Course Implementation 

The curriculum was tentatively carried out on 14 students with a science and engineering 

background. Each course follows the following steps when implemented: 

1. Introduce course contents and arrangement, explain the course objectives, and introduce 

fundamental theories, concepts, terms and the relationship between the algorithms. 

2. Present the students some real-world scenarios for the used algorithms. These scenarios can 

help the students understand the role of the algorithms in inertial navigation and get interested 

in the algorithms. For example, when introducing the Allan variance analysis method, the 

students should also be guide to learn how the noise parameters affect the performance of the 

integrated navigation system in practice. 

3. Introduce the experiment procedures to the students. Once the students had mastered the 

procedures, they will be able to design and conduct the experiments. The lecturer will guide the 

students in designing the experiment.  

4. Guide the students to predict the test results. Before data processing, the students are guided to 

predict the outcome of the test results in advance. Then, they can see whether the test outcomes 

meet their expectations. After that, the students are able to understand the theories in depth.  

After the courses, the students were invited to take a survey on the difficulty and effect of the  

courses. The students thought the course difficulty was moderate. Some students thought the 

curriculum was innovative because the smartphones instead of the bulky professional equipment were 

used. Most students thought the curriculum was very helpful as they can gain first-hand inertial 

navigation knowledge such as modeling of the stochastic sensor errors, calibration of the deterministic 

errors, the effect of sensor errors on the navigation solution, and the drift feature of INS. More 

importantly, some students also mentioned that they were inspired to use inertial technology in their 

research field. 

6. Conclusions and Summary 

In this paper, smartphones are introduced for inertial technology teaching experiments.  

A series of experiments are designed, including the Allan variance test, the six-position calibration test, 

the initial leveling test, and the drift test. These experiments can guide students in gaining a comprehensive 

understanding of inertial navigation, including the characteristics of sensor errors, drift features of the 

inertial navigation systems, detection and modeling of stochastic errors, and calibration of 

deterministic errors. Results of real teaching experiences show that the use of the MEMS inertial 

sensors inside smartphones can reduce teaching expenses. More importantly, this paper explores an 

interesting way to convey professional knowledge through use of personal devices. After taking the 

course, the students realized that inertial technology is not only a high-end technology, but also a 

technology that is related to human lives. The outcome of this paper also provides guidance for 

improving the teaching experience in other subjects by taking advantage of new and current technologies. 

  



Educ. Sci. 2015, 5 43 

 

 

Acknowledgment 

This work is supported by the Undergraduate Curriculum Develop Program of China (surveying 

engineering) (275534), the National Natural Science Foundation of China (41174028, 41231174), and 

the National High Technology Research and Develop Program of China (2012AA12A206). 

Author Contributions 

Xiaoji Niu: the original idea of the work was proposed by him, the structure of this paper was also 

designed by him, and the research is supported by his research funds. Qingjiang Wang: the tests and 

the writing of the paper were mainly carried out by him. You Li: guided the implementation of the 

tests, provided many reference documents, and improved the paper structure and language style.  

Qingli Li: participated in the implementation of the tests, and part of the test data was processed by her. 

Jingnan Liu: gave much valuable advice on the implementation of the tests, and gave much advice 

which greatly improved the quality of the paper. 

Appendix A. Sensor Error Calculation of the Six-Position and Rate Tests Method 

Estimation of Accelerometer Errors 

To estimate a full set of accelerometer errors, the output of a triad of accelerometers is represented 

in matrix form. 
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The diagonal k elements are the scale factors, the off diagonal m elements represent the  

non-orthogonalities and the b components are the biases. In the calibration scheme, the axis of each 

accelerometer is kept pointing upwards and downwards for a period of time and the ideal acceleration 

can be represented as follows: 
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Then, the design matrix can be denoted by A  and the measured acceleration of the accelerometer is 

denoted by U . 
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In this case, the column vector of the U  matrix should be: 
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u . Then, the M  matrix can be estimated by the  

least-square method. 

1( )T T   M U A A A  A6 

Estimation of Gyro Errors 

Different from the calculation of the accelerometer errors, it is better to estimate the gyro errors 

through a two-step method, instead of using the least-square method directly. The first step is to 

calculate the biases using static data. The other step is to calculate the scale factor errors and  

non-orthogonalities with dynamic data. 

Estimation of Gyro Biases 

The bias of the i-axis gyro can be calculated by: 

2

i upwards i downwards

gi

l l
b

 
  A7 

where 
i upwardsl 

 and i downwardsl   are the gyro outputs when the axis points upwards and downwards, respectively. 

Estimation of Gyro Scale Factors 

The scale factors of the i-axis (i = x, y, z) gyro can be estimated using the same idea as the  

six-position method.  

1
2

i clockwise i antilockwise

gi
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L L
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L
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where 
giS  is gyro scale factor of the i-axis gyro, i clockwiseL   and i antilockwiseL   represent the angle derived by 

the integration of the i-axis gyro output when the IMU is rotated around this axis by 
refL  clockwise and 

counter-clockwise, respectively. For the designed eight-step calibration scheme, the value of 
refL  is 90°. 

Estimation of Gyro Non-Orthogonalities 

The non-orthogonalities cause each axis to be affected by the signal of the other two axes. When  

the turntable is rotated around i-axis, the output of j-axis will be affected by this rotation due to the  

non-orthogonalities between i-axis and j-axis. Thus, the non-orthogonalities between i-axis and j-axis 

can be estimated by the output of the j-axis when the IMU is rotated around i-axis in both clockwise 

and counter-clockwise direction.  
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where 
ijn  is the non-orthogonalities of i-axis to j-axis, 

j clockwiseL 
 and 

j anticlockwiseL 
 are the output of j-axis 

when the IMU is rotated around i-axis by 
refL  in clockwise and counter-clockwise direction. 
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